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Abst rac t .  The problem of tracking curves in dense visual clutter is a 
challenging one. Trackers based on Kalman filters are of limited use; be- 
cause they are based on Gaussian densities which are unimodal, they 
cannot represent simultaneous alternative hypotheses. Extensions to the 
Kalman filter to handle multiple data associations work satisfactorily in 
the simple case of point targets, but do not extend naturally to con- 
tinuous curves. A new, stochastic algorithm is proposed here, the CON- 
DENSATION algorithm - -  Conditional Density Propagation over time. It 
uses 'factored sampling', a method previously applied to interpretation 
of static images, in which the distribution of possible interpretations is 
represented by a randomly generated set of representatives. The CON- 
DENSATION algorithm combines factored sampling with learned dynam- 
ical models to propagate an entire probability distribution for object 
position and shape, over time. The result is highly robust tracking of 
agile motion in clutter, markedly superior to what has previously been 
attainable from Kahnan filtering. Notwithstanding the use of stochastic 
methods, the algorithm runs in near real-time. 

1 T h e  p r o b l e m  o f  t r a c k i n g  c u r v e s  i n  c l u t t e r  

The purpose of this paper is to establish a stochastic framework for tracking 
curves in visual clutter, and to propose a powerful new technique - -  the CON- 
DENSATION algorithm. The new approach is rooted in strands from statistics, 
control theory and computer vision. The problem is to track outlines and features 
of foreground objects, modelled as curves, as they move in substantial clutter, 
and to do it at, or close to, video frame-rate. This is challenging because elements 
in the background clutter may mimic parts of foreground features. In the most 
severe case, the background may consist of objects similar to the foreground ob- 
ject, for instance when a person is moving past a crowd. Our framework aims to 
dissolve the resulting ambiguity by applying probabilistic models of object shape 
and motion to analyse the video-stream. The degree of generality of these mod- 
els must be pitched carefully: sufficiently specific for effective disambiguation 
but sufficiently general to be broadly applicable over entire classes of foreground 
objects. 

1.1 M o d e l l i n g  s h a p e  a n d  m o t i o n  

Effective methods have arisen in computer vision for modelling shape and mo- 
tion. When suitable geometric models of a moving object are available, they can 



344 

be matched effectively to image data, though usually at considerable computa- 
tional cost [17, 26, 18]. Once an object has been located approximately, tracking 
it in subsequent images becomes more efficient computationally [20], especially 
if motion is modelled as well as shape [12, 16]. One important facility is the mod- 
elling of curve segments which interact with images [29] or image sequences [19]. 
This is more general than modelling entire objects but more clutter-resistant 
than applying signal-processing to low-level corners or edges. The methods to 
be discussed here have been applied at this level, to segments of parametric B- 
spline curves [3] tracking over image sequences [8]. The B-spline curves could, 
in theory, be parameterised by their control points. In practice this allows too 
many degrees of freedom for stable tracking and it is necessary to restrict the 
curve to a low-dimensional parameter x, for example over an affine space [28, 5], 
or more generally allowing a linear space of non-rigid motion [9]. 

Finally, probability densities p(x) can be defined over the class of curves 
[9], and also over their motions [27, 5], and this constitutes a powerful facility 
for tracking. Reasonable default functions can be chosen for those densities. 
However, it is obviously more satisfactory to measure the actual densities or 
estimate them from data-sequences (xl, x2,...). Algorithms to do this assuming 
Ganssian densities are known in the control-theory literature [13] and have been 
applied in computer vision [6, 7, 4]. 

1.2 S a m p l i n g  m e t h o d s  

A standard problem in statistical pattern recognition is to find an object pa- 
rameterised as x with prior p(x), using data z from a single image. (This is a 
simplified, static form of the image sequence problem addressed in this paper.) 
In order to estimate x from z, some information is needed about the conditional 
distribution p(z Ix) which measures the likelihood that  a hypothetical object con- 
figuration x should give rise to the image data z that  has just been observed. The 
data z could either be an entire grey-level array or a set of sparse features such 
as corners or, as in this paper, curve fragments obtained by edge detection. The 
posterior density p(xlz ) represents all the knowledge about x that  is deducible 
from the data. It can be evaluated in principle by applying Bayes' rule to obtain 

p(xlz ) = kp(zlx)p(x ) (1) 

where k is a normalisation constant that  is independent of x. In the general case 
that  p(zlx ) is multi-modal p(xlz ) cannot be evaluated simply in closed form: 
instead iterative sampling techniques can be used. 

