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A b s t r a c t .  Smooth surfaces are approximated by polyhedral surfaces 
for a number of computational purposes. An inherent problem of these 
approximation algorithms is that the resulting polyhedral surfaces ap-  

p e a r  faceted. Within a recently introduced signal processing approach to 
solving this problem [7, 8], surface smoothing corresponds to low-pass 
filtering. In this paper we look at the filter design problem in more de- 
tail. We analyze the stability properties of the low-pass filter described 
in [7, 8], and show how to minimize its running time. We show that most 
classical techniques used to design finite impulse response (FIR) digital 
filters can also be used to design significantly faster surface smoothing 
filters. Finally, we describe an algorithm to estimate the power spectrum 
of a signal, and use it to evaluate the performance of the different filter 
design techniques described in the paper. 

1 Introduction 

The signal processing f ramework introduced in [7, 8], extends Fourier analysis to 
discrete surface signals, functions defined on the vertices of  polyhedra l  surfaces. 
As in the me thod  of Fourier Descriptors [9], where a closed curve is smoo thed  
by t runca t ing  the Fourier series of its coordinate  signals, a very large polyhedral  
surface of a rb i t ra ry  topology  is smoothed  here by low-pass filtering its three 
surface coordinate  signals. And a l though the formula t ion  was developed main ly  
for signals defined on surfaces, it is in fact valid for discrete graph signals, func- 
t ions defined on the vertices of directed graphs.  Since this general fo rmula t ion  
provides a unified t r ea tment  of polygonal  curves, polyhedral  surfaces, and even 
three-dimensional  finite elements meshes, we start  this paper  by reviewing this 
formula t ion  in its full generality. 

2 Fourier Analysis of Discrete Graph Signals 

We represent a directed graph on the set { 1 , . . . ,  n} of n nodes as a set of  neigh- 
borhoods {i* : i = 1 , . . . ,  n}, where i* is a subset of nodes which does not  contain  
i. The  element of  i* are the neighbors of i. A discrete graph signal is a vector 
x = (x l  . . . .  , x~) t with one component  per node of the graph.  A discrete surface 
signal is a discrete graph  signal defined on the graph  of  vertices and edges of  a 
polyhedral  surface. We normal ly  use first order neighborhoods, were node j is a 
neighbor of  node i if i and j share an edge (or face), but  other  ne ighborhood  
structures  can be used to impose certain types of constraints  [8]. 
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The Discrete Fourier Transform (DFT) of a signal m defined on a closed poly- 
gon of n vertices is obtained by decomposing the signal as a linear combination 
of the eigenvectors of the Laplacian operator 

1 m 1 
A ~ i  : ~ (  i - 1  -- x i )  Av ~ ( x i + x  -- ~i )  �9 (1)  

The DFT of m is the vector ~ of coefficients of the sum. The Laplacian operator 
must be replaced by another linear operator to define the DFT of a discrete 
graph signal. This is the same idea behind the method of eigenfunctions of 
Mathematical Physics [1]. 

We define the Laplacian of a discrete graph signal m by the formula 

= - (2) 

jEi* 

where the weights w~j are positive numbers that  add up to one for each vertex. 
These weights can be chosen in many different ways taking into consideration the 
neighborhoods, but in this paper we will assume that  they are not functions of 
the signal m. Otherwise, the resulting operator is non-linear, and so, beyond the 
scope of this paper. One particularly simple choice that produces good results 
is to set wii equal to the inverse of the number of neighbors 1/li* I of node i, for 
each element j of i*. Other choices of weights are discussed in [7, 8]. Note that  
the Laplacian of a signal defined on a closed polygon, described in equation (1), 
is a particular case of these definitions, with w~j = 1/2, for j E i* -- { i -  1, i +  1}, 
for each node i. 

