
INDUCTIVE ASSERTION METHOD FOR LOGIC PROGRAMS

Wtodzimierz Drabentt and Jan Matuszyfiski

Department of Computer and Information Science
LinkSping University, 581 83 LinkSping, Sweden

computer mail: jmz~liuida.uucp

ABSTRACT

Certain properties of logic programs are inexpressible in terms of their declarative semantics.
One example of such properties would be the actual form of procedure calls and successes which
occur during computations of a program. They are often used by programmers in their informal
reasoning. In this paper, the inductive assertion method for proving partial correctness of logic
programs is introduced and proved sound. The method makes it possible to formulate and
prove properties which are inexpressible in terms of the declarative semantics. An execution
mechanism using the Prolog computation rule and arbitrary search strategy (eg. OR-parallelism
or Prolog backtracking) is assumed. The method may be also used to specify the semantics of
some extra-logical built-in procedures for which the declarative semantics is not applicable.

1. INTRODUCTION

One of the most attractive features of logic programs is their declarative semantics [Apt,
van Emden][Lloyd]. It describes program meaning in terms of least Herbrand models and logical
consequence. It states, informally speaking, that whatever is computed by a logic program is
its logical consequence and whatever its logical consequence is may be computed (unless the
interpreter gets into an infinite loop due to an imperfect search strategy). More precisely, if
a goal *--A succeeds with a substitution 0 as an answer then VA0 is a logical consequence of
the program. If VA0 is a logical consequence of the program then there exists a computation
for ~-A giving an answer substitution a which is more general then 0 (there exists q such
that 0 = aq) . The least Herbrand model of a program is equal to the set of all ground atomic
formulas A for which there exists a successful computation for the goal *-A.

In most cases the declarative semantics is sufficient for dealing with logic programs. For
instance it may form a basis for formal program synthesis IHogger]. However, there are some
important properties of logic programs which are inexpressible in terms of the declarative se-
mantics. An example of such a property is the correctness of a mode declaration. It is also
often the case that a Prolog procedure is written under the assumption that all its invocations
are of a certain form (and does not work properly when called in another way). Consider, for
example, the procedure

append(X-Y, Y-Z, X-Z).

which appends difference lists. When used with the two first arguments being variables it
produces incorrect results (they are not difference lists). Another example is the procedure

t present address: Institute of Computer Science, Polish Academy of Sciences, P.O.Box 22,
00-901 Warszawa PKiN, Poland

This research has been partially supported by the National Swedish Board for Technical
Development, projekt nr STUF 85-3166 and STU 86-3372.

168

permute:
permute([], []).
permute(T, [E[P]) : - remove(T, E, T1), permute(T1, V).
remove([HIT], H, T).
remove([HIT], E, [HIT1]) :- remove(T, E, Wl).

which loops (after producing one answer) when invoked with a variable as the first argument.
In every day reasoning about logic programs it is often necessary to discuss the actual form of
procedure calls and answers. Features of this kind will be called here run-time properties as
they concern not only a program's answer but also its execution process. Of course they cannot
be dealt with in terms of the declarative semantics.

The declarative semantics is also insufficient in that it cannot predict the actual form of
an answer. Knowing that VA0 is a logical consequence of a program we cannot say which
substitutions are the answers to the goal ~ A (we only know that there is an answer more
general than 0). Consider two programs:

pCf(a)), p(f(X)).
p(f(X)), q(a).
q(a).

The declarative semantics of both programs is the same, but for a goal ~--p(Y) they give different
sets of answers. Proving what the actual answers are is possible in our approach.

This paper describes an inductive assertion method for proving run time properties of logic
programs. In this work we are inspired by the well-known results of [Floyd] and [Hoare] for im-
perative programs but, due to the rather different nature of logic programs, direct application
of these results is not possible. Our assertions refer to the bindings of the arguments of a proce-
dure at each possible call of this procedure and upon its completion. Our notion of correctness
relies on such assertions; a program is correct iff the conditions expressed by the assertions of
a procedure are satisfied whenever this procedure is called, and whenever it achieves a success.
We deal only with partial correctness: a procedure may loop or fail but if the program is correct
we still know that the arguments of every subsequent call have the properties expressed by the
corresponding assertion. A similar problem is tackled in [Mellish] but the approach is different,
based on abstract interpretation. An at tempt to treat termination of logic programs in a formal
way is presented in [Francez et all.

The rest of the paper is organized as follows. Section 2 introduces the notion of the as-
serted logic program. Section 3 contains an informal explanation of the method with some
example proofs. Its purpose is to introduce intuitions facilitating understanding of Section 4
which presents the method in a formal way. This section also contains some comparisons with
the abstract interpretation method. A proof of the main theorem of this section is presented
separately in Section 5. Section 6 contains conclusions. This paper is a slightly modified version
of [Drabent, Matnszyfiski].

2. LOGIC PROGRAMS WITH ASSERTIONS

In this section we introduce the notion of an asserted logic program. We assume familiarity
with foundations of logic programming, as presented for instance in [Lloyd].

By a logic program we mean a set of Horn clauses of the form

a 0 , - - a , l ~ . . . , a ~ . ~ * 0 ,

including a goal clause of the form

: - -a l~ . . . ,an . , ~ > 0

169

where each ai is an atomic formula of the form p(t l , . . . ,tin) {m >_ 0) consisting of a m-ary
predicate symbol p and terms t l , . . . , tin. The terms have the standard syntax: they are either
variables or are constructed from functors and variables (constants are zero-argument functors).