The first use of such an iterative solution was proposed by Geman and Geman 
[11] for restoration of an image represented by mixed variables, both continuous 
(pixels) and discrete (the 'line process'). Sampling methods for recovery of a 
parametric curve x by sampling [24, 14, 25] have generally used spatial Markov 
processes as the underlying probabilistic model p(x). The basic method is ]ac- 
tored sampling [14]. It is useful when the conditional observation probability 
p(zlx ) can be evaluated pointwise and sampling it is not feasible and when, 
conversely, the prior p(x) can be sampled but not evaluated. The algorithm 
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estimates means of properties f (x)  (e.g. moments) of the posterior p(xlz ) by 
first generating randomly a sample (sl, s2 , . . . )  from the density p(x) and then 
weighting with p(z]x): 

E[f(x) lz  ] .~ EnN=I f(sn)p(zlsn) (2) 
N 

En=lP(ZlS~) 

where this is asymptotically (N --+ oc) an unbiased estimate. For example, the 
mean can be estimated using f (x)  = x and the variance using f (x )  = xx T. 
If p(x) is a spatial Gauss-Markov process, then Gibbs sampling from p(x) is 
used to generate the random variates (sl, s2,.. .).  Otherwise, for low-dimensional 
parameterisations as in this paper, standard, direct methods can be used for 
Gaussians 1 - -  we use rejection sampling [21]. Note that,  in the case that  the 
density p(z[x) is normal, the mean obtained by factored sampling would be 
consistent with an estimate obtained more conventionally, and efficiently, from 
linear least squares estimation. For multi-modal distributions which cannot be 
approximated as normal, so that  linear estimators are unusable, estimates of 
mean x by factored sampling continue to apply. 

Sampling methods have proved remarkably effective for recovering static ob- 
jects, notably hands [14] and galaxies [24], in clutter. The challenge addressed 
here is to do this over time, estimating x(t) from time-varying images z(t). 

1.3 K a l m a n  f i l ters  a n d  d a t a - a s s o c i a t l o n  

Spatio-temporal estimation, the tracking of shape and position over time, has 
been dealt with thoroughly by Kalman filtering, in the relatively clutter-free 
case in which p(zlx ) can satisfactorily be modelled as Gaussian [16, 12, 23] and 
can be applied to curves [27, 5]. These solutions work relatively poorly in clutter 
which easily 'distracts' the spatio-temporal estimate ~(t). With simple, discrete 
features such as points or corners combinatorial data-association methods can 
be effective, including the ' JPDAF'  [2, 22] and the 'RANSAC' algorithm [10]. 
They allow several hypotheses about which data-elements 'belong' to the tracked 
object, to be held simultaneously, and less plausible hypotheses to be progres- 
sively pruned. Data association methods do not, however, apply to moving curves 
where the features are continuous objects, and a more general methodology is 
demanded. 

1.4 T e m p o r a l  p r o p a g a t i o n  o f  c o n d i t i o n a l  d e n s i t i e s  

The Kalman filter as a recursive linear estimator is a very special case, applying 
only to Gaussian densities, of a more general probability density propagation 
process. In continuous time this can be described in terms of diffusion [15], 
governed by a 'Fokker-Planck' equation [1], in which the density for x(t) drifts 
and spreads under the action of a stochastic model of its dynamics. The random 
component of the dynamical model leads to spreading - -  increasing uncertainty 

1 Note: the presence of clutter causes p(zlx ) to be non-Gaussian, but the prior p(x) 
may still happily be Gaussian, and that is what will be assumed in our experiments. 
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Fig. 1. Probabili ty dens i ty  propagation. Propagation is depicted here as it occurs 
over a discrete time-step. There are three phases: drift due to the deterministic compo- 
nent of object dynamics; diffusion due to the random component; reactive rein]orcement 
due to measurements. 

- -  while the deterministic component causes a drift of the mass of the density 
function, as shown in figure 1. The effect of external measurements z ( t )  is to 
superimpose a reactive effect on the diffusion in which the density tends to peak 
in the vicinity of measurements. 

