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A b s t r a c t .  Different kinds of digital images can be modelled as the sam- 
pling of a continuous surface, being described and analyzed through the 
extraction of geometric features from the underlying surface. Among 
them, ridges and valleys or, generically, creases, have deserved special 
interest. The computer vision community has been relying on different 
crease definitions, some of them equivalent. Although they are quite valu- 
able in a number of applications, they usually do not correspond to the 
real creases of a topographic relief. These definitions give rise either to 
algorithms that  label pixels as crease points, and then focus on the prob- 
lem of grouping them into curves, or to operators whose outcome is a 
creaseness image. We draw our attention to the real crease definition for 
a landscape, due to Rudolf Rothe, which is based on the convergence 
of slopelines. They are computed by numerically solving a system of 
differential equations. Afterwards, we extract Rothe creases which are 
parts of slopelines where others converge, avoiding in such a way any 
pixel-grouping step. At the same time we compute a creaseness image 
according to this definition. 
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1 I n t r o d u c t i o n  

In c o m p u t e r  vis ion there  is an image  mode l  under ly ing  every image  analys is  
m e t h o d .  One of these mode l s  considers images  as the  s a m p l i n g  of a mani fo ld ,  
such as a g raph ic  surface in the  case of t w o - d i m e n s i o n a l  images.  Due to the  fact  
t h a t  dea l ing  wi th  a surface as a whole is, in general ,  c o m p u t a t i o n a l l y  infeasible,  
one mus t  look for mani fo lds  of lesser d imens ion  confined in it hav ing  a v isual  
m e an ing  or serving as image  descr iptors .  A m o n g  them,  r idges and val leys or, 
generical ly,  creases,  have been widely  used for several  purposes .  For  ins tance ,  
t hey  are involved in the  descr ip t ion  and segmen ta t i on  of med ica l  images  [3, 5], 
and  d ig i t a l  e levat ion  mode l s  [7, 14]. They  have also been shown to be useful for 
2D and  3D medica l  image  reg i s t ra t ion  [2, 13], since they  cor respond  to a n a t o m i c  
features .  Creases are also especia l ly  useful for range  image  process ing [4, 11], 

because  these images  are t rue  s ampled  surfaces. 
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In computer vision literature, we find diverse crease characterisations, some 
of them equivalent. In [1] we find a rather complete classification according to 
several criteria. In essence, we distinguish three main classes : implementat ions 
of definitions from differential geometry that  1) take into account or 2) not, the 
existence of a singled out direction, and 3) algorithmic or constructive definitions. 

Even if all these definitions and their implementat ions are very useful in a 
number of applications, they share one or several of the following drawbacks : 

1. None of them are the true creases in the sense of ridges and valleys of a 
topographic relief; that  is, the loci of points where water gathers to run 
downhill, in the case of valleys, and similarly for ridges but with the same 
relief turned upside down. 

2. Implementat ions usually do not compute curves, that  is, sequences of adja- 
cent pixel coordinates, but images where pixels are labelled as ridge, valley 
or background. Therefore, a further error prone process of grouping is nec- 
essary. 

3. Crease operators give relatively high responses in the neighbourhood of a 
crease, so an additional decision rule (e.g. thresholding) must be applied, 
which commonly produces thick lines. These operators also tend to have 
high outputs  at regions which exhibit high curvature but are not necessarily 
creases. 

4. Some implementat ions rely on critical points like maxima,  min ima  or saddle 
points which are quite dependent on noise. As a consequence, creases are 
unstable. 

In this paper, we present a new method for crease extraction from two-  
dimensional images that  overcomes all of the former problems. Moreover, this 
method is based on the true characterisation of creases in the topographic sense, 
due to Rudolf Rothe [12], which is discussed in detail in [8]. In order to compute 
Rothe creases, we first realize that  curves lying on a surface can be formulated 
as the solution of a system of coupled Ordinary Differential Equations (ODEs). 
It  is solvable by a standard numerical integration 'engine', which only needs to 
be 'fuelled' with values depending on surface derivatives. Some useful curves in 
computer  vision such as parabolic curves, curves of mean curvature extrema, 
the classical ridge and valley curves and many  others [9], can be expressed and 
computed in this way. Here, we shall focus on slopelines, because they converge 
towards Rothe creases. Therefore, we have devised a convergence assessment 
procedure for discrete curves. 