If W = (w~j) denotes the matr ix of weights, with wij -- 0 when j is not a 
neighbor of i, and K = I - W, the Laplacian of a discrete signal can be written 
in matr ix  form as 

Am = -Kin  . (3) 

Although the method applies to general neighborhood structures, in this paper 
we will restrict our analysis to those cases where the matr ix  W can be factorized 
as a product of a symmetric matr ix times a positive definite diagonal matr ix  
W = ED. In this case the matr ix W is a normal matrim [3], because the matr ix  

D1/2WD-1/2 = D1/2ED 1/2 (4) 

is symmetric. Note that  such is the case for the first order neighborhoods of 
a surface with equal weights wij = 1/[i*[ in each neighborhood i*, where E 
is the incidence matrim of the neighborhood structure (a symmetric matr ix for 
first order neighborhoods), the matr ix whose ij-th, element is equal to 1 if the 
nodes i and j are neighbors, and 0 otherwise; and D is the diagonal positive 
definite matr ix  whose i-th. diagonal element is 1/[i*[. When W is a normal 
matr ix  it has all real eigenvalues, and sets of n left and right eigenvectors that  
form dual bases of n-dimensional space. Furthermore, by construction, W is also 
a stochastic matrim, a matr ix with nonnegative elements and rows that  add up to 
one [6]. The eigenvalues of a stochastic matr ix  are bounded above in magnitude 
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by 1. It follows that  the eigenvalues of the matr ix  K are real, bounded below by 
0, and above by 2. 

In general, the eigenvectors and eigenvalues of K have no analytic expres- 
sion, but for filtering operations it is not necessary to compute the eigenvectors 
explicitly. 

If  0 < kl < " "  < k,~ < 2 are the eigenvalues of K,  e l , . . . , e ,~  a set of corre- 
sponding right eigenvectors, and 51, - . . ,  6n the associated dual basis of el,  �9 �9 e,~, 
the identity mat r ix  I ,  and the matr ix  K can be writ ten as follows 

T~ 7~ 

i = 1  i = 1  

and every discrete graph signal x has a unique decomposition as a linear combi- 
nation of el, �9 �9 �9 en 

n 

= I. = E e,, (5) 
i=i 

where xi = ~ x .  We call the vector • = ( ~ i , . . . ,  xn)* the Discrete Fourier Trans- 
form (DFT) of ~. 

Note, however, that  this definition does not identify a unique object yet. If  
a different set of right eigenvectors of K is chosen, a different D F T  is obtained. 
To complete the definition, if W = ED, with E symmetr ic  and D positive 
definite diagonal, we impose the right eigenvectors of K to be of unit length 
with respect to the norm associated with the inner product (z, Y)D = ~tDy. 
With this constraint, Parseval 's formula is satisfied 

I1~11~ = II~ll ~ , (6) 

where the norm on the right hand side is the Euclidean norm. This result will 
be used in sections 6 and 7. 

To filter the signal x is to change its frequency distribution according to a 
transfer function f(k) 

x ' =  ~ f ( k~ ) s  = f(k~)e~5 ;c. (7) 
i ---- i  

The frequency component  of . corresponding the the natural  frequency kl is 
enhanced or a t tenuated by a factor f(k~). For example,  the transfer function of 
an ideal low-pass filter is 

1 forO < k <  kp~ 
f~P= 0 f o r k , ~ < k < 2  ' (8) 

where kp~ is the pass-band frequency. 
Since there is no efficient numerical method to compute the D F T  of a discrete 

graph signal, the computat ion can only be performed approximately.  To do this 
the ideM low-pass filter transfer function is replaced by an analytic approxima-  
tion, usually a polynomial  or rational function, for which the computa t ion  can 
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be performed in an efficient manner. A wide range of analytic functions of one 
variable f(k) can be evaluated in a matr ix  such as K [3]. The result is another 
matr ix  f (K) with the same left and right eigenvectors, but with eigenvalues 
f (k l) , . . . ,  f(k,O 

= S(k ) 
i = 1  

The main reason why the filtering operation z ' =  f(K)x of equation (7) can be 
performed efficiently for a polynomial transfer function of low degree, is that  
when K is sparse, which is the case here, the matr ix  f(K) is also sparse (but of 
wider bandwidth), and so, the filtering operation becomes the multiplication of 
a vector by a sparse matrix. 

In Gaussian smoothing the transfer function is the polynomial f.,v(k) = 
( 1 -  ~k) Jr, with 0 < ~ < 1. This transfer function produces shrinkage. The 
algorithm introduced in [7, 8] is essentially Gaussian smoothing with the dif- 
ference that the scale factor A changes from iteration to iteration, alternating 
between a positive value A and a negative value #. This simple modification 
still produces smoothing, but prevents shrinkage. The transfer function is the 
polynomial f~r(k) = ((1 - Ak)(1 - lzk)) N/~, with 0 < A < - #  and N even. The 
pass-band frequency of this filter is defined as the unique value of k in the interval 
(0, 2) such that  fN(k) = 1. Such a value exists when 0 < ~ < - # ,  and turns out 
to be equal to kpB = 1/A + 1//z. This polynomial transfer function of degree N 
results in a linear time and space complexity algorithm. From now on we will 
refer to this algorithm as the A - #  algorithm. 