In the simple Gaussian case, the diffusion is purely linear and the density 
function evolves as a Gaussian pulse that  translates, spreads and is reinforced, 
remaining Gaussian throughout.  The Kalman filter describes analytically ex- 
actly this process. In clutter, however, when measurements have a non-Gaussian, 
multi-modal conditional distribution, the evolving density requires a more gen- 
eral representation. This leads to a powerful new approach to tracking, developed 
below, in which a sparse representation of the density for x( t )  is carried forward 
in time. No mean position or variance is computed explicitly, though they and 
other properties can be computed at any time if desired. 

2 Discrete - t ime  propagation of  state densi ty  

For computational purposes, the propagation process must be set out in terms 
of discrete time t. The state of the modelled object at time t is denoted xt and 
its history is xt = (xl,  x 2 , . . . ,  xt). Similarly the set of image features at time t is 
zt with history zt = ( z l , . . . ,  zt). Note that  no functional assumptions (linearity, 
Gaussianity, unimodality) are made about densities, in the general treatment,  
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though particular choices will be made in due course in order to demonstrate 
the approach. 

2.1 S tochas t i c  d y n a m i c s  

A somewhat general assumption is made for the probabilistic framework that  
the object dynamics form a temporal Markov chain so that: 

p(xt+,  Ix ) = (a) 

- -  the new state is conditioned directly only on the immediately preceding state, 
independent of the earlier history. This still allows quite general dynamics, in- 
cluding stochastic difference equations of arbitrary order; we use second order 
models and details are given later. The dynamics are entirely determined there- 
fore by the form of the conditional density p(xt+l[Xt). For instance, 

p(xt+l ]xt) = exp - ( x t + l  - xt - 1)2/2, 

represents a one-dimensional random walk (discrete diffusion) whose step length 
is a standard normal variate, superimposed on a rightward drift at unit speed. Of 
course, for realistic problems x is multi-dimensional and the density is more com- 
plex (and, in the applications presented later, learned from training sequences). 

2.2 M e a s u r e m e n t  

Observations zt are assumed to be independent, both mutually and with respect 
to the dynamical process, and this is expressed probabilistically as follows: 

t 

p(zt ,  Xt+l IXt) : p(xt+l Ixt) IIP(zilxi). (4) 
i=1 

Note that  integrating over xt+~ implies the mutual conditional independence of 
observations: 

t 

p(z, lx,) = I I  (5) 
i=1 

The observation process is therefore defined by specifying the conditional density 
p(ztlxt) a t  each time t, and later, in computational examples, we take this to 
be a time-independent function p(z lx  ). Details of the shape of this function, for 
applications in image-stream analysis, are given in section 4. 

2.3 P r o p a g a t i o n  

Given a continuous-valued Markov chain with independent observations, the rule 
for propagation of conditional density p(xtlZt) o v e r  time is: 

p(Xt+l IZt+l  ) = k t + l  p(Zt+l IXt+l)p(Xt+l IZt) (6)  

where t ' ,  

p(xt+l Izt) = / p(xt+llXt)p(xtlZt)  (7) 
,] X t  
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and kt+l is a normalisation constant that does not depend on xt+l.  
The propagation rule (6) should be interpreted simply as the equivalent of 

the Bayes rule (1) for inferring posterior state density from data, for the time- 
varying case. The effective prior p(xt+llZt) is actually a prediction taken from 
the posterior p(xtlzt) from the previous time-step, onto which is superimposed 
one time-step from the dynamical model (Fokker-Planck drift plus diffusion as 
in figure 1), and this is expressed in (7). Multiplication'in (6) by the condi- 
tional measurement density p(Zt+llxt+l) in the Bayesian manner then applies 
the reactive effect expected from measurements (figure 1). 

3 T h e  CONDENSATION a l g o r i t h m  

In contrast to the static case in which the prior p(x) may be Gaussian, the 
effective prior p(xt+l]Zt) in the dynamic case is not Gaussian when clutter is 
present. It has no particular known form and therefore cannot apparently be 
represented exactly in the algorithm. The CONDENSATION algorithm solves this 
problem by doing altogether without any explicit representation of the density 
function itself. Instead, it proceeds by generating sets of N samples from p(xt  [zt) 
at each time-step. Each sample st is considered as an (st, 7rt) pair, in which st is a 
value of xt and 7rt is a corresponding sampling probability. Suppose a particular 
st is drawn randomly from p(xt[zt)  by choosing it, with probability ~rt, from the 
set of N samples at time t. Next draw st+l randomly from p(xt+l lx t  = st), one 
time-step of the dynamical model, starting from xt = st, a Ganssian density to 
which standard sampling methods apply. A value st+l chosen in this way is a 
fair sample from p(xt+l [zt). It can then be retained as a pair (st+l, lrt+l) for the 
N-set at time t + 1, where ~rt+l = p(zt+l]Xt+l = St+l). This sampling scheme 
is the basis of the CONDENSATION algorithm and details are given in figure 2. 
In practice, random variates can be generated efficiently, using binary search, 
if, rather than storing probabilities 7rt, we store cumulative probabilities ct as 
shown in the figure. At any time t, expected values E[f(x t ) l z t ]  of properties of 
the state density p(xt]zt)  can be evaluated by applying the rule (2) from the 
factored sampling algorithm. 

