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Abst rac t .  In this paper we present new algorithms for target detec- 
tion/segmentation in second generation Forward Looking Infra-Red (FLIR) 
images. An initial detection algorithm that models the background using 
Weibull functions, is used to identify candidate target locations in the 
image. A two-stage focused analysis of each candidate target location is 
then performed to get an accurate representation of the target boundary. 
A region-growing procedure is used to get an initial estimate of the tar- 
get region, which is then combined with salient edge information in the 
image to arrive at a more accurate representation of the target boundary. 
The region and edge integration is done using a novel method that uses 
a Bayes' minimum risk classification approach. Finally, to reduce the 
false alarm rate, a higher level interpretation module is used to classify 
the detected areas as man-made or natural objects using geometric and 
FLIR-intensity based features extracted from the target. 

1 Introduction 

A central problem in computer (machine) vision, and automatic target  recog- 
nition (ATR) in particular, is obtaining robust descriptions of the objects of 
interest (OOI) in an image. Vital to this problem is the need for good segmen- 
tation techniques that  identify the regions in an image that  are occupied by the 
objects. In ATR applications, it is important  to get an accurate and precise rep- 
resentation of the boundary of the tactical targets [1]. Since targets are usually 
characterized by their shape and the gray scale representation of the segmented 
target, segmentation results directly affect the performance of the system. 

In this paper, we present a segmentation method which uses low level tar- 
get segmentation techniques along with higher level interpretation techniques 
for robust target detection and segmentation. The strategy adopted here is the 
following: (1) An initial detection algorithm is used to identify regions in the im- 
age that  are candidate location of objects of interest (targets) by modeling the 
background using Weibull functions. At this stage all possible object locations 
in the image are identified, at the expense of a high false alarm rate. Concur- 
rently, a salient edge image, which contains all the salient edge information in 
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Fig. 1. The general flow of the target segmentation paradigm. 

the image, is obtained from the original image. Saliency of edge segments in an 
image is defined by its length (L), average contrast (C) and smoothness (Ak), as 
described in [3]. Salient edge segments are those which are more significant than 
the others in the image. By considering only salient edges, the effect of clutter 
in an image is reduced. 

(2) The initial detection stage is followed by a .focused analysis of the candi- 
date target areas. The objective at this stage is to get a good representation of 
the image attributes of the target region under consideration, such as boundary 
information, size, compactness, etc. The focused analysis consists of a two-stage 
process. A region-growing procedure is used to get an initial estimate of the 
target region, which is then combined with the edge information in the corre- 
sponding region of the salient edge image to get an accurate estimate of the 
target boundary. (3) In the final stage a higher level interpretation technique is 
used to identify the OOI from the candidates in the image. A schematic of the 
overall approach is shown in figure 1. 

The rest of the paper is organized as follows: Section 2 describes the algo- 
rithm developed to detect the initial candidate locations of the targets in the 
image. In section 3, the focused segmentation of each candidate target loca- 
tion is presented. Section 4 describes the higher interpretation module and the 
types of features extracted from the image to discriminate between man-made 
objects and natural background. Finally, in section 5, a summary of this study 
is presented. 

2 Init ial  D e t e c t i o n  Of  Target  Locat ions  

In this section, we present a method for better representation of the intensity 
distribution of the background in second generation FLIR images and a scheme 
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that uses this information for the initial detection of probable target locations. 
To model the background distribution, we have found that the density func- 

tion of the Weibull distribution (predominantly Rayleigh) approximates the 
background clusters well (better than a Gaussian distribution in terms of the 
detection rate). Since the background tends to form more than one cluster, a 
piecewise approximation of the histogram is done using Weibull functions to ar- 
rive at the background model. The approximating Weibull density functions are 
of the form: 

f ( x )  = x ~-1 exp (--~-) x > 0 

= 0 otherwise (1) 

where, 8 determines the spread of the function, 7 determines the shape of the 
function and A modulates the peak value of the function. For 7 -- 1, the function 
reduces to an exponential form, while for 7 = 2, we obtain the Rayleigh form. 