By an n-cry procedure q of a logic program we mean the set of all clauses of the program
whose left-hand sides begin with the n-ary predicate letter q.

In the examples we will use the syntax of Edinburgh Prolog [Bowen et all including the list
notation (functors including constants beginning with a small letter, variables beginning with
a capital letter, [] standing for the empty list, [HeadITafl] for the list consisting of Head and
Tail, [&,...,t•] for an n-element list).

In this paper the form of procedure calls and answers during execution of logic programs
is treated formally in the framework of SLD-derivations. Nothing about search strategy is
assumed; it may be, for instance, OR-parallelism or the backtracking of Prolog. But in order
to be able to obtain nontrivial results, some limitations on the computation rule are needed. In
this paper the Prolog computation rule is used (the leftmost atomic formula in a current goal
is always selected).

Our intention is to describe the form of procedure arguments at every possible call and
upon its completion, and to prove correctness of such descriptions. This resembles the idea of
introducing assertions for imperative programs [Floyd, Hoare]. Assertions are logic formulas
that characterize states (variable valuations) of imperative programs. These formulas are to be
interpreted on the data domain referred to by the program. The assertions can be seen as a
specification of a program. They facilitate understanding of programs and are used as a basis
for program verification. For each statement S of a program two assertions, a precondition and
a postcondition, are given. They describe, respectively, states before the execution of S and
states after this execution.

Experience has shown that it is often more convenient to use binary assertions [Tarlecki]
which involve two states. For example a postcondition for a statement may describe the rela-
tion between the input and output states of this statement (while a "normal", unary assertion
describes a set of states). In our approach, in order to describe a logic program a unary precon-
dition and a binary postcondition are associated with every predicate symbol p of the program.
The precondition characterizes the arguments of every call of the procedure p, and the postcon-
dition describes relations between these arguments and their final instances when a call succeeds.
The pair of pre- and postcondition wilt be called here an assertion. A program with an assertion
for every its predicate symbol is called an asserted program.

An asserted program is said to be correct iff, during its execution, for any procedure call
the precondition of the procedure is satisfied, and upon a success of the call the postcondition
is satisfied. Note that this is part ial correctness. It does not say whether a success actually
occurs. A formal definition of program correctness is given in Section 4.

Now we introduce a metalanguage for writing assertions for logic programs. The language of
clauses (the logic programming language) will be referred to as the object language. The domain
of interpretation for the metalanguage are (not necessarily ground) terms of the object language.
This is because the metalanguage is intended to describe relations on (object language) terms.
The functors and the predicate symbols of the metalanguage given in the definition below refer
only to some basic operations and relations. We do not intend to give an exhaustive list of such
symbols, nor to restrict ourselves to some minimal set.

170

DEFINITION 2.1 (of the metalanguage of assertions)
1. Variables:

a. *p~, p~ (i = 1 n) where p is an n-ary predicate of the object language.
b. T, U, V,

Comment: *Pi stands for the value of i - th argument of p at invocation of the procedure p. p~
stands for the value of this argument at success. T, U, V,. . . stand for any terms.
2. n-ary functors (n _ 0) :

a. n -a ry functors of the object language.
b. variables of the object language: X, Y, Z, ... (n = 0).
C* , . °

For the functors from the cases a. and b. the interpretation of a functor is the functor itself.
3. Terms: s tandard definition.
4. Predicate symbols: -- , var, ground, -< , ~- , . . .
Interpretation:

= - term equality,
vat(T) iff T is an (object language) variable,
ground(T) iff T is an (object language) ground term,
T -.< U iff T is a subterm of U,
T ----- U iff the terms W and U are variants of each other (they differ at most in the names

of their variables),
disconnected(V1,. . . , V~) iff no variable occurs in more than one of the terms V l , . . . , Vn,
subterm(T,U, I) iff T -< U and I is the corresponding selector (assuming any fixed way of

assigning selectors to subterm occurrences).
5. Logical connectives and quantifiers: t r ue , false, V, &, ~ ,
6. Formulas: s tandard definition.
7. An assertion for the predicate p is an expression

p : p r e F1 ;pos t F2

where F1, F2 are formulas which do not contain the variables *qi, q~ for q ¢ p and p~ does
not occur in F1. F1, F2 are called the precondition and the postcondition for p. []

Sometimes it is necessary to add integer arithmetic to the metalanguage. In this case we
add numbers, arithmetical functors and predicates with the obvious interpretation.

Let a be an (object language) atomic formula of the form p(t l , . . . ,t,~). We will often say
"pre-(post-)condition for a" instead of "pre-(post-)condition for p".

DEFINITION 2.2
Let a -- p (Q , . . . , t n) .

1. a satisfies its precondition F1 iff F1 is true w.r.t. (any) interpretation in which the
values of *Pi , . . . , *P~ are, respectively, t i , . . . , tn .

