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A b s t r a c t .  The performance of Active Contours in tracking is highly 
dependent on the availability of an appropriate model of shape and mo- 
tion, to use as a predictor. Models can be hand-built, but it is fat- more 
effective and less time-consuming to learn them from a training set. Tech- 
niques to do this exist both for shape, and for shape and motion jointly. 
This paper extends the range of shape and motion models in two signi- 
ficant ways. The first is to model jointly the random variations in shape 
arising within an object-class and those occuring during object motion. 
The resulting algorithm is applied to tracking of plants captured by a 
video camera mounted on an agricultural robot. The second addresses 
the tracking of coupled objects such as head and lips. In both cases, 
new algorithms are shown to make important contributions to tracking 
performauce. 

1 I n t r o d u c t i o n  

The  use of Ka lman  filters [1] to track the mot ion  of objects in real t ime is now 
a s tandard  weapon in the arsenal of Compute r  Vision [14, 11, 8, 10, 16, 3]. A 
crucial consideration for effective real-t ime performance is tha t  some form of 
dynamica l  model  be identified [13, 5, 2] and used as a predictor. In m a n y  cases, 
available models are deterministic - -  based on ordinary differential equations.  
However, to be usable in a Ka lman  filtering framework it is crucial tha t  the model  
contain both  deterministic and stochastic components  - -  stochastic differential 
equations. Such models can be learned effectively from training da ta  [9, 5]. 

In this paper  we develop two significant elaborat ions for stochastic dynamica l  
models.  The  first concerns modelling object classes for objects in mot ion.  The  
second addresses the efficient modell ing of couplings between tracked objects.  

1.1 S h a p e  a n d  M o t i o n  V a r i a b i l i t y  

The  first problem addressed by this paper concerns learning dynamica l  models  
which represent both class and dynamical variability. Class variability arises f rom 
the differences between objects in a given class which can be learned effectively 
by Principal  Components  Analysis applied to a linear curve parameter isa t ion  [6]. 
Wi th  moving objects, dynamical  variability must  also be considered, model l ing 
cha.nges tha t  occur during motion,  due to projective effects and actual  physical 
disturbances.  
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Fig. 1. (a) An autonomous tractor incorporates a downward pointing camera to mon- 
itor plants passing under an array of spray nozzles. Sprayed chemicals can then be 
directed onto or away ]rom plants, as appropriate. (b) Plant  tracking. A mobile 
vehicle sees plants (cauliflowers in this instance) passing through the field of view of a 
downward pointing camera. The plants' motion and shape are captured by a dynamic 
contour, shown in white. 

Previous systems for learning dynamics have not addressed the important 
distinction between these two sources of variability [5, 2]. If the two are lumped 
together into one dynamical model, there will be insufficient constraint on mo- 
tion variability. A tracker incorporating such a model as a predictor will allow 
temporal motion/shape changes to range over the total modelled variability, 
both class and temporal. This is inappropriate. Rather, modelled class variabil- 
ity should apply only as a tracker is re-initialised on a new object. Once tracking 
is anderway, the identity of the object does not change, so class variability should 
be suspended. Instead, the dynamical variability model should take over, relat- 
ively tightly constrained as it allows only the variability normally associated 
with motion. Maintaining the distinction between the two sources of variability 
i so f  considerable practical importance. 

In a robotic application, a mobile tractor-robot monitoring the motion of 
plants in a downward pointing camera controls the application of sprayed chem- 
icals from a spray-nozzle array (figure 1 (a)). Moving plants in the video stream 
are tracked by a dynamic contour tracker (figure 1 (b)). A dynamical model 
was learnt froYn video sequences of 36 plants. Inter-class variability proves to be 
considerably greater than motion variability in this kind of data (figure 2). Mod- 
elling them independently ought therefore to enhance temporal stability during 
tracking. This will indeed prove to be so. 

1.2 C o u p l e d  M o t i o n s  

The second problem addressed here is that  of learning the dynamics of a coupled 
pair of systems. The point of attempting to model the coupling is that stability 
of tracking may be enhanced by the implied constraints. For instance, Moses et 

al [12] built a system to track lip motion and deformation, but it proved difficult, 
given that lips are long and thin, to stabilise them to horizontal translation of 
the head. This phenomenon is illustrated in figure 3. Here we show that this 
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Fig. 2. Class-variabili ty swamps motion-variabil i ty.  (a) Measured class-variation 
over" five plants is considerable. In contrast (b) variation due to the motion of one 
individual plant, as it passes through the camera's field of view, is relatively small. 