This article is organized as follows. Section 2 reviews different crease defi- 
nitions. In Sect. 3 we formulate curves on a parametr ic  surface in ]R 3 as the 
solution of a system of coupled ODEs. Next, in Sect. 4, we present an algo- 
r i thm to extract Rothe creases from slopelines. Section 5 illustrates the results 
obtained. Finally, in Sect. 6 we discuss the conclusions and future work. 
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2 D i f f e r e n t  C r e a s e  D e f i n i t i o n s  

2.1 Def in i t ions  I n d e p e n d e n t  of  a S ingled Out  Direc t ion  

They are based on the principal curvatures of the surface which are independent 
of how the surface is embedded in the space. For instance, a crest line (ridge or 
valley) of a surface given in implicit form is defined in [13] as the ex t rema of the 
m a x i m u m  principal curvature in absolute value km~x, in its principal direction 
V ~ x ,  that  is, Vkm~x �9 Vm~x = 0 where Vkm~• is the gradient of km~x. Ridges 
are distinguished from valleys by the sign of the mean curvature kM,which, 
conversely to the principal curvatures, is a non-directional quantity. It  provides 
information about  the concavity (kM > 0, valley) or convexity (kM < 0, ridge) 
of the surface. Actually, creases have been alternatively defined as the ex t rema 
of the mean curvature [1, 11]. 

These definitions are suitable for spaces where there is not a privileged direc- 
tion. They have the advantage of rotational invariance because they are based 
on principal curvatures. Hence, they have also been used in the context of spaces 
with a privileged direction, e.g. for object recognition in range images [4, 11]. 

2.2 Creases Based on a Singled Out D irec t ion  

In this case we model images as a height function, being the height axis the 
singled out direction. In 2D images we have a function l(xl, x2) where the singled 
out direction is most often the intensity axis. Now, we distinguish the crease 
characterisation due to De Saint-Venant from the one due to Rothe. 

T h e  De Saint  Venant  condi t ion .  Several authors [2, 6] have taken crease 
points of a function I(xl, x2) as the height extrema in the directions where their 
second directional derivative is also extreme. Creases have also been identified 
as the loci of curvature extrema of the level curves (isohypses, isophotes). This 
definition has given rise to several implementat ions [3, 7] and the same idea has 
been extended to three-dimensional implicit surfaces [13]. 

Actually, both characterisations are equivalent and correspond to the condi- 
tion of creases given by De Saint-Venant [8] as the loci of extreme slope along 
a level curve. If we denote the first and second order partial derivatives of 
I (x l ,  x2) by Ix .  = c~[(Xl,X2)/Oxo and I . . z~  = 02I(xl,x2)/cgxaOxz, respec- 
tively, the gradient of I(Xl, x2) will be V I  = (Ix1, Ix2), the vector orthogonal to 
it V •  = ( I , ~ , - I ~ 1 )  and the Hessian of I(xl, x2) 

v v I  = L z . , ~  lx~x~ j (1) 

Then, taking the magnitude of the gradient as a slope measure, the De Saint -  
Venant condition is expressed as 

U [ -  ~ U I  �9 x~r L I T  
= 0 . (2 )  

II W l l  ~ 
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Rothe~s  c h a r a c t e r i s a t i o n .  Koenderink and van Doorn saved from oblivion 
the fact that  the former definition does not correspond to the intuitive notion 
of creases as steepest descent/ascent water paths in a landscape [8]. Breton de 
Champ proved that  the only curves satisfying both conditions are confined to 
vertical planes. However, it is clear that  in general this is not true. We owe to 
R. Rothe the right ridge and valley characterisation as parts of slopelines where 
other slopelines converge. These parts are also referred as special slopelines. 
The family of slopeline curves, also called creeplines or flowlines, is defined as 
being orthogonal to the family of level curves. That  is to say, those following the 
gradient direction. We shall see in Sect. 4 that solving the slopeline differential 
equation 

V •  dx = 0 (3) 

for initial points spread all over the image, the computed curves converge to all 
the salient creases. 