2. Let er be a substitution. (a, aa) satisfies its posteondition F~ iff F2 is true w.r.t. (any)
interpretation in which the values of *Pt,- . - , *pn are, respectively, t l , . . . , tn and the values of
p ~ , . . . , p ~ are, respectively, t la , . . . , t ,~a . []

EXAMPLE 2.1
Let p be a three argument predicate symbol. This is an assertion for p:

p : p r e vax('p2) & var(*pa) & *P2 ~ °Pl ~z *_P8 ~ *Pl ;
p o s t p ~ = p ~ = [] V
-~ground(p~) & ((var(V) & V -< p~) =~ V -< p~)

171

The precondition means that the second and the third arguments of p are variables which do
not occur in the first argument. The postcondition means that either the second and the third
arguments are empty lists or the second one is nonground and every variable occurring in it
also occurs in the third argument. Note that this is actually a unary postcondition (since it is
independent of the arguments of the call of p).

The atomic formula p([1, 2], X, Y) satisfies its precondition and p([1, X], X, Y) does
not. The postcondition is satisfied by (p([1, 2], X , Y) , p([1, 2], [], [D) and by (p([1, 2], X, Y),
p([1, 2], IV, z], [pai,0, v), pair(2, Z)])).

The program below is a part of the program serialise [Bowen et all,

:- p(T, X, Y). where X ~ T, Y 7~ T (0)

p([] ,[] ,[]) . (1)
p([AILA], [BILB], [pair(A, B) ILC]) :-- p(LA, LB, LC). (2)

This program together with the assertion is an asserted program. (Note that formally it is
a class of programs as a class of goal statements is specified. X and Y are object language
variables while T stands for any term not containing these variables.) []

EXAMPLE 2.2 (of an asserted program)
The program from Example 2.1 (but without any conditions for W in (0)) and with the

following assertion for p:
p r e t r u e ;
post p~ = p~ -- [] V

w('p~) ~ var(%) ~ % ~ % & % ~ %
-~ground(p~) & ((var(V) & V -< p;) =~ V -< p~) []

EXAMPLE 2.3 (of an asserted program)
The program from Example 2.1 with the following assertion for p:
p r e var(°p2) & var(*pa) & *;°2 ~ *Pl & °P3 7 ~ °Pl ;
p o s t p~ = Iv1 V~], n > 0 & Vi,j var(Vi) & (i # j =~ Vi # V/).

The postcondition means that the second argument of p (at a success of p) is a list of different
variables. []

3. INFORMAL INTRODUCTION TO THE PROOF METHOD

The section contains an informal and intuitive presentation of the content of Section 4.
Some readers may prefer to skip it and refer directly to that section.

Let us discuss computations of a program P relating to its clause

ao : - a l , . . . , a . . (,)
The clause may be invoked only when a current subgoal, say b, is unifiable with so. As a
result of the unification some of the variables occurring in a0 will be instantiated to terms, not
necessarily ground. Let V denote a variable occurring in (*) or in b. The value of V after the
unification will be denoted by V0. The value of an unbound variable is the variable itself. So
V0 = V for example if V does not occur in a0.

Let a~ be a l with every variable V substituted by Vo. After the unification, a t becomes
the current subgoal. Upon a success of a t the variable bindings are updated: the value of each
V is denoted by Yl, and a~ with the new bindings is denoted by a~ r.

Note that the difference between Vo and Vl is due to binding some of the variables which
occur both in V0 and in a~. The variables are being bound to terms which replace them in Vo
giving Vl. If there are no such variables then V0 = V1. Further, V0 and V1 may differ even if
V does not occur in a l .

172

EXAMPLE 3.1

1. Let Vo = V, al = p(V,b) = a t . Suppose that at ! = p (f (c) ,b) , then V1 = f(c).
2. Let 170 = f (Z , Y) , Uo = X , al = q(U) then a t = q(X) . Suppose that a~ = q(g(Z)).

Then U1 = g(Z) , V~ = f (g (Z) , Y) . V does not occur in al but VI • V0 []

In the sequel of the computation, each ai may become a current subgoal with current values
of its variables. The current value of a variable V at this moment is denoted by Vi_ 1 and a~ is
al with every variable V substituted by Vi-1. Upon a success of a~ the variable bindings are

" and the value of V at this moment is updated; a~ with these new bindings is denoted by a i
denoted by Vl. The dependencies between Vi-1 and V~ are of the same kind as discussed above
for i = l .

Now we are ready to present an informal definition of a valuation sequence for the clause
(*) and the (sub-) goal b. This is a sequence P0 , p~ of substitutions such that there exists
a program P (containing (*)) and a computation of P for which

p~ = {W-~V~ I V is a variable occurring in (*) or b}.

? t? Thus a i = a lPi - i and a i = aipi. Note that the definition takes into account only what is implied
by the very clause (*) and b. It does not depend on any other clauses. Every computation of
any program where the subgoal b invokes the clause (*) has a corresponding valuation sequence
for (*) and b. This is true also in the case of failures and backtracking. If a~ fails then, in the
corresponding valuation sequence, Vo,. . . , Vi-1 are the values of V which actually occurred in the
computation. Backtracking is understood here as an attempt to construct another computation.
Note that a valuation sequence exists iff b is unifiable with a0.

A formal definition of a valuation sequence is presented in the next section and is based on
the following properties. Firstly, P0 is a most general unifier of b and a0. Then, the difference
between Pi-1 and Pi is such that there exists a substitution al and pi = p i - l a i (hi is actually
a computed answer substitution for a~). F~rthermore, ai may change only the values of those
variables which occur in a~ and it may not introduce variables which have already occurred in
the computation but do not occur in a~.