Fig. 3. Uncoupled  head and lip tracking is unsuccessful.  The two images show 
the results of simultaneous head and lip tracking when the dynamics of the two systems 
arc independent, In the first image, the lip tracker follows the movement  of the lips 
well, but as soon as the head begins to translate the position of the lips is lost. This 
shows that some sort of coupling is necessary. 

defect can be largely removed by using a prior model for motion in which one 
object, in this case the head, is regarded as primary and the other (the lips) as 
secondary, driven by the primary. 

Modelling this coupling fully and installing it, without approximation, in a 
I(alman filter tracker - -  "strong coupling" - -  incurs a severe increase in com- 
putational cost.. We therefore propose an approximate "weak coupling" in which 
state covariance is constrained during tracking (see [16] for a related idea), lead- 
ing to greatly reduced computational cost. Weak coupling is tested experiment- 
ally and found, in practice, to give results that differ remarkably little fl'om the 
strongly coupled system. 
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2 M o d e l l i n g  C l a s s  a n d  M o t i o n  V a r i a b i l i t y  

The distinction between class and motion variability is important.  In this section 
multidimensional, second order dynamical models will be extended to model 
these two sources of variability independently. The resulting, augmented model, 
once installed as the predictor for a tracker, performs much more robustly than 
when all variability is modelled jointly. 

The joint dynamical model is a second order stochastic differential equation 
(SDE) which, in the discrete-time form, is: 

_ _  _ _  D 

X~+2 - X = AI(X~+I - X) + A0(Xn - X) + Bw~ (1) 

where X is an N-dimensional state vector parameterising the configuration (posi- 
tion and shape) of the modelled contour. The mean configuration X, is a constant 
in this simple model. Coefficients A0 and At fix the deterministic components of 
the model [13]. The stochastic component of the model is a noise source w~, a 
vector of N independent unit normal variables, coupled into the system via the 
N • N matrix B. An algorithm for learning systems of this kind is known [5, 4] 
but an improved algorithm is needed to model the two sources of variability 
independently. 

2.1 E x t e n d e d  D y n a m i c a l  M o d e l  

The improved model extends the state vector by regarding the mean configura- 
tion X as a variable, rather than a constant as above. Now the dynamical model, 
most conveniently written in block-matrix form, is: 

o 
X,,+2 = A l l - A 0 - A 1  X~+I + B 
X,~+I 0 I \ X,~ 0 '~ 

(2) 

This simply augments the original model (1) with an additional equation stating 
X is constant over time. It might appear that this is identical to the old model. 
The crucial difference is that X is no longer known a priori ,  but is estimated on- 
line. Once this dynamical system is installed as the predictor for a KaIman filter 
tracker, X is initialised with its est imated mean value X0 and associated vari- 
ances and covariances which are obtained by statistical estimation from training 
data. The value of X~ converges rapidly in the Kalman filter and remains fixed, 
reinitialised only when a new object is to be tracked. 

2.2 L e a r n i n g  A l g o r i t h m  

One of the main theoretical results of this paper is the learning algorithm for the 
extended system dynamics. Given objects labelled 7 = 1 , . . . ,  F, each observed 
in motion for N~ timesteps as data sequences X~, the problem is to estimate 
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global parameters for the dynamics A0, A1, B and mean configurations for each 
object X '  by jointly maximising log likelihood over all the parameters: 

F N v - 2  

1 l: L ( { X ~ n } I A o , A 1 , B , X l  . . . .  , ~ v )  = _  2 E  E I B -1 R?  
7:1 n = l  

(a) 

where R~ is an instantaneous measure of error of fit: 

R~ 7 ( X , ~ + 2 - X  r) Ao(X~ X-~) -A1  = - -  - -  ( X n +  1 X~'/) (4) 

The nonlinearity introduced by the product terms A0X and A1X of R~ n can be 
removed by defining a parameter 

D "v = (I - Ao - A1)X ~r (5) 

so that  the instantaneous error becomes R~ = Xn+2 - A0X,~ - A l X n + l  - D r. 
Object means ~ can always be obtained explicitly if desired, provided ( I - A 0  - 
..41) is non-singular, by solving for them in equation (5). (Singularity arises in 
certain special cases, for instance the simple harmonic oscillator, when estimated 
dynamical parameters are non-unique.) The mean and covariance of the set of 
object-means X-Y, 7 = 1 , . . . ,  F are computed using the normal definitions to 
use as initial mean and covariance for the new state variable X (mean-shape) in 
the tracking procedure. 

