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A b s t r a c t .  This paper presents a quantitative approach to grouping. 
A generic grouping method, which may be applied to many domains, 
is given, and an analysis of its expected grouping quality is done. The 
grouping method is divided into two parts: Constructing a graph repre- 
sentation of the geometric relations in the data set, and then finding the 
"best" partition of the graph into groups. Both stages are implemented 
using known statistical tools such as Wald's SPRT algorithm and the 
Maximum Likelihood criterion. The accompanying quantitative analy- 
sis shows some relations between the data quality, the reliability of the 
grouping cues and the computational efforts, to the expected grouping 
quality. To our best knowledge, such an analysis of a grouping process 
is given here for the first time. The synthesis of specific grouping algo- 
rithms is demonstrated for three different grouping tasks and domains. 
Experimental results show the ability of this generic approach to provide 
successful algorithm in specific domains. 
Keywords  : Grouping Analysis, Perceptual Grouping, Performance Pre- 
diction, Generic Grouping Algorithm, Graph Clustering, Maximum Like- 
lihood, Wald's SPRT. 

1 I n t r o d u c t i o n  

This paper presents a quanti tat ive approach to grouping, which contains a 
generic grouping method,  and focuses on analyzing the relation between the 
information available to the grouping process and the corresponding grouping 
quality. 

The proposed method separates between two components of the grouping 
method: the grouping cues that  are used and the grouping mechanism tha t  com- 
bines them into a parti t ion of the data set. Our grouping process is based on 
a special graph representation, in which the vertices are the observed da ta  el- 
ements (edges,pixels, etc.) and the arcs contain the grouping information and 
are est imated by cues. (Others, e.g. [8, 4, 11], have used graphs for grouping 
algorithms, but we use it differently here.) The hypothesized grouping is a par- 
tition of the graph which maximize a functional over all the possible partit ions. 
In contrast to most  other grouping methods,  which depend on the domain in 
which the grouping is done, this grouping mechanism is domain independent. 

Good cues are essential for successful grouping, but finding them is not our 
aim here. Instead we consider the cues as given, model them as random vari- 
ables, and quantify their reliability using the properties of the corresponding dis- 
tribution. Moreover, we suggest a general method,  called the cue enhancement 
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procedure, for improving the reliability of grouping cues, and show an interesting 
tradeoff between the computational efforts and the achievable reliability of the 
enhanced cue. 

Unlike other grouping methods, the proposed method provides, for the first 
time, some relations between the quality of the available data, the computational 
effort invested, and the grouping performance, quantified by several measures. 

2 T h e  G r o u p i n g  T a s k  a n d  i t s  G r a p h  R e p r e s e n t a t i o n  

The grouping task is a partitioning problem. Let S = {vl ,  v2 , . . . ,  v g }  be the 
set of data elements, which may consist, for example, of the boundary points 
in an image. S is naturally divided into several groups (disjoint subsets) so 
that  all data elements in the same group belong to the same object, lie on 
the same smooth curve, or associated with each other in some other manner. 
S = So U $1 U $2 U . . .  U SM. In the context of the grouping task the data 
set is given but its parti t ion is unknown and should be inferred from indirect 
information given in the form of grouping cues 1 

Grouping cues are the building blocks of the grouping process and shall be 
treated as the only source of information available for this task. The grouping 
cues are domain-dependent and may be regarded as scalar functions C(A)  de- 
fined over subsets A C S of the data feature set. Such cue functions should be 
discriminative, and should also be invariant to change of the viewing transfor- 
mation and robust to noise [6]. At this stage we consider only bi-feature cues, 
defined over data subsets including two elements (IAI = 2). Bi-feature cues may 
be either the cues used by most common grouping processes, or the result of the 
cue enhancement procedure, which accumulates statistical information by using 
multi-feature cues, and is described in Sec 5. From now on we shall use the no- 
tation C(e) for the bi-feature cues, where e = (u, v), u, v E S is also the arc 
connects the nodes u, v in the following graph representation. 