EXAMPLE 3.2
Let b = p (c ,Z) . Consider the clause

p(A, C) : - q(A, B) , r(B, C) , s .

One of the possible valuation sequences is

A o = e , B 0 = B , C o = Z ,
A1 = c, B1 = f(Y), C1 = Z ,
A 2 = A s = e , B2 = B s = f (d) , C g . = C s = e .

The reader may construct a corresponding program. For all valuation sequences B0 = B,
A0 = c = A1 = A2 = As and B2 = B3, C2 = Cs. The other possible Co is Co = C. [3

Let a~ be a0 in which every variable V is substituted by V,~. If P is a correct program,
I I! ! then a t , . . . , a t n must satisfy their preconditions and (a l , a l) , . . . , (a~,a~) must satisfy their

postconditions. The precondition for b and the postcondition for (b, aS) must hold as well.

The following verification criterion (cf. also Fig. 1) is proved in the next section and is
a basis for our proof method. (For simplicity a goal clause : - a l , . . . , a,~ is represented as
goal : - a l , . . . , an where both the precondition and postcondition for goal are t rue) .

173

prove for every clause

. - - b

I L ak t , * * o ,

2 "'" 2

Cik+ 1 ~ ... , a n J

F i g u r e 1. Verification condition, a diagram. Arrows stand for implications.

To prove that the program is correct, it is enough to prove for every clause a0 : - a l , . . . , an
in the program (n _ 0) that, for any goal b satisfying its precondition and any valuation
sequence (for the clause and b),

1. the precondition for a~ holds,
2. for k = 1 , . . . , n - 1, the precondition for a~+ 1 is implied by the postconditions for

! t t t t ! Ca. ok),
3. the postcondition for (b, a~) is implied by the postconditions for (a~, a~ 1) (a~, a~).

An explanation for the above may be as follows. The correctness proof is divided into local
proofs dealing with single clauses. For each clause ao : - a l , . . . ,an we can assume that the
subgoal b invoking it satisfies its precondition. This should follow from the proofs related to the
clauses involved in the computation leading to b as the current subgoal. But we have to prove
that the precondition for a~ holds. Further, a t may either fail or succeed giving a~'. Since
we already know that the precondition for a t holds, it follows from the proofs for appropriate

! tr clauses that the postcondition for (a l , a 1) holds. We can use this fact to prove the precondition
for a S . Generally, to prove the precondition for a~+ 1 it can be assumed that the postconditions

, - , 1 are already proved). The for (a l ,a l) , . . ' " . , (ok, ak) hold (because the preconditions for a l , . . . , ak
same assumption, for k = n, can be used to prove the postcondition for (b, ag).

Note that for n = 0 it is enough to prove the postconditions for (b, a~) (the conditions 1.
and 2. and the premises in 3. disappear). For n = 1 the case 2. disappears.

In our proofs we will use some abbreviations and notational conventions. Let (*) be the
clause under consideration. When it does not lead to ambiguity, we will say that a precondition
is satisfied by a~ (instead of the appropriate instance of ai). The same for postconditions. If
the predicate symbol of a~ is p, we will also say that the pre-(post-)condition for p is satisfied
(or "... for p~" if p occurs more than once in the clause). For example, in a proof for the clause
test(X) : - testa(condl, X, Y), testb(Y), test(Y) we usually say "the postcondition for testb is

l t ¢ satisfied" instead of "the postcondition for (a2, a2) is satisfied" where a~ and a~ are appropriate
instances of testb(Y) (that means a S = testb(Y1), a~ = testb(Y2)).

By °P~,i and p~,j. we denote the value of the j - t h argument of pi at the moment of its
invocation and its success respectively. The index i may be skipped when p occurs only once
in the clause. So in the example above, *test3,1 = }'2, test~,l = Ya , °testa1 = testa~ = condl.

EXAMPLE 3.3 A correctness proof for the program from Example 2.1.
The proof for clauses (0) and (1) is immediate. Consider (2):

p([AILA], [BILB], [pair(A, B)]LC]) : - p(LA, LB, LC).

Let the head of (2) be unified with b satisfying its precondition; then b = p(T, X, Y) where X ~ Y
(because of the occur check). Then Bo, LBo, LCo are distinct variables and none of them
occurs in LAo. So the precondition for pl (strictly speaking, for p(LAo, LBo, LCo)) holds.

174

It remains to prove that the postcondition for p0 (that means for
(b, p([AIILA1], [BIILBI], [pair(A1,BI)]LC1]))) holds. B1 = B0 since Bo does not occur in
LAo, LBo, LCo. So -~ground(p~),2) (since B1 -< p$,~). Let V be a variable and V ~4 P~),2. Two
cases are possible:

1. V = BI "< p~),s,
2. V ~ LB1 and from the postcondition for Pl we obtain V -< LC1 -< P~,3. Q.E.D.

EXAMPLE 3.4 A correctness proof for the program from Example 2.3.
The proof for (0) and (1) is trivial. The clause (2) and the precondition for p are the

same as in Example 3.3. As we have already proved, the precondition for pl holds and B1 =
Bo & var(B1). From the postcondition for Pl

LB1 =[Vl ,V~], n > 0 & Vi,yvar(Vl) & (i C j = ~ V ~ ¢ V j) .
So P~,2 = [B I , V l , . . . , V ,] . We have also Vi B1 ~ Vi because B1 does not occur in the invo-
cation of Pl (see also section 4, the definition of valuation sequence, condition 4). Hence the
postcondition for p0 holds. Q.E.D.