Solut ion  

The solution to the maximum likelihood problem is given here but, for space 
considerations, the proof is omitted. The following set of F + 2 equations is 
solved simultaneously for the estimated values of parameters A0, A1 and D r : 

s:J  - aoS  - A S7 - - 2 )  = 0 ,  

S',~(~ - A o S o o  - AISlO = 0 
$21 --  A O S O l  - A I S l l  = 0 

7 = l . . . .  , F ,  (6 )  

where tile S~, &j are certain moments of the data-set, defined below. This leaves 
only the random process coupling parameter B to be determined. In fact B 
cannot be determined uniquely, but any solution of B B  r = C,  where 

F N - r - 2  1 

")'=1 n = l  
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is acceptable. It remains to define the moments of the data-set3: 

F N - r - 2  1" "Y ~ T si (s j) 
s , = E  E x ,  ,x" ,T - ~+, : ,  , , + j ,  - - ~ _ ~  , 

7 = 1  n = l  3 '=1 

N- r - 2 

s: E = X,~+i, i = 0,1,2.  
r t = l  

i , j  =0 ,1 ,2  (8) 

2.3 R e s u l t s  

(9 )  

The extended system with independently modelled class and motion variabil- 
ity has been applied to the agricultural robotics problem described earlier. The 
outlines of plants are described by B-spline curves parameterised here over a 
6-dimensional affine space. The curves are estimated over time in a standard 
Kalman filter tracker [3]. In figure 4, three different trackers are demonstrated. 
The first uses a "reasonable" default model, not learnt, but predicting constant 
velocity and uniform driving noise. The second uses a "joint variability" model 
in which class and motion variability are lumped together. Because, class variab- 
ility swamps motion variability for this data (see figure 2), the resulting tracker 
has unnecessarily weak constraints on temporal  shape change. Lastly, we demon- 
strate a tracker based on the new "independent variability" model which exploits 
the prior knowledge on shape and motion as thoroughly as possible. 

3 T r a c k i n g  C o u p l e d  O b j e c t s  

Here we explore mechanisms for allowing two coupled objects, one primary and 
one secondary, to be tracked simultaneously and cooperatively. The aim is to 
devise an efficient mechanism that applies the coupling approximately but  avoids 
the high computational cost associated with exact coupling. 

3.1 C o u p l e d  S y s t e m s  

The configurations of the objects in the coupled system are represented by vec- 
tors X(1),X(2). General, coupled, linear, stochastic dynamics are represented 
by: 

fx(1)) /x(1)~ 
f x ( 1 ) ~  = Ao \x (~ )  + ~ + Bwk (10) 

where w is a vector of unit normal noise terms coupled into the system via the 
matr ix B and BB T = C, as before. The matrices A0, A1 are damping and elastic 
coefficients respectively, each composed of submatrices: 

Ai = \A~,I A~,=j, i = 0, 1. (11) 

a Moments defined here are rather different from the moments used in [5, 2] despite 
the similarity of the S O notation. 
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Fig.4.  Joint  variabil i ty modelling is too weak. I b s u l l s  ~rc .shown here .for the 
lhr~t lrr~c]~:cc,~. ]Jr Ibis ca,~( ~1~(: trarL'cd plrm~l i,q rather sturdier lha~t average arzd there i.s 

. .  (,c,']~.liny./'( (dtwc (it .~intM(dt d ,shadow). 7'he "joitd var iabi l i ly"  /rac/,:(:r r~v~,rt,, afh 'r  

~l ,~]toH l ime,  l,Jw.r(l,r l/if (jt'ctnd nzc(m of  lit( lraini~tq .sol .Ttd hrtu'(:, Iose.s lock olt the 
ld(md. 7'he "'ittdci)cl~dc~tl v~wmbili ly" truck( v howct~er adju,sl.s ral)i(lly , via it,s add i t iona l  

nl((tn-coltJig~n(ttiotz va,rird)l~ X ,  to Ihe smal l  size of  lhi,s p h m l  and  conlinuc.s lo lrack 

.s u, cc(: ss fMly .  