A reliability measure for grouping cues, which is domain-independent, is spec- 
ified as follows: Consider the cue function to be a random variable, the distribu- 
tion of which depends on whether the two data features belong to the same group 
or not. For binary cues, which provides only negative or positive answers, this de- 
pendency is simply quantified by two error probabilities: cmiss is the probability 
that the cue C(A)  indicates a wrong negative answer, and cya is the probability 
that  the cue indicates a wrong positive answer (false alarm). If both emi88 = 0 
and eya = O, then C(A)  is an ideal cue. This characterization can sometimes be 
calculated using analytical models (e.g. [6]), and can always be approximated 
using Monte-Carlo experimentations. 

Both the unknown parti t ion into groups, and the data  available from the 
cues, are represented using graphs. The nodes of all the graphs are the observed 
data elements, V = S, but the arcs may take different meanings, as explained 

1 We should also mention, that according to another grouping concept the hypothe- 
sized groups are not necessarily disjoint. We believe that at least some of the tools 
developed here are useful for the other approaches. 
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in Figure 1. The unknown partition, which is to be determined, is represented 
by the target graph, G~ = (V, Et), composed of several disconnected complete 
subgraphs (cliques). Every clique represents a different object (or group). A 
graph with this characterization is called a clique graph and the class of such 
graphs is denoted ~ .  We shall denote by E~(Vj ) the arcs of a complete subgraph 
(clique) ~ C V. Knowing that  Gt E Gr the grouping algorithm should provide 
a hypothesis graph, Gh = (V, Eu) E Gr which should be as close as possible to 
Gt. 

Data features set S 

n ! i i . �9 
l ~  �9 �9 I 

l I % 

s _1 

Grouping by Graph Clustering 

Grouping cue 
C(A)~ 

Decide for each ~ Graph clustering 
edge I G ~  by 

(SPRT) max. likelihood 

Underlying graph G u Measured graph Gra 

Desired target graph G t 

............ .: ......... (unknown) 

- . . .  , ; . ~  .... 

Gh 
(set of groups) :'.__P) 

/ 
Hypotl~.esis graph G h t / .  

g 

Fig. 1. The proposed grouping process: The image is a set of data features (edgels in 
this illustration) every one of which is represented by a node of a graph. The designer 
should decide about a cue and about the set of feature-pairs to be evaluated using 
this cue. This set of feature-pairs is specified by the arcs of the underlying graph G,,. 
The first step of the algorithm is to use grouping cues to decide, for every feature 
pair in G~ = (V, E~), if both data features belong to the same group. These decisions 
are represented by the a measured graph G m =  (V, Era): every arc corresponds to a 
positive decision (hence Em C E~). The known reliability of these decisions is used in 
the second and last step to find a maximum likelihood partitioning of the graph, which 
is represented by the hypothesized (clique) graph Gh. A main issue considered in this 
paper is the relation between this hypothesis Gh and the ground truth target graph, 
Gt, which is unknown. 

3 T h e  G e n e r i c  G r o u p i n g  A l g o r i t h m  

The algorithm consists of two main stages: cue evaluation for (many) feature 
pairs and max imum  likelihood graph partitioning. Before these stages, two de- 
cisions should be made by the designer. The first is to choose an appropriate  
grouping cue. The second one is to choose the set of feature-pairs to be evaluated 
using this cue. This set of feature-pairs is specified by the arcs of the underlying 
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graph G~. In principle, all feature pairs, corresponding to a complete underlying 
graph, G~ = (V, Ec(Y)), should be evaluated using the cue, in order to extract 
the maximal information. Some cues are meaningful, however, only for near or 
adjacent data elements (e.g. while looking for smooth curves). In such cases, a 
locally connected underlying graph should be used. Another consideration which 
affects the choice of the underlying graph is the reliability of the grouping pro- 
cess and the computational effort invested in it. At this stage we assume that 
both the cue and the associated adequate "topology" are either given or chosen 
intuitively. 

In the first stage of the grouping process, every feature pair, e = (u, v), 
corresponds to an arc in Gu = (V, Eu) is considered, and the cue function is 
used to decide whether the two data features belong to the same group, or 
not. The positive decisions are represented as the arcs of the measured graph 
Gm= (V, Era). Gm carries the information accumulated in the first stage to the 
second one. 