2.3 Algorithmic Definitions 

They are based on critical points of the image seen as a landscape, namely, local 
maxima, minima and saddle points. Therefore, they also assume the existence 
of a privileged direction. Perhaps, the most well known algorithmic definition is 
the morphological watershed which computes regions of influence of local min- 
ima [14]. Each region is claimed to be a catch basin and their closed borders are 
identified as ridges or divide lines in the sense of a topographic relief. Another 
algorithmic definition consists in tracing curves that  join critical points following 
the gradient direction [5]. These algorithms suffer from the instability of critical 
points, that  may easily appear, disappear or move due to noise. In addition, they 
also fail to match the true creases, despite its undeniable usefulness. 

In all these characterisations, crease points are classified as ridges or valleys, 
depending on the sign of the second directional derivative of the height function 
I(xt,  x~) in the direction orthogonal to the gradient : 

V •  V V I .  V •  w 

I v . v .  : II v i i i  2 (4) 

Iv•177 is negative at convex regions (ridges) and positive at concave regions 
(valleys). As a mat ter  of fact, there are convolution operators which approximate 
Ivxv~ at a given scale in such a way that points with an output  magnitude 
above a certain threshold are considered creases [2], implementing in this way 
an approximation to the De Saint-Venant condition. 

3 C u r v e s  on  S u r f a c e s  as C o u p l e d  O D E s  

Let us consider a parametric surface s(xt,  x2) in IR 3, and a curve s(x(t)) lying 
on it, for x(t)  = (xl(t),x2(t)) on the plane of parametrisation xtx2. x(t)  is 
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completely determined by a certain relationship between parameters  xl and x2. 
This relationship may  take the form of an ODE 

f .  dx = 0 (5) 

where f = ( f l (x l ,  x2), f2(xl ,  x2)), for certain functions f l ,  f2, and dx = (dxl,  dx2)  
This is the case of (3), the slopeline ODE, where f l  = I,~ and f2 = - I , 1 .  

To solve this equation means to find the integral curves of the vectorial field 
w = (f2(xl ,  x ~ ) , - f l ( X l ,  x2)), on the plane of parametrisat ion,  orthogonal to the 
vectorial field f.  Tha t  is to say, to find curves x(t)  which are the solution of the 
following system of coupled ODEs 

dx( t ) /d t  = (dx l ( t ) /d t ,  dx2( t ) /d t )  = w (6) 

for some unknown parametrisat ion t. Tha t  is, the t that  matches at each point 
(xl( t ) ,  x2(t)) the tangent of the curve with the direction, and the magni tude of 
w. However, we know that  two possible parametrisat ions are the arclength s of 
the curve x(t)  lying on the xlx2-plane and of the curve s(x(t))  lying on the 
surface. Then, we can write 

dx w 

d-7 - 4- v~w- G -  w T (7) 

where G is in the first case the identity matr ix  and in the second case the matr ix  
with the covariant components of the surface metric tensor, this is, 

[1 + Ix1 I,~1I,:~] 
G =  [I~IIx~ l+~x~] (8) 

We can solve (7) with a numerical integration method.  In particular,  we 
use the fourth order Runge-Kut t a  with adaptat ive step [10]. In order to s tar t  
the numerical integration and obtain curve points, only an initial point, and the 
component  functions of w, are needed. 