4. THE METHOD

The main part of this section is a definition of program correctness and the verification
theorem. These are preceded by a few necessary definitions and followed by examples. The
section concludes with some comparisons between our method and abstract interpretation.

Let t be a term and O = {VI~-+Q,... ,V,~-*tn} a substitution. The following notation will
be used:

variables (t) is the set of (object language) variables occurring in t ,
vaxiables(t l , . . . , t ,) = variables(Q) U . . . W var iables(t ,) ,
dom(O) = { V l , . . . , V J ,
variables(O) = variables(tl,...,t). D

We use the traditional definition of SLD-derivation as presented in [Lloyd] restricting it
to the fixed computation rule of Prolog. We must make explicit some assumptions which are
s tated there, but not precisely enough. For a most general unifier (mgu) 6 of t l and t2 we
require that it does not introduce new variables:

variables(0) _ variables(t1) U variables(t2).
Note that 0 does not use unnecessary variables:

dom($) _C variables(t1) U variables(t2).
For an SLD-derivation we require that variables are standardized apart. That is, if

Go, G1 , . . . ;C1, C2, . . . ; 81,02,. . . is an SLD-derivation then for every i < j
variables(C~) n variables(C/) = 0 and
variables(G/) N varlables(C/) =

(where Go, G1 , . . . is the goal sequence, C1, C2, . . . is the clause variant sequence and 01,02,.
is the unification sequence of the derivation; the sequences may be finite or infinite).

DEFINITION 4.1
An asserted program P is correct iff for every SLD-derivation of P where Go, G1,... is

the sequence of goal clauses and 01,02, . . . is the sequence of substitutions and for every i if

Gi=:--al~...~arn, m > O

then
1. a l satisfies its precondition,
2. if there exists j > i such that

Gj = : - (a2 am)Oi+l . . .8 i
then (al , a10i+1 . . . 0j) satisfies its postcondition for the least such j . [:]

175

Informally, ai is a procedure call, 0i+z . . . 8:" the corresponding computed answer substi-
tution, a181+1 ...Oj the iustantiation of a l at the moment of its success. The part of the
SLD-derivation between i and j is, intuitively, the computation corresponding to procedure
call a l .

To facilitate formulation of the main theorem we introduce the notion of a valuation se-
quence.

DEFINITION 4.2
A sequence of substitutions Po, . . . ,pr, (n _> 0) is a valuation sequence for a clause

ao : - a~ , . . . ,a,~ and for an atomic formula (a goal) b iff
0. variables(b} N vaxiables(a0, a l , . . . , a n) = 0
1. po is an mgu of b and ao

and there exist a l , . . . , a N (called an answer sequence) such that for i -- 1 , . . . , n
2. Pi "= P i - - lCr l

3. dom(ai) ___ vaxiables(a/pi_l)
4. variables(ai) N variables((a0 : - a l a~}pi-1) C variables(alpi_l) . []

Pi can be understood as a valuation of clause variables upon a success of aip~-i (provided
it succeeded}, ai is the corresponding computed answer substitution. Using the notation from
the previous section, Vpi = V~ for any variable V occurring in the clause.

The theorem below is the main result of this paper and the basis of our proof method.
In the theorem we assume that a0 = goa l for a goal clause where goa l is a special predicate
symbol which does not occur elsewhere. The assertion for goa l is p r e t rue ; p o s t t rue .

THEOREM 4.1 (verification condition)
Let P be an asserted program. A sufficient condition for P to be correct is:

for every ao : - a l , . . . , an being a clause of P (n > 0),
for every b which satisfies its precondition,
for every their valuation sequence Po, . . . ,P,~

1. the precondition for alpo is satisfied,
2. for every k -- 1 , . . . , n - 1, if (alpo, nip1) , . . . , (akPk-1, akPk) satisfy their postconditions

then the precondition for ak+lPk is satisfied,

3. if (alPo,a~pl) , (a,~p,~-l,anpn) satisfy their postconditions then the postcondition
for (b, aopn) is satisfied. []

Note that for a unary clause (n = 0) the conditions 1., 2., 3. above reduce to
3. the postcondition for (b, aoPo) is satisfied.

For n = 1 they reduce to
1. the precondition for alpo is satisfied,
3. if (alpo, alpl) satisfy its postcondition then the postcondition for (b, aopl) is satisfied.

The verification condition is-expressed in semantic terms. While proving implications 2.
and 3. one has to refer to properties of substitution composition, substitution application and
unification. An interesting problem is finding a set of proof rules which would correspond
to theorem 4.1 and would allow to perform proofs in a syntactic way, like in the axiomatic
semantics. This could make possible automatization of the method.

Two example proofs of program correctness axe given at the end of the previous section.
Here we present another two examples relating to mode declarations.