Recall that  every arc-decision made in the first stage is modeled as a binary 
random variable, the statistics of which depends on whether the two data features 
belong to the same group or whether they not. In the context of this paper, the 
cue decisions assumed to be independent and identically distributed, and are 
characterized by two error probabilities ~: 

emiss(e) = Prob(e 6 (E~NEu)\E,n) e j a ( e )  = Prob(e 6 Em\(E~nEu)) (1) 

The likelihood of the measurement graph, G,~, for every candidate hypothesis 
G = (V, E)  6 Qc, is then given by 

{ cmiss if e 6 E\Em 

L{GmlG} = H L{elE} where L{e]E} = e/al_ emis~ if if ee 66 EEm\EN Em (2) 

eeE. 1 - - e l a  i f e ~ E U E m  �9 

We propose now to use the maximum likelihood principle, and to hypothesize 
the most likely clique graph 

Gh = arg max L{G.~IG }. (3) 
G60~ 

The maximum likelihood criterion specifies the (not necessarily unique) group- 
ing result, Gh, but is not a constructive algorithm. We therefore address the 
theoretical aspect and the practical side separately. 

From the theoretical point of view, we shall now assume that  the hypothesis 
which maximizes the likelihood may be found, and address our main question: 
" w h a t  is t h e  r e l a t i o n  b e t w e e n  t h e  r e s u l t  Gh, a n d  t h e  u n k n o w n  t a r g e t  
g r a p h  G~?" This question is interesting because it is concerned with predicting 
the grouping performance. If we can show that these two graphs are close in some 
sense, then it means that  algorithms which use the maximum likelihood principle 

2 This definition of (emi~8, eja), in terms of the graph notation, is identical to the 
previous one, which refers to the cue reliability. 



375 

have predictable expected behavior and that even if we can't know Gt, the 
grouping hypothesis Gh they produces is close enough to the true partitioning. 
This question is considered in the next section. 

From the practical point of view, one should ask if this optimization problem 
can be solved in a reasonable time. Some people use simulated annealing to 
solve similar problems [4]. Others use heuristic algorithms [9]. We developed 
a heuristic algorithm which is based on finding seeds of the groups, which are 
(almost) cliques in Gin. Then it makes iterative modifications, using a greedy 
policy, until a (local) maximum of the likelihood function is obtained. In our 
experiments this algorithm performs nicely. More details can be found in [2]. 

4 A n a l y s i s  o f  T h e  G r o u p i n g  Q u a l i t y  

This section quantifies some aspects of the similarity between the unknown scene 
grouping (represented by Gt), and the hypothesized maximum-likelihood group- 
ing (represented by Gh). We provide a fundamental claim, and two of its re- 
sults. The fundamental claim provides a necessary condition, satisfied by any 
partition selected according to the maximum likelihood principle. Consider two 
nodes-disjoint subsets �89 ~ of the graph G = (Is', E), and denote their cut by 
J(Vi,Vj) = {e = (u,v)iu E I~, v E Vj}. Let l~(V~, l/)) = IJ(V~,Vj) NE~I de- 
note the cut width relative to the underlying graph. Similarly, let 1,~(Vi, Vj) = 
IJ(~, gj) n Era] denote the cut width relative to the measurement graph (lm _< 
l~ ). Then, 

C l a i m l .  neces sa ry  cond i t ion :  Let Gh = (V, Eh), V = {VIUV2U.. .},  Eh = 
{Ec(v1)uzc(v~)u...} be the ma~:imum likelihood hypothesis (satisfying ~q. (3)), 

logfcl./(l_e~,..))~ -1 
and let ct = 1 + logi~,. /(1-~f~ Then, 

1. For any bisection of any group Vi = Vi' U Vi" (l/i' n Vi" = ~), 

t,~(v,', v,") > ~l.(v,', v,"). 

2. For any two groups Vi, Vj, i 7s j, 

lm(y~, y~) < ~t~(v~, v~). 

Proof. For proving the first part, consider the likelihood ratio between two hy- 
potheses: One is Gh and the other, denoted Gh, is constructed from Gh by sep- 
arating V~ into two different groups, ~ '  and V~". Denote l,~ = Ira(V{, V{'), l~ = 
l~(Vi' , Vi" ). Then 

( ),m( L{GmlGh} Y I  Pr{elEh} 1 --e___~is8 emis~ 

L{GmIGh}  eEJ(V[,V(')nE~ Pr{elt~'h} -- ela f~---~$a 
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(arcs of Eu \ J(V/, V/') do not affect 
that  ratio, and therefore are not counted). 
This likelihood ratio is an increasing 
function of lm and is larger than 1, for 
lm >_ a 4 .  Therefore, if the claim is not 
satisfied, then Gh is more likely then 
Gh which contradicts the assumption 
that  (3) holds. The second part of the 
claim is proved in a similar manner. 

