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ABSTRACT 

Certain properties of logic programs are inexpressible in terms of their declarative semantics. 
One example of such properties would be the actual form of procedure calls and successes which 
occur during computations of a program. They are often used by programmers in their informal 
reasoning. In this paper, the inductive assertion method for proving partial  correctness of logic 
programs is introduced and proved sound. The method makes it possible to formulate and 
prove properties which are inexpressible in terms of the declarative semantics. An execution 
mechanism using the Prolog computation rule and arbitrary search strategy (eg. OR-parallelism 
or Prolog backtracking) is assumed. The method may be also used to specify the semantics of 
some extra-logical built-in procedures for which the declarative semantics is not applicable. 

1. INTRODUCTION 

One of the most attractive features of logic programs is their declarative semantics [Apt, 
van Emden][Lloyd]. It describes program meaning in terms of least Herbrand models and logical 
consequence. It states, informally speaking, that  whatever is computed by a logic program is 
its logical consequence and whatever its logical consequence is may be computed (unless the 
interpreter gets into an infinite loop due to an imperfect search strategy). More precisely, if 
a goal *--A succeeds with a substitution 0 as an answer then VA0 is a logical consequence of 
the program. If VA0 is a logical consequence of the program then there exists a computation 
for ~-A giving an answer substitution a which is more general then 0 (there exists q such 
that  0 = aq) .  The least Herbrand model of a program is equal to the set of all ground atomic 
formulas A for which there exists a successful computation for the goal *-A. 

In most cases the declarative semantics is sufficient for dealing with logic programs. For 
instance it may form a basis for formal program synthesis IHogger]. However, there are some 
important properties of logic programs which are inexpressible in terms of the declarative se- 
mantics. An example of such a property is the correctness of a mode declaration. It is also 
often the case that  a Prolog procedure is written under the assumption that  all its invocations 
are of a certain form (and does not work properly when called in another way). Consider, for 
example, the procedure 

append( X-Y, Y-Z, X-Z ). 

which appends difference lists. When used with the two first arguments being variables it 
produces incorrect results (they are not difference lists). Another example is the procedure 
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permute: 
permute( [], [] ). 
permute( T, [E[P] ) : -  remove( T, E, T1 ), permute( T1, V ). 
remove( [HIT], H, T ). 
remove( [HIT ], E, [HIT1 ] ) :-  remove( T, E, Wl ). 

which loops (after producing one answer) when invoked with a variable as the first argument. 
In every day reasoning about logic programs it is often necessary to discuss the actual form of 
procedure calls and answers. Features of this kind will be called here run-time properties as 
they concern not only a program's answer but  also its execution process. Of course they cannot 
be dealt with in terms of the declarative semantics. 

The declarative semantics is also insufficient in that  it cannot predict the actual form of 
an answer. Knowing that  VA0 is a logical consequence of a program we cannot say which 
substitutions are the answers to the goal ~ A  (we only know that  there is an answer more 
general than 0). Consider two programs: 

pCf(a)), p(f(X)). 
p(f(X)), q(a). 
q(a). 

The declarative semantics of both programs is the same, but for a goal ~--p(Y) they give different 
sets of answers. Proving what the actual answers are is possible in our approach. 

This paper describes an inductive assertion method for proving run time properties of logic 
programs. In this work we are inspired by the well-known results of [Floyd] and [Hoare] for im- 
perative programs but, due to the rather different nature of logic programs, direct application 
of these results is not possible. Our assertions refer to the bindings of the arguments of a proce- 
dure at each possible call of this procedure and upon its completion. Our notion of correctness 
relies on such assertions; a program is correct iff the conditions expressed by the assertions of 
a procedure are satisfied whenever this procedure is called, and whenever it achieves a success. 
We deal only with partial  correctness: a procedure may loop or fail but  if the program is correct 
we still know that  the arguments of every subsequent call have the properties expressed by the 
corresponding assertion. A similar problem is tackled in [Mellish] but  the approach is different, 
based on abstract  interpretation. An at tempt  to treat  termination of logic programs in a formal 
way is presented in [Francez et all. 

The rest of the paper is organized as follows. Section 2 introduces the notion of the as- 
serted logic program. Section 3 contains an informal explanation of the method with some 
example proofs. Its purpose is to introduce intuitions facilitating understanding of Section 4 
which presents the method in a formal way. This section also contains some comparisons with 
the abstract  interpretation method. A proof of the main theorem of this section is presented 
separately in Section 5. Section 6 contains conclusions. This paper is a slightly modified version 
of [Drabent, Matnszyfiski]. 