Target regions in the image are detected by determining all locations in 
the image where the gray scale values have a "low" probability of belonging to 
the background. The probability of each gray scale value of belonging to the 
background is determined by the background cluster that it is closest to, and is 
computed in a maximum likelihood sense as follows. Let x represent a gray scale 
value, where 0 _< x < 255, and L(x  E ck) be the likelihood of x belonging to 
cluster c~, where ck, k = 1 . . .  n, represents the n background clusters. L(x  E ck) 
is computed as: 

~4k"{k X "~'~-1 exp ( -  ~O-~-) 
L(x  e Ck) = eL ~ , (2) 

A~X~k--1 exp ( - - ~ )  9~ peak,k 

where, X~eak,k represents the gray level value at the peak of cluster k, and the 
probability that x belongs to the background is obtained as: 

P ( B / x )  = m a x { L ( x  �9 ck),k = 1 . . .n} ,  (3) 

where, B represents the background class, and the probability of x belonging 
to the target is (1 - P ( B / x ) ) .  The false alarm rate at this stage is directly 
proportional to the threshold probability chosen as "low". Typically, at this 
stage all possible target locations are detected, at the cost of a high false alarm 
rate. Figures 2 and 3 show examples of typical FLIR images, their histograms 
and the WeibuU approximations. 

3 Target  S e g m e n t a t i o n  U s i n g  Focused  Ana lys i s  

Once all possible target locations in the image have been identified, a focused 
analysis approach is used to improve the segmentation around each candidate 
target location. A region-growing procedure is used to initially segment the tar- 
get, which is then followed by a refinement stage, where the accuracy of the 
boundary of the segmented target region is improved using the salient edge 
information (obtained from the salient edge image) in and around the target 
region. 
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Fig. 2. FLIR images of  a truck and a tank. 

(a) (b) 
.......... L..._II 

(c) (di' 
Fig. 3. (a), (c) Histograms of  the images in Figure 2. (b), (d) Weibull ap- 
proximations of  the histograms. 

3.1 A Local  Shape  Dr iven  R e g i o n  G r o w i n g  P a r a d i g m  

A region-growing paradigm is used to segment each candidate target detected. 
To grow the region around the detected areas, surrounding pixels with a low 
probability of belonging to the background are added to the region. The process 
is iteratively continued by adding pixels to the region with higher probabilities 
of belonging to the background, while the size of the segmented region does not 
exceed the a priori  known object size, the compactness of the region does not 
exceed a predefined maximum, and the boundary of the region does not get too 
irregular. 

The last constraint uses the fact that the targets to be segmented are man- 
made and hence show some kind of regularity. On the other hand, boundaries of 
objects that belong to the background (like vegetation, clouds, etc. ) are usually 
characterized by irregular boundaries which exhibit frequent changes in curva- 
ture. To determine the percentage of the boundary that is irregular, we first 
extract the boundary (contour) of the region. The corner points of the bound- 
ary are detected. For man-made objects, these corner points can be regarded as 
the end points of the linear segments that make up its boundary. The contour 
(boundary) between these corner points should be relatively smooth. The corner 
points are detected using a cubic B-spline fitting method [2]. Next, the corner 
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Fig. 4. Region based segmentation of the images in Figure 2. 

points are used to split the boundary into segments, where the boundary be- 
tween two corner points is considered as one segment. Segments that  are smaller 
than some fraction (5%) of the a priori  known approximate target boundary size 
are considered as irregular segments. The rest of the segments are then tested 
for smoothness. For each segment i, a smoothness measure is computed as: 

S~ = A~ma= - A~ ~ 

where, An is the average change of curvature of the segment, A~m~n is the 
smallest average change of curvature for all the segments of the target boundary 
and A~,~a= is the largest average change of curvature for all the segments. The 
measure S~ satisfies 0 < S~ < 1. 

The smoothness measures are used to order the segments, and segments with 
a smoothness measure greater than a certain threshold value are considered to 
be smooth. This threshold value is computed as follows: 

O = l - e  p~- , (5) 

where, #n~ and pn~ are the mean and standard deviation of the average change 
in curvature of all the segments, and A is a constant. By making O a function of 
the average smoothness of the segments and the deviation of the smoothness of 
the segments, the threshold value is indicative of the overall smoothness of the 
boundary. Figure 4 shows the final region-based segmentation for the images in 
figure 2. A closer look at the segmentation for one of the examples is shown in 
figure 5. 