Qualitatively, the claim shows that  
a maximum likelihood grouping must 
satisfy local conditions between many 
pairs of feature subsets. It further im- 
plies that  a grouping error, either in the 
form of adding an alien data feature 
to a group (denoted addition error) or 
deleting its member (denoted deletion 
error), requires a substantial number of 

V ! ' ,  
�9 s i 

. . . . .  e E E~ \ E . ~  

- -  eEE~ C E~ 

j(v/, v,,,) 

Fig.  2. The cut involved in splitting a 
group into two (proof 1). 

false alarms, or misses, respectively. The parameter a, specifying the fraction of 
cut edges required to merge two subsets reflects the expected error types ; if 
e]o = emis~, then a = 0.5, while if e/a > e,ni~ then a > 0.5. This claim implies 
that  choosing a sufficiently dense underlying graph can significantly improve the 
grouping performance, and compensate for unreliable cues. 

Two cases were considered in [2]: A complete underlying graph, and a locally 
connected underlying graph. A complete underlying graph provides the maximal 
information. Therefore, it may lead to excellent grouping accuracy. The next 
claim, given here as an example, bounds the probability of getting k / addition 
errors or more: 

C l a i m  2. Let G~ be a complete graph. Let Si and V* denote a true group and a 
maximum likelihood hypothesized group containing at least k nodes of Si. Then, 
the probability that V* contains k' nodes or more which are alien to Si, is at 
most 

N - k  k j  

pk,_o.o . _< E E = r-kjl) 
j = k '  i=k, ,~i ,~( j )  

(4) 

(for proof see [2]). This upper bound is plotted in Figure 3(Right). Other results 
in [2] provides the bound for the probability of k-deletion errors, the expected 
number of such errors, and more. These results simply state that  if the original 
group Si is big enough and emi88, ela are small enough, it is very likely that  the 
maximum likelihood partition will include one group for each object, containing 
most of S/, and very few aliens. Experimental results for these two grouping 
error types are given in Figure 6 (d,e) and discussed in Section 6. 
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Fig.  3. Two predictions of the analysis: Left: A k-connected curve-like group (e.g. 
smooth curve) is likely to break into a number of sub-groups. The graph shows an 
upper bound on the expected number of sub-groups versus the minimal cut size in the 
group, k. Here the group size (length) is 400 elements, amiss = 0.14 and eja = 0.1 (typ- 
ical values for images like Figure 8 (a)). It shows how increasing connectivity quickly 
reduces the false division of this type of groups. Right: Upper bound on the probability 
for adding any k' alien data features to a group of size k, using a complete underlying 
graph (claim 2). This probability is negligible for k > 15 (Here e , ~ .  = ~fa = 0.2). 

Another  prediction, given in Figure 3 (Left), corresponds to a second case, 
where the underlying graph is not a complete graph,  but  a locally-connected one 
where every node is connected to the closest k da t a  features. This  is useful, for 
example, for the c o m m o n  curve-like groups, in which all da ta  features are ordered 
along some curve (e.g the smooth  curve experiment) .  The  grouping process may  
divide a long curve into a number  of fragments .  An upper  bound  on the expected 
number  of these par ts  is shown in Figure 3(Left). 

5 T h e  C u e  E n h a n c e m e n t  P r o c e d u r e  ( C E P  ) 

The performance of  the grouping a lgor i thm depends very much on the reliability 
of the cues available to it. This section shows how the reliability of a grouping 
cue can be significantly improved by using statist ical  evidence accumula t ion  
techniques. This me thod  is not restricted only to our grouping algori thm, and 
can be used also in other  grouping algori thms.  Two of the three given grouping 
examples (co-linearity and smoothness)  use this procedure.  