2. LOGIC PROGRAMS WITH ASSERTIONS 

In this section we introduce the notion of an asserted logic program. We assume familiarity 
with foundations of logic programming, as presented for instance in [Lloyd]. 

By a logic program we mean a set of Horn clauses of the form 

a 0  , - -  a , l ~ . . .  , a  ~ . ~ * 0 ,  

including a goal clause of the form 

: - -a l~ . . . ,an .  , ~ > 0  
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where each ai is an atomic formula of the form p(t l , . . .  ,tin) {m >_ 0) consisting of a m-ary 
predicate symbol p and terms t l , . . .  , tin. The terms have the standard syntax: they are either 
variables or are constructed from functors and variables (constants are zero-argument functors). 

By an n-cry  procedure q of a logic program we mean the set of all clauses of the program 
whose left-hand sides begin with the n-ary  predicate letter q. 

In the examples we will use the syntax of Edinburgh Prolog [Bowen et all including the list 
notation (functors including constants beginning with a small letter, variables beginning with 
a capital letter, [] standing for the empty list, [HeadITafl ] for the list consisting of Head and 
Tail, [&,...,t•] for an n-element list). 

In this paper the form of procedure calls and answers during execution of logic programs 
is treated formally in the framework of SLD-derivations. Nothing about search strategy is 
assumed; it may be, for instance, OR-parallelism or the backtracking of Prolog. But in order 
to be able to obtain nontrivial results, some limitations on the computation rule are needed. In 
this paper the Prolog computation rule is used (the leftmost atomic formula in a current goal 
is always selected). 

Our intention is to describe the form of procedure arguments at every possible call and 
upon its completion, and to prove correctness of such descriptions. This resembles the idea of 
introducing assertions for imperative programs [Floyd, Hoare]. Assertions are logic formulas 
that  characterize states (variable valuations) of imperative programs. These formulas are to be 
interpreted on the data  domain referred to by the program. The assertions can be seen as a 
specification of a program. They facilitate understanding of programs and are used as a basis 
for program verification. For each statement S of a program two assertions, a precondition and 
a postcondition, are given. They describe, respectively, states before the execution of S and 
states after this execution. 

Experience has shown that  it is often more convenient to use binary assertions [Tarlecki] 
which involve two states. For example a postcondition for a statement may describe the rela- 
tion between the input and output states of this statement (while a "normal", unary assertion 
describes a set of states). In our approach, in order to describe a logic program a unary precon- 
dition and a binary postcondition are associated with every predicate symbol p of the program. 
The precondition characterizes the arguments of every call of the procedure p, and the postcon- 
dition describes relations between these arguments and their final instances when a call succeeds. 
The pair of pre- and postcondition wilt be called here an assertion. A program with an assertion 
for every its predicate symbol is called an asserted program. 

An asserted program is said to be correct iff, during its execution, for any procedure call 
the precondition of the procedure is satisfied, and upon a success of the call the postcondition 
is satisfied. Note that  this is part ial  correctness. It does not say whether a success actually 
occurs. A formal definition of program correctness is given in Section 4. 

Now we introduce a metalanguage for writing assertions for logic programs. The language of 
clauses (the logic programming language) will be referred to as the object language. The domain 
of interpretation for the metalanguage are (not necessarily ground) terms of the object language. 
This is because the metalanguage is intended to describe relations on (object language) terms. 
The functors and the predicate symbols of the metalanguage given in the definition below refer 
only to some basic operations and relations. We do not intend to give an exhaustive list of such 
symbols, nor to restrict ourselves to some minimal set. 
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DEFINITION 2.1 (of the metalanguage of assertions) 
1. Variables: 

a. *p~, p~ (i = 1 . . . . .  n) where p is an n-ary  predicate of the object language. 
b. T, U, V, . . . .  

Comment: *Pi stands for the value of i - th  argument of p at invocation of the procedure p. p~ 
stands for the value of this argument at success. T, U, V,. . .  stand for any terms. 
2. n-ary  functors (n _ 0) : 

a. n -a ry  functors of the object language. 
b. variables of the object language: X, Y, Z, ... (n = 0). 
C* , . °  

For the functors from the cases a. and b. the interpretation of a functor is the functor itself. 
3. Terms: s tandard definition. 
4. Predicate symbols: -- , var, ground, -< , ~- , . . .  
Interpretation: 