Each sul)matrix contains coefficients either tbr one of the objects or for the 
cross-couplings between objects. 

Frequently, as with head and lip motion, one object X (1) is primary and 
drives a secondary object X (2). The motion of the primary object is assumed 
independent of the secondary, and is modelled stand-alone so that 

a~ ''~ = 0, 'i = O, 1. (12) 

However, the motion of the secondary system X (2) has two components, one 
caused by the primary system, X (1), and one caused by its own independent 
motion, Y, with dynamics given by 

A 2 , 2 y  2 2 B(2)w~2) (13) Yk+2 = 0 a q-AI'  Yk+~ + 

and a direct coupl ing  is added to represent the influence of  the pr imary process: 

X (2) = Y + # X  (1), (14) 

where p is a constant matrix of the appropriate dimension. Combining (13) and 
(14) and comparing with (10) leads to constraints on the dynamical parameters: 

2,2 
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3.2 L e a r n i n g  C o u p l e d  D y n a m i c s  

With the constraints (12) and (15), the maximum likelihood learning algorithm 
turns out to be nonlinear, with a consequent need for iteration and the possibility 
of multiple solutions. To avoid this we propose that  (15) be relaxed, retaining 
only (12). (This can be interpreted physically as allowing a velocity coupling 
in addition to the positional coupling (14).) The resulting learning algorithm is 
now linear. 

Given its isolation, coefficients for the motion of the primary object are 
learned exactly as for a single object, as earlier and in [5]. Dynamics of the 
secondary object and its coupling to the primary are obtained (proof omitted 
here) by solving the following simultaneous equations: 

S~, 2) a2,2c(2, 2) a2,2c(2,2) a2,1c(~,1) a2,1c(2,1) 
-- ~0 ~00 -- ~'I ~I0 --~0 ~00 -- ~'i ~01 = 0 

S(2,~) a2,2r a2,2r a2,1r a2,~r 
21 -- ~'0 ~01 -- ~'I ~II -- ;*0 ~i0 -- ~I L'II = 0 

- A o'2Sg - A ' S?o - A o" S g  - = O. 

where moments are defined: 

m--2 
S} if'q) ~ Y(P) Y(q) i, j = O, l, 2, 1, 2. 

. .  = .,~.n.l_i~=nTj , P, q = 
~ 1  

(The algorithm given here is for the case of known mean configuration ~(1) = 

0 , X  (2) = 0.) The covariance C is calculated from instantaneous error R~ as 
earlier and [5]. 

3.3 C o m p u t a t i o n a l  C o m p l e x i t y  for  F i l t e r i n g  

In the visual tracking application, the above dynamical system is used as a 
predictor in a Kalman filter [7, 1] for curve tracking - -  a dynamic contour tracker 
[15, 3]. In the filter, the prediction step covariance P evolves, in the conventional 
manner, as: 

"]gk + ilk -: 'Z2', 1 'Z2, 2 ~k P1T,2 P22 / kl k *'42, 2 / 

a critical step from the point of view of computational load. Even though .A1,2 = 
0 and A~,l is sparse, the covariance P k + l l k  remains dense, leaving unabated the 
full computational load of 6an 3 operations, where a is a constant and n is the 
filter's dimension. This compares with an  3 operations to track an isolated object, 
or 2o~n 3 for two uncoupled objects. So the price of representing the coupling 
faithfully is a 3-fold increase in computation. 