The C E P  considers one pair of da ta  features, e = (u, v), e E Eu,  at a t ime, 
and uses some of the other  da ta  features in order to decide whether or not  this 
pair is consistent (belongs to the same true group).  Its result serves as a very 
reliable binary-cue, C(e) ,  as defined in Section 2. The  key to C E P  is the use 
of Multi-feature cues, C ( A ) ,  associated with three da ta  features or more.  The  
impor t an t  observat ion here is tha t  if the pair, e = (u, v), is not  consistent, then 
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any larger subset A, u, v E A is not consistent as well. Therefore, the (multi- 
feature) cue, C(A), which test for the consistency of A, carries some statistical 
information on the consistency of e. To evaluate C(e), the CEP draws several 
random data subsets, A1,A2,.. . ,  of size k > 2, which contain the pair e, and 
find cj = C(Aj), j = 1,2,.... C(A) is a deterministic function of A, but cj 
may be considered as an instance of a random variable, c, as some part of A is 
randomly selected. 

The statistics of c depends on the data pair e, and in particular, on its con- 
sistency. A conclusive reliable decision on the consistency of e is determined 
adaptively and efficiently by a well-known method for statistical evidence inte- 
gration: Wald's Sequential Probability Ratio Test (SPRT) algorithm [10]. 

The distribution of c depends on an unknown binary parameter (the consis- 
tency of e), which takes the value of w0 (false) or w~ (true). The SPRT quantifies 
the evidence obtained from each trial by the log-likelihood ratio function of its 
result h(c) = In ~ where Pi = Pr{clwl} i = 0, 1 are the probability functions po(c) 
of the two different populations and e is the value assigned to the random vari- 
able in this trial (see Figure 5). When several trials are taken, the log-likelihood 
function of the composite event ~ = (c1,c2 . . . .  ,e~) should be considered. If, 
however, the trials are independent then this composite log-likelihood function 
becomes c~n = ~ j = l  h(cj). The sum ~ serves as the statistics by which the 
decision is made. The SPRT-based cue enhancement procedure is summarized 
in Figure 5. The upper and lower limits, a > 0 > b, depend only on the required 

For e v e r y  f e a t u r e  p a i r  e = (u, v) i n  t h e  u n d e r l y i n g  g r a p h :  

1. S e t  t h e  e v i d e n c e  a c c u m u l a t o r ,  a,  a n d  t h e  t r i a l s  c o u n t e r ,  n,  to  0. 
2. R a n d o m l y  c h o o s e  k - 2 d a t a  f e a t u r e s  x3 . . . .  , xk  E S \ { u ,  v }  

3. C a l c u l a t e  c = C ( { u ,  v ,  x3 . . . .  , xk}) .  
4.  U p d a t e  t h e  e v i d e n c e  a c c u m u l a t o r  a = a + log P~(~) eo(~)" 
5. i f  ~ > a or  i f  n > no a n d  a > 0, o u t p u t :  (u, v) is  c o n s i s t e n t .  

i f  a < b or  i f  n :> no a n d  a < 0, o u t p u t :  (u, v) is  i n c o n s i s t e n t .  
e l s e ,  r e p e a t  ( 2 ) - ( 5 )  

Fig. 4. The SPRT-based Cue Enhancement Procedure ( CEP ) 

cue reliability emiss, e]a (defined in eq. 1), which are specified by the user, and 
do not depend on the distribution of the random variable c. We calculate a, b 
using a practical approximation, proposed by Wald [10], which is very accurate 

lo ~ log(era,,,(1 cfa)). The when erniss, eya are small: a = g( ~so ) b = 

derivation of Pl(c),Po(c), which depends on em;,~,c/a defined before, and on 
some combinatorial considerations, is given in [2]. 

The basic SPRT algorithm terminates with probability one and is optimal 
in the sense that  it requires a minimal expected number of tests to obtain the 
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required decision error [10]. This  expected  n u m b e r  of  tests  is given by: 

E{n]w0} : [aeya+b(1-e]a)]/~o E{n]wl}  : [a(1--emi~,)+bEmi,,]/yl 
(5) 

where ~0, ~1 are the condit ional  expected amoun t s  of evidence f rom a single test: 
7li : E{h(c)]wi} i : 0, 1. The  m a x i m a l  allowed tr ials  number ,  no, is set to be 
few t imes larger t han  E{n} .  