4 P r o b a b i l i s t i c  p a r a m e t e r s  f o r  c u r v e  t r a c k i n g  

In order to apply the CONDENSATION algorithm, which is general, to the track- 
ing of curves in image-streams, specific probability densities must be established 
both for the dynamics of the object and for the measurement process. As men- 
tioned earlier, the parameters x denote a linear transformation of a B-spline 
curve, either an affine deformation, or some non-rigid motion. The dynamical 
model and learning algorithm follow established methods [6, 7]. The model is a 
stochastic differential equation which, in discrete time, is 

xt+l = Ax t  + Bwt  (8) 

where A defines the deterministic component of the model and wt is a vector of 
independent standard normal random variables scaled by B so that B B  T is the 
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I t era te  

At time-step t + 1, construct the n TM of N samples as follows: 

1. Generate a random number r E [0, 1], uniformly distributed. 
2. Find, by binary subdivision on m, the smallest m for which c~ m) < r. 
3_ Draw a random variate ~ from the density p(xt+llXt = 8~m)), assumed e~t-bl 

Gaussian so direct sampling is possible. 

:~ (n) ~-('~) o (~)~ where Store samples n = 1~ .., N as kOt+l~-t+l~t+lJ 

c(0) = 0 
t + l  

t + l  

C(n) ( n - - l )  __ (t~) 
t + l  ~ Ct+l t 7rt_bl 

and then normalise by dividing all cumulative probabilities ~(") by fiN) i.e. so ~t-t-1 ~ t l - 1  

that  AN) = 1. Ct+l 

If required, mean properties can be estimated at any time t as 

N 

E[f(z)Iz d ~ ~ 7r}")f(s~'~)) �9 

For example, if the mean configuration ~ is required for graphical display, the 
above rule is used with f ( x )  = x. 

Fig. 2. The CONDENSATION algorithm. 

process noise covariance. The model can clearly be re-expressed as a t empora l  
Markov chain as follows: 

p(xt+l Ixt) = exp - 1 lIB_ l (x t+l  - Axt ) )  II 2 . ( 9 )  

In practice,  we use second order models, where xt,  A and B are replaced by 

I 0 

respectively. Coefficients are learned f rom sequences of images. An unt ra ined  
tracker is used to follow training motions against  a relatively clutter-free back- 
ground.  The t racked sequence in the form (xl,  x2 , . . . )  is then analysed [6, 7] by 
Max imum Likelihood Est imat ion to generate est imates of A0, A1 and B,  thus 
defining the model  for use by the CONDENSATION algori thm. A set of sample 
values for t ime-step t = 0 must  be supplied to initialise the algorithm. If  the  
prior density p(xo) is Gaussian,  direct sampling may  be used for initialisation, 
otherwise it is possible simply to allow the density to  settle to a s teady s ta te  
p(xoo) in the absence of  object  measurements .  
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4.1 O b s e r v a t i o n s  

The measurement process defined by p(ztlxt ) is assumed here to be s ta t ionary 
in t ime (though the CONDENSATION algorithm does not require this) so a static 
function p(z[x) is to be specified. As yet we have no capability to est imate it 
from data, though that  would be ideal, so some reasonable assumptions must be 
made. 