3.2 Integrating Salient Image Contours with Segmented Regions 
for Refining Target Boundaries 

A new paradigm for the refinement of region-based segmentation results using 
edge information is presented next. Since segmentation using region-based tech- 
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Fig. 5. A closer look at the  segmentat ion of  the  truck in Figure 2. 

niques are inefficient in locating exact target boundaries and tend to miss small 
parts of the target, the boundaries of the segmented targets are refined using the 
salient edge segments in the image. An edge contour is obtained from an edge 
as a linked list of edge pixels. An edge segment is defined as that part of an edge 
contour between its corner points. 

Given the target boundary obtained from the region growing process and the 
salient edge segments in and around the target region, the boundary refinement 
problem is stated as: 

For every point s on the region boundary, find its new location as a selection 
from a set of candidate edge element locations 2 = {zj, j = 0 . . . n} ,  where 
Z 0 -~-8 .  

This problem is formulated as a classification problem, where point s will 
take one of the labels given by 2. Using Bayes decision rule, choose z i as the 
new location if 

p(slzj)P(zj) > p(SlZk)P(zk ) V k ~ j, (6) 

where p(slzj) represents the conditional density function of (s, zj) and P(zj) is 
the prior probability of zj. The prior probability of each candidate location zj 
is estimated as the proximity of the salient edge segment to which zj belongs to 
the boundary of the target region. Proximity of an edge segment is defined as 
the percentage of its segment that is close to the region boundary. The closeness 
of a segment pixel to a region boundary is determined by a Refinement Search 
Circle (RSC) of radius A. If an edge segment pixel lies within a RSC placed on 
any region boundary point, then the edge segment pixel is considered as close 
to the region boundary. Each salient edge segment (SE~, 0 < i <_ q, where q 
is the number of salient edge segments and SEo = s) is assigned a proximity 
weight determined by the number of its pixels that are close to the target region 
boundary, and is given by" 

Prox(SEi) = # edge elements of  segment SEi that is close to region boundary 
# edge elements in SEI 

(7) 
Hence, under suitable assumptions [5], the priors are computed as: 

P(zj) ~ Prox(SEJ). (S) 

All points lying on the same salient edge segment will have the same prior 
probability. The density function p(s]zj) is assumed to be Gaussian distributed 
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2 around z~ with variance aj as: 

1 - ( s  - z j )  
p(slz ) = (9) 

The standard deviation aj represents the uncertainty in the location of the edge 
element zj and is approximated as: 

M a x i m u m  strength o f  a salient edge element in the image 
, (10)  

aj = Strength of  salient edge element at zj 

where the strength of an edge element is proportional to gradient of the image at 
the edge element location. Therefore, the edge element with the highest strength 
has unit variance. Assume that the standard deviation at zo, ao = amax, where 
area= represents the largest standard deviation among all the salient edge ele- 
ments in the image. Using the criteria in equation (6) and the density function 
given in equation (9), zj is chosen as the candidate location if the following is 
satisfied: 

(s - zj) 2 <_ 2ay[log P(zs)ak (s - zk) 2 + 2---y] v k # j. (11) 
P(zk)~S 

The computational burden associated with the above criterion is reduced by 
assigning a prior probability P(zo) = Prox(SEo) = F, where 0 < F _< 1. 
Substituting k = 0 and ao =ama= in equation (11) and noting that Zo = s, the 
winning candidate has to satisfy the condition that: 

(s - zj) 2 < 2a2[log P(z j )ama. .  (12) - Fa j  J" 

Thus, by assigning a user defined prior probability F, the search space is re- 
stricted to a circle of radius A given by the largest value of right hand side in 
equation (12). The largest value of Is - zjl in equation (12) is obtained when 
P(z5) is at its maximum ])max, and aj = (Pm~,ama~/F)e -~ and is given by: 

P m ~ r , ~  e-~ (13) 
= Is - zjlmo  - r 

Since Pma= is the maximum value P(zj )  can take, which in turn is the maximum 
proximity weight that is possible (equation (8)), Pm~= = 1. Therefore the search 
radius becomes )~ = e-~ The radius has been deliberately denoted by 
A to emphasize the equivalence of this search radius to the RSC used for finding 
the closeness of the edge segments to the region boundary. From equation (11), 
it is seen that when choosing from edge locations that belong to the same salient 
segment, the problem reduces to finding the edge location that is closest to the 
boundary point. 