= - term equality, 
vat(T) iff T is an (object language) variable, 
ground(T) iff T is an (object language) ground term, 
T -.< U iff T is a subterm of U, 
T ----- U iff the terms W and U are variants of each other (they differ at most in the names 

of their variables), 
disconnected(V1,. . . ,  V~) iff no variable occurs in more than one of the terms V l , . . . ,  Vn, 
subterm(T,U, I )  iff T -< U and I is the corresponding selector (assuming any fixed way of 

assigning selectors to subterm occurrences). 
5. Logical connectives and quantifiers: t r ue ,  false,  V, &, ~ ,  . . . .  
6. Formulas: s tandard definition. 
7. An assertion for the predicate p is an expression 

p : p r e  F1 ;pos t  F2 

where F1, F2 are formulas which do not contain the variables *qi, q~ for q ¢ p and p~ does 
not occur in F1. F1, F2 are called the precondition and the postcondition for p. [] 

Sometimes it is necessary to add integer arithmetic to the metalanguage. In this case we 
add numbers, arithmetical functors and predicates with the obvious interpretation. 

Let a be an (object language) atomic formula of the form p( t l , . . .  ,t,~). We will often say 
"pre-(post-)condition for a" instead of "pre-(post-)condition for p".  

DEFINITION 2.2 
Let a -- p ( Q , . . . , t n ) .  

1. a satisfies its precondition F1 iff F1 is true w.r.t. (any) interpretation in which the 
values of *Pi , . . . ,  *P~ are, respectively, t i , . . .  , tn .  

2. Let er be a substitution. (a, aa) satisfies its posteondition F~ iff F2 is true w.r.t. (any) 
interpretation in which the values of *Pt,- . - ,  *pn are, respectively, t l , . . . ,  tn and the values of 
p ~ , . . . , p ~  are, respectively, t la , . . . , t ,~a .  [] 

EXAMPLE 2.1 
Let p be a three argument predicate symbol. This is an assertion for p: 

p : p r e  vax('p2) & var(*pa) & *P2 ~ °Pl ~z *_P8 ~ *Pl ; 
p o s t  p ~ = p ~ = [ ]  V 
-~ground(p~) & ((var(V) & V -< p~) =~ V -< p~) 
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The precondition means that  the second and the third arguments of p are variables which do 
not occur in the first argument. The postcondition means that  either the second and the third 
arguments are empty lists or the second one is nonground and every variable occurring in it 
also occurs in the third argument. Note that  this is actually a unary postcondition (since it is 
independent of the arguments of the call of p). 

The atomic formula p([1, 2], X, Y) satisfies its precondition and p([1, X], X, Y) does 
not. The postcondition is satisfied by (p([1, 2], X , Y ) ,  p([1, 2], [], [D) and by (p([1, 2], X, Y), 
p([1, 2], IV, z], [pai,0, v), pair(2, Z)])). 

The program below is a part  of the program serialise [Bowen et all, 

:-  p(T, X, Y). where X ~ T, Y 7~ T (0) 

p([] ,[] ,[]) .  (1) 
p([AILA], [BILB], [pair(A, B) ILC]) :-- p(LA, LB, LC). (2) 

This program together with the assertion is an asserted program. (Note that  formally it is 
a class of programs as a class of goal statements is specified. X and Y are object language 
variables while T stands for any term not containing these variables.) [] 

EXAMPLE 2.2 (of an asserted program) 
The program from Example 2.1 (but without any conditions for W in (0)) and with the 

following assertion for p: 
p r e  t r u e  ; 
post p~ = p~ -- [ ] V 

w('p~) ~ var(%) ~ % ~ % & % ~ % 
-~ground(p~) & ((var(V) & V -< p;) =~ V -< p~) [] 

EXAMPLE 2.3 (of an asserted program) 
The program from Example 2.1 with the following assertion for p: 
p r e  var(°p2) & var(*pa) & *;°2 ~ *Pl & °P3 7 ~ °Pl ; 
p o s t  p~ = Iv1 . . . . .  V~], n > 0 & Vi,j var(Vi) & (i # j =~ Vi # V/). 

The postcondition means that  the second argument of p (at a success of p) is a list of different 
variables. [] 

3. INFORMAL INTRODUCTION TO THE PROOF METHOD 

The section contains an informal and intuitive presentation of the content of Section 4. 
Some readers may prefer to skip it and refer directly to that  section. 

Let us discuss computations of a program P relating to its clause 

ao : -  a l , . . . ,  a . .  (,) 
The clause may be invoked only when a current subgoal, say b, is unifiable with so. As a 
result of the unification some of the variables occurring in a0 will be instantiated to terms, not 
necessarily ground. Let V denote a variable occurring in (*) or in b. The value of V after the 
unification will be denoted by V0. The value of an unbound variable is the variable itself. So 
V0 = V for example if V does not occur in a0. 