In this paper, we are interested in curves on the plane of parametr isat ion 
because in two-dimensional  images they are the projection of the corresponding 
curves on the surface. Hence, we should parametrise by the arclength of x(t),  
which has the advantage over the parametr isat ion by s(x(t))  that  the solution 
curve runs faster because w �9 w _< w �9 G �9 w T. However, the integration method 
has a local error of order (9(As 5) for an increment As of the parameter  variable. 
Thus, a higher speed implies a greater local error in each step. This in turn 
may  involve a computat ion overhead because the integration process can be 
compelled to try too many  fractions of As in order not to exceed the allowed 
local error. Therefore, we have chosen the second parametrisat ion.  
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4 E x t r a c t i o n  o f  R o t h e  C r e a s e s  

We have seen that  the characterisation of creases in a continuous landscape 
identifies them as (parts of) slopelines where other slopelines converge. In the 
discrete case, we consider that  creases are formed by contiguous slopeline seg- 
ments, where there is a high degree of convergence. More precisely, we shall 
consider that  a set of sampled slopelines converge into a certain slopeline seg- 
ment if all of them overlap in it. The more curves crowd together, the higher the 
convergence is. The central idea of the algorithm is to compute a large number  
of slopelines and store them as separate curves. Then for each one, the segments 
with high convergence are selected. Finally, redundant segments similar to and 
shorter than other selected segments are discarded. The algorithm has the fol- 
lowing steps: 1) Slopeline extraction, 2) Formation of the creaseness image, and 
3) Crease extraction. 

S l o p e l i n e  e x t r a c t i o n .  To determine how many slopelines have to be traced 
and from which start ing points, we note that  too few curves will cause a poor 
overlapping and therefore some creases will surely be missed, and that  too many  
curves just  slightly improves the result. Hence, we limit the number of computed 
curves to those which are needed in order to cover the whole image, making sure 
that  at least one curve passes through each pixel. Thus, at any given time, a 
pixel is liable to be an initial point x(0) for (7) if no curve has visited it yet. By 
following this rule, we are able to find the main and wider creases in several kinds 
of images. However, in images with small details, sometimes narrow creases are 
missed. We have overcome this problem by working at subpixel resolution. This 
means that,  if it is necessary, slopelines are sampled not at integer coordinates 
but at a finer resolution r, being for instance r = 2 for double resolution. Values 
of r = 2, 3 are sufficient to produce good results in these cases, as we shall see 
in Sect. 5. 

To integrate the ODEs system of the slopelines numerically, the values of 
the first partial  derivatives of the image are required at points with integer 
coordinates but also at points in between. We approximate  the derivative of the 
image at a certain scale c~, at which creases are extracted, by the convolution 
with the sampled derivative of a bidimensional Gaussian of variance c~ 2. For 
first order derivatives, I~,~(xl,x~;o') ~ I ( x l , x 2 ) *  Gx. (x l , r , 2 ;~ ) ,  ~ = 1,2 . 
Note that  this equation applies only to pixel coordinates, that  is, both xl and 
x~ are integers. Elsewhere, we approximate  subpixel derivatives evaluating the 
derivatives of an algebraic polinomial, obtained by a bicubic interpolation [10] 
from the four nearest pixels. 

F o r m a t i o n  o f  t h e  c r e a s e n e s s  i m a g e .  The convergence of curves in the con- 
tinuous space is interpreted as the overlapping of sampled curves and the discrete 
ones. Thus, we need to count, for each point of the image domain, how much 
slopelines pass through it. This process must be done at resolution r, therefore in 
a mat r ix  r 2 times larger than the original image. This mat r ix  has an interesting 
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meaning : it is a creaseness image, analogously to images produced by crease 
operators like Iv•177 (Fig. le), though corresponding to Rothe creases (Fig. ld).  

Fig. 1. (a) Heart scintigraphic image. (b) Image seen as a landscape. (c) Several slope- 
lines for r = 3 and a = 1.0 pixels. (d) Creaseness image where darker grey-levels 
denote greater accumulation. (e) Operator Ivxvj_ applied to (a), displaying convexity 
(dark) and concavity (bright). (f) Thresholding of (d) showing regions of greater ac- 
cumulation. (g) Selected slopeline segments for L = T = 4. (h) Special slopetines for 
P = 0.95. (g) Classification into ridges (bl~ck) and valleys (grey) according to the sign 
of Iv•177 