3 F a s t  S m o o t h i n g  a s  F i l t e r  D e s i g n  

We are faced with the classical problem of digitM filter design in signal processing 
[5, 4], but with some restrictions. Note that because of the linear complexity 
constraint discussed above, only polynomial transfer functions (FIR filters) are 
allowed. We leave the study of rational transfer functions (IIR filters) for the 
future. And because of space restrictions, of all the traditional FIR filter design 
methods available in the signal processing literature, we only cover here in some 
detail the method of windows, which is the simplest one. With this method we 
can design filters which are significantly faster, or sharper, than those obtain 
with the A - # Mgorithm for the same degree. 

4 Optimizing t h e  A - i t  algorithm 

The A - #  algorithm can be described in a recursive fashion as follows 

1 N=O 
y~r(k)= (1 -ANk)  fN_l(k) ~V>O 
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where AN -- ~, for N odd, and A2r = # for N even. Note tha t  this a lgori thm 
requires min imum storage, only one array of dimension n to store the Laplacian 
of a signal if computed in place, and two arrays of dimension n in general. 

To mainta in  the min imum storage property and the same simple algorithmic 
structure, one could try to generalize by changing the scale factors "~N f rom 
iteration to iteration in a different way. But if we start  with a given pass-band 
frequency k~  = 1/)~ + l/b,  , as it is usually the case when one wants to design 
the filter, there are many  values of A and # such that  0 < A < - # ,  that  define 
a filter with the same pass-band frequency. In order for the polynomial  f ( k )  = 
( 1  - Ak)(1 - #k) to define a low-pass filter in the interval [0, 2] it is necessary 
that  If(k)l < 1 in the stop-band region, so that  fay(k) = f ( k )  g ---+ 0 when N 
grows. Since f(kpB) = i and f ( k )  is strictly decreasing for k > kpB, this condition 
is equivalent to f(2)  > - 1 ,  which translates into the following constraint on 

+ + 4 
< (9) 

As A increases, the slope of the filter immediately after the pass-band frequency 
increases, i.e., the filter becomes sharper, but at the same t ime instability starts 
to develop at the other end of the spectrum, close to k -- 2. If the m a x i m u m  
eigenvalue k,~ of the mat r ix  K is significantly less than 2 (which is not usually 
the case) we only need the filter to be stable in the interval [0, k,~] (i.e., 1 > 
f ( kn )  > - 1 ) ,  and larger values of A are acceptable. A good est imate of the 
m a x i m u m  eigenvalue of K can be obtained with the Lanczos method [3]. Even 
if the m a x i m u m  eigenvalue kn is not known, the signal ac to be smoothed may  
be band-limited, i.e., the coefficients a~i in equation (5) associated with high 
frequencies are all zero, or very close to zero. This condition may be difficult 
to determine in practice for a particular signal, but if we apply the algori thm 
with small ~ for a certain number of iterations, the resulting signal becomes 
in effect band-limited.  At this point ~ can be increased keeping the pass-band 
frequency constant, maybe  even making the filter unstable, and the algori thm 
can be applied again with the new values of )~ and # for more iterations. This 
process of increasing A keeping the pass-band frequency constant can now be 
repeated again and again. A moderate  speed-up is obtained in this way. 

5 Filter Des ign with Windows  

The most  straightforward approach to traditional digital filter design is to obtain 
a tr igonometric polynomial  approximation of the ideal filter transfer function by 
truncating its Fourier series. The resulting tr igonometric polynomial  minimizes 
the L2 distance to the ideal filter transfer function among all the tr igonometric 
polynomials of the same degree. 

To obtain regular polynomials, not tr igonometric ones, we first apply the 
change of variable k = 2(1 - cos(0)). This change of variable is a 1 - 1 mapping  
[0, 7r/2] --0 [0, 2]. Then we extend the resulting function to the interval l - r ,  r] as 
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follows 
0 ~r/2 < 6  <Tr 

h,p(8) = fi.p(2(1 - cos(O))) 0 < 0 < 7r/2 
h ( - e )  -~r < e < 0 .  