At the end of the boundary refinement stage, an edge image is obtained 
which represents the location of the refined target region boundary. To complete 
breaks in the boundary, with an emphasis on incorporating small parts of the 
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(a) (b) 

-il �9 = = -  

(c) (d) 

Fig. 6. (a) Target (b) Boundary of target obtained from region-based seg- 
mentation (c) Salient edges around the target. (Note: salient edges that 
belong to a long contour are separated by crosses on the contour.) (d) The 
refined boundary of the target. 

target missed by the region segmentation, the following algorithm is used: (1) 
Remove isolated edge pixels. These are edge pixels with no neighbors in the 
refined boundary. (2) For each edge pixel at the site of a break in the boundary, 
determine if it is part of a salient edge. If it is, incorporate the complete edge 
segment into the boundary. Repeat this process iteratively until no more salient 
edge information can be incorporated. (3) Enforce linear connectivity at all the 
remaining breaks. Figures 6 and 7 show examples of the refinement process. 

(a) (b) 

(c) (d) 

Fig. 7. (a) Target (b) Boundary of target obtained from region-based seg- 
mentation (c) Salient edges around the target. (Note: salient edges that 
belong to a long contour are separated by crosses on the contour.) (d) The 
refined boundary of the target. 
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4 M a n - M a d e  / N a t u r a l  B a c k g r o u n d  C a t e g o r i z a t i o n  

To reduce the false alarm rate, a higher interpretation module is used to identify 
target regions from background clutter. Image statistics are used to derive a 
set of feature groups that is used to discriminate between man-made objects 
and natural backgrounds. Each feature group is modeled by a modular neural 
network model, the Categorizing and Learning Module (CALM) [4]. 

4 . 1  I m a g e  F e a t u r e s  

Image features extracted, which can be grouped into two categories; (1) Geo- 
metric Features, and (2) FLIR-intensity Features, are described below. 

Geomet r i c  Features  Two geometric features are used. These are: 

- Saliency: This feature group is based on the number of salient segments in 
the target region and consists of two elements: 

S1 -= ~ salient edge segments in target region 
edge segments in target region 

$2 = ~ salient edge segments in target region (14) 
salient segments in entire image 

- B o u n d a r y  Regular i ty :  A feature group of three elements is used to char- 
acterize the smoothness of the target boundary. 

R1 = #,~g, R2 = a z ~ ,  R3 - ~Z~ L~ (15) 
L ' 

where, /~Z~K and O-Deltag are the same as in equation (5), Li represents the 
ith segment on the target boundary that is very small (chosen as 5% of the 
total target boundary length) and L represents the number of segments on 
the boundary. 

FLIR- In t ens i t y  Features  Two features are used. These are: 

- Gray  l e v e l  s t a t i s t i c s :  This feature group consists of two elements: 

Mn = I ~ t a r g ~ t  - -  # i . ~ a g ~  , S d  = O- t~rg~ t  - O - i . ~ g ~  , ( 1 6 )  

~image O'image 

where, # represents the mean and a the variance of a region. 
- Gray  level c l u s t e r s :  

CLUS = No. of distinct gray level clusters in target region 

S P R E A D  = Distance between furthest  cluster centroids (17) 



588 

4.2 Man-made / Natural Background Classification 

Features extracted from the target regions are then classified as man-made or 
natural using modified CALM networks. Modifications to the CALM were done 
to incorporate a confidence value with its decisions and to speed up its conver- 
gence. Each feature group was modeled by a CALM module and the decision 
from each of the feature groups was combined to get the final classification result. 
Details of this can be found in [5]. 

5 Summary 

In this paper we have presented new target detection/segmentation algorithms 
for use in automatic target recognition systems. By modeling the background by 
Weibull distributions, a good initial detection of target locations is obtained. A 
focused analysis of each target location is then performed by a region-growing 
procedure which uses the underlying background probabilities for checking re- 
gion homogeneity and local shape characteristics for determining the conver- 
gence/stopping criteria. To get better representations of the target boundary, 
salient edge information in the image is used to refine the boundary obtained 
by the region-growing method. A novel method to do this using a Bayes' mini- 
mum risk classification approach is presented. Finally, the false alarm rate is re- 
duced by using a higher level interpretation module built using modified CALM 
neural networks, that uses geometric and intensity based features from each 
detected/segmented region to classify it as man-made or natural. The target 
detection/segmentation algorithms have been successfully used on second gen- 
eration FLIR images. A 100% detection rate with a false alarm rate of 5% was 
obtained when the segmentation method was tested on 200 images from the 
HULI9306_SIG subset of the COMANCHE data set provided to us by the Night 
Vision Laboratory. 
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