176

EXAMPLE 4.1
Consider the following program

:-- q(T). (0)

q(L) :-p(L,M,N), s(N, L1,L2). (1)

p([],[],[])- (2)
p([A]LA], [B]LB], [pair(A, B) ILC]) :- p(LA, LB, LC). (3)

4[],[] ,[]) . (4)
s([XtL], [X]L1], L2) : - s(L, L1, L2). (5)

s([XIL], L1, [XIL2 D : - s(L, L1, L2). (6)

(where the procedure p is the same as in the previous examples) with the assertions

q : pre t rue; pos t t rue

p : pre t rue; pos t p~ = [T1,...,T~], n >_ 0 & Vi~var(Ti)

s : p re °s, = [TI, . . . ,Tn], n > 0 & Vi-~var(Ti) & var(*s2) & var(°s3); pos t t rue

As the correctness proof for the program is easy, we present here proofs for clauses (1) and
(5) only.

A proof for (1): Let the head of (1) be unified with b satisfying its precondition. As the
precondition is t rue, b = q(S) (where S is any term) and p0 = {L~-~S} or, if S is a variable,
P0 = (S~-*L}. Let al = p(L,M, N) and a2 = s(N, L1, L2). Then alPo satisfies its precondition.
Assume that (alPo, alpl) satisfies its postcondition. This means that Np~ = [T~,...,T,~], n _>
0 & Vi-war(Ti) and the precondition for a2pl = s((Npl) ,L1,L2) holds. This completes the
proof for (1) since the postcondition for q is t rue.

A proof for (5): Let b = s([T1,...,Tn],U,V) satisfies its precondition (this means n > 0,
U,V are variables, T1,...,T,~ are not variables). Let b be unified with the head of (5) by mgu
P0- Then n > 1,

bpo = s([XiL], IX]L1], L2)po = s([T1][T2 , Tn]], [TllW], X)

(where W, X are variables) and

s(L, L1, L2)p0 = s([T2,.. . , Tn], W, X)

which satisfies its precondition. This completes the proof for (5) since the postcondition for s
is t rue.

From the precondition for s it follows that the procedure s may be given a mode declaration
s (+ , - , -) (since at every call of s the first argument is not a variable and the remaining
arguments are variables). []

EXAMPLE 4.2
Consider the program fragment

p :- q(/(a), X), r(X). (1)
s(Y) :- q(Y,X), t(X). (2)

q(f(X), X). (3)

with the assertions

p : p re t rue; pos t t rue

q : p re t rue; pos t ground(°ql) =~ ground(q~)

r : p re gronnd('rl); pos t t r u e

Let all the remaining assertions be pre t rue; pos t t rue. It is easy to prove that this asserted
program is correct (under the assumption that the procedure q consists only of (3) and that
the only invocation of r occurs in (1)). So the procedure r may be given a mode declaration
r (+) . []

177

Neither of the mode declarations that are shown to be correct in these examples can be
found using the abstract interpretation method of [Mellish]. In Example 4.1 this is because
of too restricted domains of abstract interpretation. To find the mode declaration for s it is
necessary to know that p~ is a list of non-variable elements, but the abstract interpreter supports
no description between "ground term" and "term whose arguments are variables". (Actually,
this shows why the abstract interpreter is not able to find an adequate mode declaration for
the procedure split in the program serialize [Bowen et all, since the procedure s is a simplified
version of split). To find the mode declaration from Example 4.2 it is necessary to treat the
calls of a in (1) and (2) in a different way. This is possible iri our approach (implications in a
binary postcondition can be used for this purpose) but impossible in the abstract interpretation
method mentioned above.

This weakness of abstract interpretation is due to its automaticity: the same apparatus
is applied to every program while a proof method like ours can use assertions tailored to the
problem on hand (cf. Examples 2.1, 2.2, 2,3, 4.1 where four distinct assertions are given to the
same procedure).

5. PROOF OF THE VERIFICATION THEOREM

This section proves the soundness of our method. To facilitate the proof we introduce some
definitions. Let Go, G I , . . . ; C1, C2, . . . ; 01,02, . . . be an SLD=derivation (the reader is referred
to [Lloyd] for s tandard definitions and theorems).

DEFINITION

A k,l=subrefutation (of this derivation) is G k - 1 , . . . , Gl; C k , . . . , Ct; Oh,.. . , Ol such that
Gk- 1 = :-b, b l , . . . , bin, m ~ 0
Gl = : - (b l , . . . , b m) 0 k . . . 0 t

and l is the least such number. []

DEFINITION

A k,j-subderivation (of this derivation) is G~-I Gj;Ck ,Cj ; 0 k , . . . , 0 i such that
G k - l = :-b, b l , . . . , bm, m ~_ O
and for k _< i < 3" G~ is not of the form : - (b l , . . . , b ,~)O k . . .O i . []

A subrefutation beginning with : - b , . . . is a fragment of an SLD-derivation related to a
successful procedure call b. A subderivation beginning with the same goal may be treated as a
not yet completed computation associated with b.

The sufficient condition from the Theorem 4.1 will often be referred to as (SC).

LEMMA 5.1

Let G k - 1 , . . . , Gz; C k , . . . , Cl; Ok, . . . , 0t be a subrefutation of an SLD-derivation of a pro-
gram P for which (SC) is satisfied. Let k < i < l and

G k - i = : -b , b l , . . . ,bin,
ai ---- Ok,. . . ,Oi,
Gi = : - (A i , b l , . . . , bm)ai, where Ai is a sequence of atomic formulas.