Note that  this function, periodic of period 2~r and even, is also an ideal low-pass 
filter as a function of 8 

1 ill01 < 0,B 
h~.,(8)= 0 otherwise ' 

where 8ps is the unique solution of kpB = 2 ( 1 -  cos(Sps)) in [0, ~r/2]. Since h(8) is 
an even function, it has a Fourier series expansion in terms of cosines only 

oo 

= h0 + 2 cos ine) .  
n = 0  

Now, it is well known that  cos(nS) = T~(cos(8)), where T,~ is the n-th. 
Chebyshev polynomial [2], defined by the three term recursion 

1 n = O  
T,~(w) : w n : 1 

2wT,~_l(w) - T,~_2(w) n > 1 

The N-th.  polynomial approximation of f~p for k E [0, 2] is then 

N 

fN(k )  = OpB T0(1 - k/2) + ~ 2 sin(nSp,) Tn(1 - k12) . (10) 
7r n T r  

n = l  

Direct truncation of the series leads to the well-known Gibbs phenomenon, 
i.e., a fixed percentage overshoot and ripple before and after the discontinuity. 
As it is shown in section 8, this is one of the problems that  makes this technique 
unsatisfactory. The other problem is that  the resulting polynomial approxima- 
tion does not necessarily satisfy the constraint fg({)) = 1, which is required to 
preserve the average value of the signal (DC level in classical signal processing, 
centroid in the case of surfaces). Our experiments show that a desirable surface 
smoothing filter transfer function should be as close as possible to 1 within the 
pass-band, and then decrease to zero in the stop-band ([kpB, 2]). 

A classical technique to control the convergence of the Fourier series is to use a 
weighting function to modify the Fourier coefficients. In our case the polynomial 
approximation of equation (10) is modified as follows 

epB N 
f N ( k ) = w o - - T o ( 1 - k / 2 ) + w ~  ~ 2 s i n ( n O ' B )  T , ~ ( 1 - k / 2 ) ,  (11) 

7r nTC 

where w0, w l , . . . ,  wN are the weights that constitute a so called window. The 
polynomial approximation of equation (10) is a particular case of (11), where the 
weights are all equal to 1. This is called the Rectangular window. Other popular 
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windows are, the Harming window, the Hamming window, and the Blackman 
window. 

1.0 Rectangular  
0.5 + 0.5 cos(nTr/(N + 1)) Hanning 

w~ = 0.54 + 0.46 cos(n~r/(N + 1)) Hamming  
0.42 + 0.5 cos(nTr/(N + 1)) + 0.08 cos(2n~r/(N + 1)) B lackman .  

(12) 
If  the low-pass filter must  have a very narrow pass-band region, which is usu- 

ally the case in the surface smoothing application, then a high degree polynomial  
is necessary to obtain a reasonable approximation.  This is in fact a consequence 
of the uncertainty principle. The phenomenon can be observed even in the case 
of the rectangular window. The problem is even worse for the other windows, 
because they have wider main lobes. To obtain a reasonably good approxima-  
tion of degree N, the pass-band must  be significantly wider than the width of 
the main  lobe of the window. If cr is the width of the main lobe of the window, 
the resulting filter will be approximately equal to one for 0 E [0, 0~, - a], ap- 
proximately  equal to zero for 0 E [O~ + cq 7r], and approximate ly  decreasing for 
0 E [O~B - cr, 0~ + a]. Our solution in this case of narrow pass-band frequency, 
is to design the filter for a small value of N,  but with the pass-band frequency 
increased by c~ (no longer the width of the main lobe of the window) 

(0pB + '~) N 
fN(k) -= wo To(1-k/2)+w~ E 2sin(n(0,B +o-)) T , ~ ( 1 - k / 2 ) ,  (13) 

7r n T l  
n - - i  

and then, eventually iterate this filter (f(k) = fN(k)M). The value of a can be 
determined numerically by maximizing f(kp~) under the constraints [f(k)[ < 1 
for kp~ < k _< 2. In our implementat ion,  we compute the opt imal  q with a local 
root finding algori thm (a few Newton iterations) so that  fN(kp~) = 1, s tart ing 
from an interactively chosen initial value. Figure 1 shows some examples of filters 
designed in this way, compared with filters of the same degree and a = 0, and 
with )~ - tz filters of the same degree. 