C r e a s e  e x t r a c t i o n .  Creases arc segments of certain slopelines where there is 
a high convergence. Hence, we select those segments from the stored slopelines 
where accumulation at each point is greater than a threshold T. We impose a 
further condition in order to avoid small segments, most probably due to the 
sampling of slopelines which do not converge but just get closer than 1 / r  pixels 
and then run far away: those segments must be longer than rL, for another 
threshold parameter L. 
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Finally, if we look at the image of segments passing the two conditions, 
it displays bunches of segments, not isolated curves (Fig. lg). The reason is 
precisely that  they group because of their high accumulation one over the others, 
thus fulfilling the two conditions above. In order to discard redundant segments, 
we apply the following rule : given two segments, we eliminate the shorter one if 
it overlaps the longer one in more than a certain length fraction P.  

The results are not very sensitive to parameters T, L and P.  We mean that  
they are just minimum values intended to get rid of several abnormal cases like 
very short or very weak creases. Typical values are T = 3, L = 3 and P = 0.9. 
The increase of T and L, or the decrease of P,  do not change substantially the 
final result. 

5 R e s u l t s  

We now present the results obtained for Rothe's definition of ridge and valley 
in a landscape. We shall illustrate its utility in the context of two applications 
on different medical image modalities: coronary arteriography and brain MRI. 
In addition, results obtained for two range images are also presented. 

In coronary arteriography the goal is to delineate its vessels. We have detected 
them searching the ridges of the image. In fact, thin vessels a r e  ridges. Figure 
2b shows the extracted ridges superimposed to the image at the same scale ~r 
for which they were computed. 

The second application is the extraction of salient features to be used in the 
registration of two MR or MR and CT brain images. In Fig. 3b we see the ridges 
and valleys that  have been extracted by our algorithm. They can be used to 
calculate the geometric transform between a pair of images of the same slice, by 
means of some process of curve matching. Alternatively, it is possible to obtain 
the registration transform from the correlation of the creaseness images (Fig. 3c) 
of the two slices as it is done in [2] with the Iv•177 operator (Fig. 3d). 

On the other hand, we have experimented with our algorithm in some range 
images. Figure 4b shows the creases of the simple range image of a block. They 
perfectly match its roof borders. We have also tested the algorithm with a Digital 
Elevation Model image (Fig. 4c), which is a real topographic relief. 

In the previous examples, such as in Fig. 2b, we observe short disconnected 
segments that could be joined in order to produce longer, perceptually better 
crease curves. This fragmentation is caused by the saddle points of the image, 
that,  by definition, slopelines can not reach nor cross. Formally, there is nothing 
wrong with this, but in many applications it should be convenient to link these 
segments. 

The computation times depend mainly on the image size and the resolution 
r. For instance, in a SPARC 10 computer, the creases of Fig. la  which is 64 • 64 
pixels, have been computed in 1 minute at a resolution of r = 3 whereas for 
r = 1 the time is 15 seconds. 
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6 C o n c l u s i o n s  a n d  F u t u r e  W o r k  

In this paper  we proposed a new me thod  to extract  ridges and valleys or, gener- 
ically, creases, of  a landscape according to the correct definition by Rothe.  We 
have developed an a lgor i thm which obtains these creases, first covering the whole 
image with slopelines and then extract ing f rom them the segments where they 
converge. In this way, we obtain  creases not as a binary image but  as a set of  
curves, avoiding a further  grouping step. At the same t ime our a lgor i thm extracts  
a creaseness image, according to this definition. 

As a future work we will join Rothe  creases th rough  saddle points,  because it 
is interesting for most  applications. Finally, we will s tudy  the evolution of  Rothe  
creases in scale space. 

Fig.  2. (a) Coronary arteriography. (b) Ridges for a = 3.0 pixels, r = 1 

Fig.  3. (a) Brain MRI (axial slice). (b) Ridges (black) and valleys (grey) for a = 3.0 
pixels, r = 1 (c) Creaseness image from Rothe's definition. (d) Response to the Iv j v j_ 
operator at the same scale. 
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