Then
dom(:d c variables(b, C~,..., Cd,
variables(ai) _C variables(b, C k , . . . , Ci) and
variables(Aiai) C_ variables(b, C k , . . . , Ci). D

178

COROLLARY
Let Go, G 1 , . . . ; C1, C2 , . . . ; 01,02, . . . be an SLD-derivation of a program for which (SC)

is satisfied. Let there exist a k , / - subrefuta t ion of the derivation. Let Gk-1 = :-b, b l , . . . , b m .
Then

G k - l O k . . . Oz = G k - l a
where

a = 0k. . .0ttvariables(b) (and t is defined by 0tX = {V~-+t C 0 I V C X}) .
More generally, for every s _~ k

G~-1 0 s . . . S l = G s - 1 0 s . . . 0 k - l a []

LEMMA 5.2
Let Go, G 1 , . . . ; C1, C2 , . . . ;81 ,02 , . . . be an SLD-derivation of a program for which (SC) is

satisfied. Let a k , / - subrefu ta t ion of the derivation exist. Let Gk-1 = :-b, b l , . . . , b m where b
satisfies its precondition. Then (b, bOk...Ol) satisfies its postcondition. []

P R O O F by induct ion on I.
Let the premises of the lemma hold.

l = k :
Let G1, be derived from Gk-1 and a unary clause a0 using an mgu 0k. Then from (SC)

follows the postcondit ion for (b, a00k).

l > k :
Let the lemma hold for every number less than 1. Then

Gk = : - (a l , - . . , a n , b l , - . . , b r n) 0 k

is derived from Gk_ 1 and a clause Ck = a o : - a l , . . . , an , n > 0. The subs t i tu t ion 0k is an mgu
of b and a0.

There exist r o , . . . , r n such that ro =: k, r,~ = l and, for i = 1 , . . . , n ,

G~, = : - (a i + l , . . . , a n , b l bm)Ok.. .Or,,

the derivation has a (r i _ l + l) , r i - s u b r e f u t a t i o n , and ri is the least index for which it holds.
The (r /_l- t -1) , r / -subrefutat ion can be understood as a successful execution of the procedure
call a i 0 k . . . 0r~_l •

Let P0 = 0k and for i = 1 , . . . , n

ai = 0t,_~ + 1 . . . 0r~ Ivaxiabtes(ai0k • • • 0r,_,),

and p¢ = p¢- la i (ai may be t reated as a computed answer subs t i tu t ion for goal a i 0k . . . 0r~_,).
We want to prove that Po, ...,Pn is a valuation sequence for b and C1¢. It remains to show that
condit ions 3 and 4 of Definition 4.2 hold.

Let G - Gk or G -= Gk- lOk. From the Corollary it follows that for i = 0 , . . . , n - 1 if

GOk+i . . . Or~ ----- G a l . . . ai

then
G 0 k + 1 • . . 0 r~+ 1 : G a 1 . . . a i + 1 .

By induct ion G 0 k + l . . . 0r~ = Gal . . . a i for i ~ 0, n . Hence

bp, = bOk . . . Oz,

a~Pi-1 = aiOk. . . O~,_, (*)

(and dom(ai) C_ variables(aipi_l) which is condit ion 3 of Definition 4.2),

alpi = aiOk ...Or~.

By Lemma 5.1 applied to the (r i _ t + l) , r i - s u b r e f u t a t i o n (where Gr~_~ ~- : - a i p i - 1 , . . .
by (*)) variables(ai) _C variables(0r,_~+~.. .0r ,) C var iables (a ip i_ l ,C~,_~+l , . . . ,Cr ,) . Hence
variables(oi) N varie~bles((ao , an)pi-1) C_ variables(aipi_l) (since variables in the derivation

179

are standardized apart and variables((ao an)pi-1) N var iab les (Cj)= 0 for j > r i -1) . We
have proved that po , . . . ,P• is a valuation sequence for b and Ck.

Now, by (SC1), the precondition for alpo is satisfied.
If the precondition for aipl- I is satisfied then the postcondition for (aipi- 1, aipi) is satisfied

(for every i = 1 , . . . , n , by the inductive assumption).
The preconditions for a2Pl, . . . ,anpn-1 hold (by (SC2)).
The postcondition for (b, bp~) holds (by (SC3)).
But bpn = bOk... Ol which completes the proof. []

LEMMA 5.3
Let Go, G1 , . . . ;C1, C2, . . . ;01,02, . . . be an SLD-derivation of a program for which (SC) is

satisfied. Then for every s the first atomic formula of Go satisfies its precondition. []

PROOF by induction on s.
If s = 0 then the thesis follows immediately from (SC1). Let the temma hold for every

number less than s. Two cases are possible.

1.
Gs = : - (a l a~,bl, . . . ,bm)Os, n > 0

G8-1 = :-b, b l , . . . , bm

The precondition for b is satisfied and G, is derived from G8-1 and a clause ao:-al , . . .~an.
88 is an mgu of b and ao. From (SC1) it follows that the precondition for al0s is satisfied.

2. (n in the previous case is 0)
There exists k < s (k > 0) such that

Gs = : - (b l , . . . , b m) 0 k . . . 0 ~

Gs-1 = : - (b 0 , b l , . . . , b m) 0 k . . . Oa-1

Gk = : - (a l , . . . , a t ,b l , . . . , b~ , . . , b~)O~

Gk-1 = :-b,b~+l, . . . ,bm.