Let a~ be a l  with every variable V substituted by Vo. After the unification, a t becomes 
the current subgoal. Upon a success of a t the variable bindings are updated: the value of each 
V is denoted by Yl, and a~ with the new bindings is denoted by a~ r. 

Note that  the difference between Vo and Vl is due to binding some of the variables which 
occur both in V0 and in a~. The variables are being bound to terms which replace them in Vo 
giving Vl. If there are no such variables then V0 = V1. Further, V0 and V1 may differ even if 
V does not occur in a l .  
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EXAMPLE 3.1 

1. Let Vo = V, al  = p(V,b) = a t . Suppose that at ! = p ( f (c ) ,b ) ,  then V1 = f(c).  
2. Let 170 = f ( Z , Y ) ,  Uo = X ,  al = q(U) then a t = q(X) .  Suppose that a~ = q(g(Z)).  

Then U1 = g(Z) ,  V~ = f ( g ( Z ) , Y ) .  V does not occur in al but VI • V0 [] 

In the sequel of the computation, each ai may become a current subgoal with current values 
of its variables. The current value of a variable V at this moment is denoted by Vi_ 1 and a~ is 
al with every variable V substituted by Vi-1. Upon a success of a~ the variable bindings are 

" and the value of V at this moment is updated; a~ with these new bindings is denoted by a i 
denoted by Vl. The dependencies between Vi-1 and V~ are of the same kind as discussed above 
for i =  l .  

Now we are ready to present an informal definition of a valuation sequence for the clause 
(*) and the (sub-) goal b. This is a sequence P0 . . . .  , p~ of substitutions such that there exists 
a program P (containing (*)) and a computation of P for which 

p~ = {W-~V~ I V is a variable occurring in (*) or b}. 

? t? Thus a i = a lPi - i  and a i = aipi.  Note that the definition takes into account only what is implied 
by the very clause (*) and b. It does not depend on any other clauses. Every computation of 
any program where the subgoal b invokes the clause (*) has a corresponding valuation sequence 
for (*) and b. This is true also in the case of failures and backtracking. If a~ fails then, in the 
corresponding valuation sequence, Vo,. . . ,  Vi-1 are the values of V which actually occurred in the 
computation. Backtracking is understood here as an attempt to construct another computation. 
Note that a valuation sequence exists iff b is unifiable with a0. 

A formal definition of a valuation sequence is presented in the next section and is based on 
the following properties. Firstly, P0 is a most general unifier of b and a0. Then, the difference 
between Pi-1 and Pi is such that there exists a substitution al and pi = p i - l a i  (hi is actually 
a computed answer substitution for a~). F~rthermore, ai may change only the values of those 
variables which occur in a~ and it may not introduce variables which have already occurred in 
the computation but do not occur in a~. 

EXAMPLE 3.2 
Let b = p (c ,Z ) .  Consider the clause 

p(A,  C) : -  q(A, B) ,  r(B, C) , s .  

One of the possible valuation sequences is 

A o = e ,  B 0 = B ,  C o = Z ,  
A1 = c, B1 = f(Y),  C1 = Z ,  
A 2 = A s = e ,  B2 = B s = f ( d ) ,  C g . = C s = e .  

The reader may construct a corresponding program. For all valuation sequences B0 = B, 
A0 = c = A1 = A2 = As and B2 = B3, C2 = Cs. The other possible Co is Co = C. [3 

Let a~ be a0 in which every variable V is substituted by V,~. If P is a correct program, 
I I! ! then a t , . . . , a t n  must satisfy their preconditions and ( a l , a l ) , . . .  , (a~,a~)  must satisfy their 

postconditions. The precondition for b and the postcondition for (b, aS) must hold as well. 

The following verification criterion (cf. also Fig. 1) is proved in the next section and is 
a basis for our proof method. (For simplicity a goal clause : - a l , . . . ,  a,~ is represented as 
goal  : - a l , . . . ,  an where both the precondition and postcondition for goal are t rue) .  
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prove for every clause 

. - - b  

I L ..... ak t , * * o  , 

2 "'" 2 

Cik+ 1 ~ ... , a n J  

F i g u r e  1. Verification condition, a diagram. Arrows stand for implications. 