C l a i m  3. Given that 

(a )  The statistics of the cue values evaluated over all data subsets containing a 
consistent (inconsistent) arc is approximately the same, and 

( b )  The cues extracted from two random subsets including the same feature pair 
are independent identically distributed random variables, 

then the CEP can identify the 
specified error tolerance, erm,,, 
cue, C(A). 

consistency of the feature pair e within any 
eye, irrespective of the reliability of the basic 

Arbi t rar i ly  high pe r fo rmance  is pract ical ly  impossible  because it requires a large 
number  of  trials leading to a contradic t ion of the independence assumpt ion .  
Therefore,  the rel iabil i ty of  the basic cue, Po(c), PI(C), is i m p o r t a n t  to achieve a 
lower expec ted -number  of trials,  E{n} .  Indeed,  our exper iments  show tha t  the 
S P R T  significantly improves  the cue reliabil i ty but  t ha t  the achievable error rate  
is not a rb i t rar i ly  smal l  (see Section 6). In the co-l ineari ty exper iments ,  C(A) is 
a b inary  cue tha t  depends on a threshold.  A threshold cause a t radeoff  between 
the miss to the false a l a rm ratios of the cue. For any given required reliabil i ty of 
the C E P ,  (Crni,,, e/=), we use eq. (5) to find the op t ima l  threshold level, which 
minimize  E{n}  (See Figure 5). 

,o" ~o~ ,o  ~ ,o ~ , r  , r  

v 
10 ~ 

Fig.  5. Left: The two distributions of the co-linearity multi-feature cue, po (A) (dashed), 
and pleA) (solid). Although these two are very similar, their populations can be dis- 
tinguished with less than 5% error (see Figure 6(d,e,f)). Right: The expected number 
of trials needed for the cue enhancement procedure as a function of the selected cue 
threshold. The optimal cue threshold correspond to the minima of this curve, as shown 
in Figure 5 (Right). 
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For a constant specified reliability (e,~i,,, (fa), the expected run-time of the 
cue enhancement procedure is constant. The expected total run-time for evalu- 
ating all the arcs of the underlying graph, G~, is, therefore, linear in the number 
of arcs. 

6 S i m u l a t i o n  a n d  e x p e r i m e n t a t i o n  

This section presents three different grouping applications, implemented in three 
different domains, as instances of the generic grouping algorithm described above 
(see Table 1). The aim of these examples is to show that useful grouping algo- 
rithms may be obtained as instances of the generic approach and to examine 
the performance predictions against experimental results. (For all the technical 
details, more results and other examples please refer to [2].) The first example 

Table 1. The three instances of the generic grouping algorithm 

I I The 1st example The 2nd example The 3rd example 
] (Co-linear points.) (Smooth Curves) (Motion Segm) 
data elements points in R "~ edgels patches of Affine 

optical flow 
grouping cues co-linearity co-circularity consistency with 

and proximity Affine motion 
Cue's extent global local global 
Enhanced cue subsets of 3 points subsets of 3 edgels 
underlying graph complete graph locally connected graph a complete graph 
;rouping mechanism: maximum likelihood graph clustering (same program) 

is of grouping points by co-linearity cues. Given a set of points in R ~ (or in R'~), 
the algorithm should partition the data into co-linear groups (and one back- 
ground set). To remove any doubt, we do not intend to propose this example as 
an efficient (or even reasonable) method for detecting co-linear clusters (Hough 
transform or RANSAC, for example, are better methods). We have chosen this 
example because it is a characteristic example of grouping tasks associated with 
globally valid cues (and complete underlying graphs). Moreover, it provides a 
convenient way for measuring grouping performance, the quantification and pre- 
diction of which is our main interest here. 

We consider synthetic random images containing randomly drawn points 
(e.g Figure 6 (a)). A typical grouping result is shown in Figure 6 (b,c). Few 
of the quantitative results show the effect of the cue reliability on the overall 
grouping quality (Figure 6(d,e)) and on the CEP computational time (Figure 
6(f)). Regardless the choice of (em~8~, e/a), all the 5 lines were always detected as 
the 5 largest groups in our experiments. The selection of (emis~, e/a) does affects, 
however, the overall grouping quality. This is measured by counting the addition 
errors and the deletion errors, as shown in Figures 6 (d), and (e), respectively. 
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The second example is the grouping of edgels by smoothness and proximity. 
Starting from an image of edgels, (data feature = edge location + gradient 
direction), the algorithm should group edgels which lie on the same smooth 
curve. This is a very useful grouping task, considered by many researchers (see, 
e.g [3, 12, 4, 7]). We test this procedure both on synthetic and real images, and 
the results are very good in both cases (see Figure 8 and Figure 9). 