Measurements z arising from a curve x are image-edge fragments obtained 
by edge-detection along curve normals. We assume tha t  noise and distortions 
in imaging z are local, so in order to determine p(zlx ) it is necessary only to 
examine image pixels near the image curve which we denote (with mild abuse 
of notation) x(s), 0 < s < 1. The corresponding measurement  sequence is then 
denoted z(s),  where z(s) for each s is the detected edge on the normal at x(s) 
that  lies closest to the curve x. To allow for measurement  failures and clutter, 
the measurement  density is modelled as a robust  statistic, a t runcated Gaussian: 

I } 
p(zlz  ) = exp - ~ a  2 r (10) 

where 
Ix(s) - z(s)l 2 if Ix(s) - z(s)l < 

r (Ii) 
I p otherwise 

and p is a penalty constant, related to the probabili ty of failing to find a feature, 
either on the curve or the background. Note that  r is constant at  distances 
greater than 5 from the curve, so 5 acts as a maximum scale beyond which 
it is unnecessary to search for features. In practice, of course, the integral is 
approximated as a sum over discrete sample intervals of s. 

5 A p p l y i n g  t h e  CONDENSATION a l g o r i t h m  t o  v i d e o - s t r e a m s  

5.1 T r a c k i n g  a m u l t i - m o d a l  d i s t r i b u t i o n  

In order to test the CONDENSATION algori thm's ability to represent a multi- 
modal distribution, we collected a 70 frame (2.8 second) sequence showing a 
cluttered room with three people in it, facing the camera. The person initially 
on the right of the image moves to the left, in front of the other two. A template  
was drawn, using an interactive package, to fit around the head and shoulders of 
a person, and we constructed an affine space of deformations of that  template.  
A motion model was learned by tracking a single person walking around the 
room; background subtraction was necessary to ensure accurate tracking past  
the clutter. Results of running the CONDENSATION algorithm are shown in figure 
3. Since the feature of interest is primarily x translation, only the distribution of 
the parameter  corresponding to x coordinate has been plotted, however it is clear 
that  the people are of slightly different sizes and heights, and this is modelled in 
the full distribution. No background subtraction or other preprocessing is used; 
the input is the raw video stream. Initialisation is performed simply by iterating 
the stochastic model in the absence of measurements,  and it can be seen tha t  
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this corresponds to a roughly Gaussian distribution on x coordinate at the first 
time-step. The distribution rapidly collapses onto the three peaks present in the 
image, and tracks them correctly, despite temporary difficulties while the people 
occlude each other. The time-step used for tracking is frame rate (40 ms) since 
the motion is fairly slow; in the figure, distributions are plotted only every 80 
ms for clarity. The stationary person on the left has the highest peak in the 
distribution; this is to be expected since he is standing against a clutter-free 
background, and so his outline is consistently detectable. The experiment was 
run using a distribution of N = 1000 samples. 

Fig. 3. Tracking a mul t i -modal  distribution.  A histogram of the horizontal trans- 
lation component of the distribution is plotted against time. The initial distribution is 
roughly Gaussian, but the three peaks are rapidly detected and tracked as one person 
walks in front of the other two. 

5.2 Tracking rapid motions through clutter 
Next we collected a 500 field (10 second) sequence showing a girl dancing vigor- 
ously to a Scottish reel against a highly cluttered background, in order to test 
the CONDENSATION algorithm's agility when presented with rapid motions. We 
drew a head-shaped template and constructed an affine space to represent its 
allowable deformations. We also collected a training sequence of dancing against 
a mostly uncluttered background, from which we trained a motion model for use 
when the CONDENSATION tracker was applied to test data  including clutter. 

Figure 4 shows some stills from the clutter sequence, with tracked head posi- 
tions from preceding fields overlaid to indicate motion. The contours are plotted 
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Fig. 4. Main ta in in g  tracker agility in clutter. A sequence of 5OO fields (10 seconds) 
was captured showing a dancer executing rapid motions against a cluttered background. 
The dancer's head was then tracked through the sequence. Representative fields are 
shown, with preceding tracked head positions to give an indication of the motion. The 
tracked positions are shown at 40 ms intervals. The distribution consists of N = 100 
samples. 

at 40 ms intervals. The model parameters are estimated by the mean of the dis- 
tribution at each time-step. The distribution consists of N = 100 samples. The 
distribution was initialised by hand near the dancer's position in the first field, 
as 100 samples do not sweep out enough of the prior to locate the initial peak 
reliably. It  would be equally feasible to begin with a larger number of samples in 
the first field, and reduce the size of the distribution when the dancer had been 
found (this technique was used in section 5.3). 

Figure 5 shows the centroid of the head position estimate as tracked by both 
the CONDENSATION algorithm and a Kalman filter. The CONDENSATION tracker 
correctly estimated the head position throughout the sequence, but after about  
40 fields (0.80s), the Kalman filter was distracted by clutter, never to recover. 