Let k be the greatest such number (when k = 0 then let G-1 = : - g o a l , 0o = e and Co be
the goal clause g o a l : - . . .) . Repeating the construction from the proof of Lemma 5.2 using
a l , . . . , a t , b l ,bu instead of a l , . . . , a n and introducing rv only for v _< t (r0 = k, rt = ~)
we prove that the precondition for bl is satisfied. The evaluation sequence under consideration
(for b and Ck) is Po,...,Pt+u where Pi = p i - la l , ai is as in the previous proof for i = 1,. . . , t .
For i = t + l , . . . , t + u , a i = e . W e o m i t details of the proof. []

Theorem 4.1 follows immediately from lemmas 5.3 and 5.2.

6.CONCLUSIONS

In this paper, the inductive assertion method for logic programs was introduced and proved
sound. The metalanguage of assertions was defined. The assertions can describe properties
that are inexpressible in terms of the declarative semantics. The verification theorem makes it
possible to prove the partial correctness of programs with respect to their .assertions.

We think that the ability of stating and proving assertions is important for the following
reasons:

1. Assertions may improve the legibility of some logic programs. They may be treated as
formalized comments specifying the actual form of procedure calls and successes.

2. Prolog programmers quite often reason about their programs in terms of execution (this
is reflected by comments, mode declarations, etc.). By introducing assertions one makes explicit
some facts upon which this reasoning is based.

180

3. Intuitive principles of reasoning about logic programs can be formulated as a systematic
method for proving the correctness of a logic program.

4. The declarative semantics gives no formal explanation of the concept of the "logical
variable" essential in many applications. The introduction of a metalanguage that refers to
non-ground terms should make it possible to handle this concept in a more rigorous way.

5. It may be conceivable to use a metalanguage similar to the one presented here in logic
programming systems. A debugging tool might use assertions to perform additional checking.
A compiler might use them to guide optimizations.

Our approach can easily be extended to deal with some extra-logical built-in procedures. It
can provide their formal semantics and also the absence of some run-time errors can be proved.
The declarative semantics is inapplicable to this kind of procedures.

EXAMPLE Axiomatic semantics of the Prolog [Bowen et all built-in procedure var
The meaning of the procedure may be described by the assertion

v a t : p re t r u e ;
pos t v a r (° v a r l) & °var 1 = v a r ~ . E]

EXAMPLE Correctness of use of the Prolog built-in procedure is
Consider the assertion

i s : pre intexpr(°is2) ;
pos t t r u e

where intexpr(T) iff T is an expression built out of integers and arithmetical functors. If an
asserted program with the above assertion is correct then no run-time error connected with
wrong arguments of i s occurs. []

Our method is valid for the Prolog computation rule and for every search strategy (thus
including OR-parallelism). It is also valid for Prolog programs containing the cut and negation-
as-failure (although it is not able to exploit specific properties of the cut and not, cf. the
assertion for not: pre t rue; pos t aot~ = °not1) .

ACKNOWLEDGEMENTS

Thanks are due to Henryk Jan Komorowski for his critical comments. Ivan Rankin helped
to improve the English of the previous version of this paper.

REFERENCES

[Apt, van Emden] Apt, K.R. and van Emden, M.H., "Contributions to the Theory of Logic
Programming", J.ACM. 29, 3 (July 1982), 841-862

[Bowen et al] D.L. Bowen, L. Byrd, F.C.N. Pereira, L.M. Pereira and D.H.D. Warren, "Prolog-
20 user's manual", 1984

[Drabent, Mahlszyfiski] W.Drabent and J. Ma|uszyfiski , Proving runtime properties of logic
programs, Research Report LITH-IDA-R-86-23, LinkSping University, July 1986

[Floyd] Floyd, R.W., "Assigning Meanings to Programs", Proc.Symp.Appl.Math., Vol. 19:
Mathematical Aspects of Computer Science (J.T.Schwartz, ed.), pp. 19-32, American Math-
ematical Society, Providence, Rhode Island, 1967

[Francez et aI] Francez,N., Grumberg,O., Katz,S., Pnuelli,A., "Proving Termination of Prolog
Programs" in "Logics of Programs. Proceedings, 1985", ed. by R.Parikh, Springer Lecture
Notes in Computer Science 193, 89-105

[Hoare] Hoare,C.A.R. "An Axiomatic Basis for Computer Programming", Comm. ACM 12,
10 (Oct. 1969), 576-580,583

181

[Hogger] Hogger, C.J. "Derivation of Logic Programs", J.ACM 28, 2 (April 1981), 372-392
[Lloyd] Lloyd,J.W. "Foundations of Logic Programming", Springer-Verlag 1984
[Mellish] Mellish,C.S. "Abstract Interpretation of Prolog Programs", Third International Con-

ference on Logic Programming, London, July 1986 and "The Automatic Generation of Mode
Declarations for Prolog Programs", DAI Reaserch Paper 163, Dept of Artificial Intelligence,
University of Edinburgh, 1981

[Tarlecki] Tarlecki,A., "A Language of Specified Programs", Science of Computer Program-
ming ~ (1985) 59-81