The third grouping algorithm is based on common motion. The data features 
are pixel blocks, which should be grouped together if their motion obeys the same 
rule, that  is if the given optical flow over them is consistent with one Affine 
motion model [5, 1]. Technically, every pixel block is represented by its location 
and six parameters of the local Affine motion model (calculated using Least 
Squares). No cue enhancement is used here, and the cue is not very reliable: 
typical error probabilities are r = 0.35 and C/a = 0.2. Still, the results 
are comparable to those obtained by a domain specific algorithm [1]. The final 
clustering result is shown in Figure 7 (Right). 

7 D i s c u s s i o n  
The goal of this work is to provide a theoretical framework and a generic algo- 
rithm that  may be applied to various domains and that have predictable perfor- 
mance. The proposed algorithm relies on established statistical techniques such 
as sequential testing and maximum likelihood, which are well known. However, 
this paper is distinctive from previous approaches because it provides, for the 
first time, an analysis of the use of these principles, which relates the expected 
grouping quality to the cue reliability, the connectivity used, and in some cases 
the computational effort invested. We did not limit ourselves to the theoreti- 
cal study: three grouping applications, in different domains, are implemented 
as instances of the generic grouping algorithm. Although we made .an argument 
against visually judging the merits of vision algorithm, we would like to indicate 
here that our results are similar to those obtained by domain specific methods 
(e.g. [7, 4] for smoothness based grouping). Note that Gm may also be used to 
create a saliency map, by specifying the saliency of a feature as the degree of 
the corresponding node in G,~ (e.g Figure 8(d),9(d)). This is also comparable 
with other's results (e.g. [3]). Its suitability for figure-ground discrimination is 
now under study. 

From our analysis and experimentation it is apparent that higher connectivity 
of the objects in G~ can enhance the grouping quality. Therefore, the selection 
of cues should consider, in addition to their reliability, also their spatial extent. 
Another consideration is the use of multi-feature cues, and the cue enhancement 
possibility ( CEP ). 

Our analysis of the computational complexity is not complete. We still do not 
have complexity results for the second stage, of finding the maximum likelihood 
partition. This task is known to be difficult, and for now we use a heuristic algo- 
rithm, which gave good results in our experiments. Another research direction 
is to use our methodology in the context of a different grouping notion, different 
than partitioning, by which the hypothesized groups are not necessarily disjoint. 



382 

a. Data: A set of points. b. Measured graph Gm 
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d. Deleted points (deletion e. Added points (addition f. CEP average time E{n}. 
error) from all 5 lines, error) to all 5 lines. 

F ig .  6. Grouping of co-linear points, and its analysis. The data, (a), is associated with 
five lines, contains 30 points in the vicinity of each of them, and 150 "noise" points. The 
grouping result is near-optimal, and is close to the predictions for a complete underlying 
graph. Quantitative results show how the resulting grouping quality depends on the 
cue reliability (d)(e). Every point represents a complete grouping process and is labeled 
by the total  addition/deletion errors. The average number of trials needed to achieve 
this enhanced cue reliability by the C E P ,  E{n}, is given in (f) near every point, and 
is compared to the predicted value, given by the labeled curves. 

a. One image of a sequence. b. Final image segmentation. 

F ig .  7. Image segmentation into regions consistent with the same Affine motion pa- 
rameters. Grouping is done on the optical-flow image (see Sec. 6). A post-processing 
stage use the obtained grouping to calculate an Affine motion model for every group, 
and to classify each pixel to the nearest model (The same post-processing used in [1]. 
Black pixels were not classified). The underlying graph is a complete graph of about 
600 nodes (180,000 arcs), and the runtime is about 5 minutes. 
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Fig.  8. Grouping of smooth curves in a synthetic image. Edges and gradient where 
found using image a. The underlying graph, Gu, consists of 5,000 elements (edgels), 
and 110,000 arcs. The processing time is 3 rain on a Super-Spark CPU. 

d. Measured graph Gm e. 5 largest detected groups, f. All the detected groups, 
(also a saliency map) superimposed on image a. 

Fig.  9. Grouping of smooth curves in a brain image. The underlying graph, G~, con- 
sists of 10,400 edgels and 230,000 arcs. The processing time is about 10 minutes on a 
Super-Spark CPU. 
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