6 H o w  t o  C h o o s e  T h e  P a s s - B a n d  F r e q u e n c y  

In this section we are concerned with how to choose the pass-band frequency 
kps to prevent shrinkage. As in the classical case, since the D F T  ~ of a signal 

^2  x satisfies Parseval 's formula, the value of x~ can be interpreted as the energy 
content of x in the frequency ki. Similarly, the sum 

^ 2  

~_<~w 

measures the energy content of m in the pass-band. Our criterion is to choose the 
min imum pass-band frequency such that  most  of the energy of the signal falls 
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A B C D 

Fig.  1. Filters f z v ( k )  for kpB -- 0.1 and ~ > 0.0. (A) Rectangular window, N = 10, 
= 0.1353. (B) Rectangular window, N = 20, ~ = 0.0637. (C) Hamming window, 

N = 10, a = 0.5313. (D) Hamming window, N = 20, r = 0.2327. In each of the four 
cases the thick black line corresponds to the filter described above, the thin black line 
to the same filter with ~ = 0.0, and the gray line is a % - p filter of the same degree 
and % - 0.5. 

in the pass-band,  i.e., we choose kpB such tha t  

^2 
E ~': >- (1 - e)II~ll~,, 

where e is a very small number .  Of  course, since we cannot  compute  the D F T  of 
�9 , we cannot  minimize this expression exactly. We can only get a rough es t imate  
of  the minimizer  using the power spectral es t imator  described in the next section. 
W h a t  value of  e to use, and how accurate  the es t imat ion  should be is appl icat ion 
dependent ,  but  in general it should be de termined exper imental ly  for a set of  
typical  signals. 

7 Power Spectrum Estimation 

Ideally, to  evaluate the performance of the different low-pass filter a lgor i thms we 
should measure the D F T  of the filter outputs ,  and check tha t  the high frequency 
energy content  is very small. Since we do not  have any  practical  way of  compu t ing  
the D F T ,  we est imate  the power spec t rum of a signal as follows. We par t i t ion  
the interval [0, 2] into a small  number  of  non-over lapping intervals i 1 , . . . ,  i M, 
and for each one of  this intervals we est imate  the energy content  of  the signal 
within the interval. We do so by designing a very sharp (high degree) pass-band 
filter f f  (k) for each interval I j . The energy content  of the signal z within the 
interval /J can be es t imated by measur ing the tota l  energy of  the ou tpu t  of  
corresponding filter applied to the signal 

^2  IIf(K)~ll5 ~ ~ x~. 
kiEIJ 

By designing all these F IR  filters of  the same degree, a filter-bank, we can eval- 
uate  all of  t hem simultaneously at a great ly  reduced computa t iona l  cost. The  
only disadvantage is tha t  we need M arrays of  the same dimension as the input  
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signal z to accumulate the filter outputs  before their norms are evaluated. I f  
the pass-band filters were ideal, Parseval 's formula implies that  the sum of the 
total  energies of the filter outputs must be equal to the total  energy of the input 
signal. Since the transfer functions of the filters overlap, this condition is only 
approximate ly  satisfied. But the error can be made arbitrari ly small by increas- 
ing the degree of the polynomials. We recommend using filters designed with 
the Hanning or Ramming  windows of a degree at lest ten times the number  of 
spectrum bands. 

8 Exper imenta l  Results  

Figure 2 shows the result of applying the filters of figure 1 to the same input 
surface. The spectrum estimate for the input surface yields the 99.88% of the 
energy in the band [0, 0.1]. This is a typical result for relatively large surfaces, and 
we have found that  a default value kpB = 0.1 produces very good results. But as 
we pointed out before, the appropriate  value for a family of similar signals must  
be determined experimentally by est imating the spectrum of a typical sample.  

The ideal transfer function should be as flat as possible in the pass-band 
region (f(k) ~ 1 for k E [0, kpB]), and then decrease as fast as possible in the 
s top-band region (k E [kpB, 2]). The transfer function of the A - # a lgori thm 
has this shape, but does not decrease fast enough in the stop-band. The results 
obtained with rectangular filters are unsatisfactory. The filters designed with the 
other three windows (Hanning, Hamming,  and Blackman),  and with increased 
cr produce transfer functions of similar shape. The Blackman window produces 
transfer functions that  are much flatter in the pass-band, but at the expense of 
a slower rate of decrease in the stop-band. Hanning and Ramming  windows pro- 
duce similar results, but the Ramming  window produces transfer functions with 
less oscillations. As figure 2 shows, filters designed with the Hamming  window 
produce filters of similar quality as the ~ - t z algorithm, but  much faster. 
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