The measurement process suffers from similar costs and as before, the amount 
of computation to run coupled systems is 67n 3 where 7n 3 is the amount of 
computation required for an isolated object. Again, coupling incurs a 3-fold cost 
increase. 
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3.4 A p p r o x i m a t i n g  t h e  C o u p l i n g  

We refer to the full solution of the Kalman filtering problem as "strongly coupled". 
A "weakly coupled" approximation to the full algorithm is constructed by treat- 
ing the state of the primary system as if it were known exactly, for the purpose 
of determining its effect on the secondary system. In other words, equation (14) 
is replaced by 

X(2) = y + #~:(1) 

where ~[(1) is the estimate of the primary system's state. The effect of the 
primary system on the secondary becomes entirely deterministic. Covariance 
terms P1,1 and P2,2 become mutually independent and, moreover, P1,2 = P~I = 
0. Covariances must be computed continuously to maintain the Kalman gain 
matrices, so this is where the weak coupling allows substantial savings in com- 
putation. Of course, the restricted P matrices computed in this way cannot 
be claimed to approximate the true covariances, and since they are used to 
define Kalman gains, those gains are substantially altered by the approxima- 
tion. However, these are open loop gains and it is well known large changes in 
open loop gain often cause only small perturbations in closed loop response. 
This explains somewhat the accuracy of results with the weak coupling reported 
below. 

Weak coupling can be generalised to larger numbers of objects tracking sim- 
ultaneously, with or without object hierarchy. In general, if a single filter has a 
computational burden of ]7, then, in the strongly coupled case, with rn objects, 
a burden of F(m 3 + ~n2)/2 is incurred. In the weakly coupled case it, is reduced 
to Fro. 

3.5 H e a d  a n d  Lip ~lh'acking 

Previously Moses et al [12] designed a contour tracker to follow an intensity val- 
ley between the lips. The valley proved to be a robust feature under a wide range 
of lighting conditions but because of the extreme aspect ratio of the mouth, the 
tracker tended to be unstable to horizontal translation (figure 3). The instability 
problem is tackled here by a weak coupling between the lip as secondary object 
to the head. A five dimensional space was used to model the head outline, com- 
prising translation in the x and y direction, uniform scaling, and rotation about 
the vertical axis (using two degrees of freedom not one, to allow for silhouette 
effects). 

Figure 5 shows the effect of tracking when coupling is enabled. In this case 
the strongly coupled algorithm was run. The coupling is such that,  appropriately 
enough, the horizontal motion of the head and its rotation affect the horizontal 
location of the lips. The size of the head also affects the size of the lips, allowing 
for zoom-coupling. The figure clearly demonstrates that coupling is effective. 
Figure 6 shows that weak coupling produces results similar to strong coupling, 
and that  without coupling, the tracker fails at an early stage. Figure 7 displays 
lip deformations as a function of time for strong and weak coupling. Two affine 
components of motion are plotted: horizontal and vertical scaling. The most 
obvious feature is that, as before, the uncoupled tracker loses lock after about 
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Fig. 5. Strongly-coupled algorithm is successful. This set o/images shows that 
the poor tracking performance obtained from an isolated mouth tracker (figure 3) is 
substantially redeemed by appropriate coupling to head motion. 

Horizontal Lip Translation (pixels) 

200 

100 

200 

100 

0 0 
80.0 time (secs) 80.0 

time (secs) 

Fig. 6. Lip tracking is successful only when coupled to the head tracker. 
The first graph displays lip translation as a function of time, in the case of strong 
coupling. An independent experiment has confirmed that this result is broadly accurate. 
The second graph shows that without coupling the tracker fails at an early stage but 
that with weak coupling accurate tracking is obtained. 

20 seconds. It is also clear that weak coupling produces smoother estimates of 
the lip shape than strong coupling. 

4 Conc lu s ions  

Work presented here reinforces the growing acceptance that careful modelling 
of object shape, motion and environment is crucial to effective performance of 
visual processes in general and visual tracking in particular. Stochastic differ- 
ential equations are particularly useful as models for this purpose because they 
are the basis of prediction in the Kalman filter. Moreover, procedures exist for 
learning such models from examples. 

More specifically, stochastic modelling for tracking has been advanced in two 
particular regards in this paper. The first is in clearly separating object vari- 
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Fig. 7. C o m p a r a t i v e  pe r fo rmance  of t racking a lgor i thms.  This figure shows two 
affine components o] the lip motion as a ]unction o] time. The top pair o] graphs show 
how lock is lost very early in the sequence (alter about 20.0 see) in the absence of any 
coupling. The final pair .shows that when the coupling is weak, performance is close to 
that in the strongly coupled case. 
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ations arising within a class of objects from those that  occur temporally, during 
motion. The second is in building coupled motion models to track objects whose 
motions are not independent, for instance head and lips. In both  case, appropri-  
ate modelling leads to substantial enhancements of tracking performance. 
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