Although it is expected that  the posterior distribution will be largely uni- 
modal throughout the sequence, since there is only one dancer, figure 6 illustrates 
the point that  it is still important for robustness that  the tracker is able to repre- 
sent distributions with several peaks. After 920 ms there are two distinct peaks, 
one caused by clutter, and one corresponding to the dancer's head. At this point 
the clutter peak has higher posterior probability, and a unimodal tracker like 
the Kalman filter would discard the information in the second peak, rendering 
it unable to recover; however the CONDENSATION algorithm does recover, and 
the dancer's true position is again localised after 960 ms. 

5.3 Tracking complex jointed objects 

The preceding sequences show motion taking place in a model space of at most 4 
dimensions, so in order to investigate tracking performance in higher dimensions, 
we collected a 500 field (10 second) sequence of a hand translating, rotating, 
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Fig. 5. T h e  C o n d e n s a t i o n  t racker  succeeds w h e r e  a K a l m a n  f i l ter  fa i l s .  The 
centroid of the state estimate for the sequence shown in figure 4 is plotted against t ime 
for the entire 500 field sequence, as tracked by first the CONDENSATION tracker, then 
a Kalman filter tracker. The CONDENSATION algorithm correctly estimates the head 
position throughout the .sequence. The Kalman filter initially tracks correctly, but is 
rapidly distracted by a clutter feature and never recovers. 

Fig. 6. Recover ing  f r o m  tracking fai lure .  Detail from 3 fields of the sequence il- 
lustrated in figure 4. Each sample from the distribution is plotted on the image, with 
intensity scaled to indicate its posterior probability. Most of the samples, from a distri- 
bution of N = 100, have too low a probability to be visible. In field 46 the distribution 
has split into two distinct peaks, the larger attracted to background clutter. The distri- 
bution converges on the dancer in field 48. 
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and flexing its fingers independently, over a highly cluttered desk scene. We con- 
structed a twelve degree of freedom shape variation model and an accompanying 
motion model with the help of a Kalman filter tracking in real time against a 
plain white background, using signed edges to help to disambiguate the finger 
boundaries. 

Fig. 7. Tracking a f lex ing  hand across a cluttered desk. Representative stills from 
a 500 field (10 second) sequence of a hand moving over a highly cluttered desk scene. 
The fingers and thumb flex independently, and the hand translates and rotates. The 
distribution consists of N = 500 samples except for the first 4 fields, when it decreases 
from 1500 samples to aid initialisation. The distribution is initialised automatically by 
iterating on the motion model in the absence of measurements. 

Figure 7 shows detail of a series of images from the tracked 500 field sequence. 
The distribution is initialised automatically by iterating the motion model in 
the absence of measurements. The initialisation is performed using N = 1500 
samples, but  N is dropped gradually to 500 over the first 4 fields, and the 
rest of the sequence is tracked using N = 500. Occasionally one section of the 
contour locks onto a shadow or a finger becomes slightly misaligned, but  the 
system always recovers. Figure 8 shows just how severe the clutter problem is - -  
the hand is immersed in a dense field of edges. The CONDENSATION algorithm 
succeeds in tracking the hand despite the confusion of input data. 

6 C o n c l u s i o n s  

Tracking in clutter is hard because of the essential multi-modality of the con- 
ditional measurement density p( z l x  ). In the case of curve tracking, multiple- 
hypothesis tracking is inapplicable and a new approach is needed. The CON- 
DENSATION algorithm is a fusion of the statistical factored sampling algorithm 
for static, non-Gaussian problems with a stochastic differential equation model 
for object motion. The result is an algorithm for tracking rigid and non-rigid 
motion which has been demonstrated to be far more effective in clutter than 
comparable Kalman filters. Performance of the CONDENSATION algorithm im- 
proves as the sample size parameter N increases, but computational complexity 
is O ( N  log N).  Impressive results have been demonstrated for models with 4 to 
12 degrees of freedom, even when N = 100. Performance in several cases was 
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Fig. 8. Localising the hand in a dense edge map.  Detail of a field from the hand 
sequence. The result of running a directional Gaussian edge detector shows that there 
are many clutter edges present to distract the system. The CONDENSATION algorithm 
succeeds in tracking the hand through this clutter. 

improved still further with increased N = 1000. The system currently runs with 
N -- 50 in real-time (25Hz) on a desk-top graphics workstation (Indy R4400SC, 
200 MHz). 
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