To prove that  the program is correct, it is enough to prove for every clause a0 : -  a l , . . . ,  an 
in the program (n _ 0) that,  for any goal b satisfying its precondition and any valuation 
sequence (for the clause and b), 

1. the precondition for a~ holds, 
2. for k = 1 , . . . , n  - 1, the precondition for a~+ 1 is implied by the postconditions for 

! t t  t t !  Ca. ok), 
3. the postcondition for (b, a~) is implied by the postconditions for (a~, a~ 1) . . . . .  (a~, a~). 

An explanation for the above may be as follows. The correctness proof is divided into local 
proofs dealing with single clauses. For each clause ao : - a l , . . .  ,an we can assume that  the 
subgoal b invoking it satisfies its precondition. This should follow from the proofs related to the 
clauses involved in the computation leading to b as the current subgoal. But we have to prove 
that  the precondition for a~ holds. Further, a t may either fail or succeed giving a~'. Since 
we already know that  the precondition for a t holds, it follows from the proofs for appropriate 

! tr  clauses that  the postcondition for (a l ,  a 1) holds. We can use this fact to prove the precondition 
for a S . Generally, to prove the precondition for a~+ 1 it can be assumed that  the postconditions 

, - , 1 are already proved). The for (a l ,a l ) , . .  ' " . ,  (ok, ak) hold (because the preconditions for a l , . . .  , ak 
same assumption, for k = n,  can be used to prove the postcondition for (b, ag).  

Note that  for n = 0 it is enough to prove the postconditions for (b, a~) (the conditions 1. 
and 2. and the premises in 3. disappear). For n = 1 the case 2. disappears. 

In our proofs we will use some abbreviations and notational conventions. Let (*) be the 
clause under consideration. When it does not lead to ambiguity, we will say that  a precondition 
is satisfied by a~ (instead of the appropriate instance of ai). The same for postconditions. If 
the predicate symbol of a~ is p, we will also say that  the pre-(post-)condition for p is satisfied 
(or "... for p~" if p occurs more than once in the clause). For example, in a proof for the clause 
test(X) : -  testa(condl, X,  Y), testb(Y), test(Y) we usually say "the postcondition for testb is 

l t ¢  satisfied" instead of "the postcondition for (a2, a2) is satisfied" where a~ and a~ are appropriate 
instances of testb(Y) (that means a S = testb(Y1), a~ = testb(Y2)). 

By °P~,i and p~,j. we denote the value of the j - t h  argument of pi at the moment of its 
invocation and its success respectively. The index i may be skipped when p occurs only once 
in the clause. So in the example above, *test3,1 = }'2, test~,l = Ya , °testa1 = testa~ = condl. 

EXAMPLE 3.3 A correctness proof for the program from Example 2.1. 
The proof for clauses (0) and (1) is immediate. Consider (2): 

p([AILA], [BILB], [pair(A, B)]LC]) : -  p(LA, LB, LC). 

Let the head of (2) be unified with b satisfying its precondition; then b = p(T, X, Y) where X ~ Y 
(because of the occur check). Then Bo, LBo, LCo are distinct variables and none of them 
occurs in LAo. So the precondition for pl (strictly speaking, for p(LAo, LBo, LCo)) holds. 
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It remains to prove that  the postcondition for p0 (that means for 
(b, p([AIILA1], [BIILBI], [pair(A1,BI)]LC1])) ) holds. B1 = B0 since Bo does not occur in 
LAo, LBo, LCo. So -~ground(p~),2 ) (since B1 -< p$,~). Let V be a variable and V ~4 P~),2. Two 
cases are possible: 

1. V = BI  "< p~),s, 
2. V ~ LB1 and from the postcondition for Pl we obtain V -< LC1 -< P~,3. Q.E.D. 

EXAMPLE 3.4 A correctness proof for the program from Example 2.3. 
The proof for (0) and (1) is trivial. The clause (2) and the precondition for p are the 

same as in Example 3.3. As we have already proved, the precondition for pl  holds and B1 = 
Bo & var(B1). From the postcondition for Pl 

LB1 =[Vl  . . . .  ,V~], n > 0  & Vi,yvar(Vl) & ( i C j = ~ V ~ ¢ V j ) .  
So P~,2 = [ B I , V l , . . . , V , ] .  We have also Vi B1 ~ Vi because B1 does not occur in the invo- 
cation of Pl (see also section 4, the definition of valuation sequence, condition 4). Hence the 
postcondition for p0 holds. Q.E.D. 

4. THE METHOD 

The main part  of this section is a definition of program correctness and the verification 
theorem. These are preceded by a few necessary definitions and followed by examples. The 
section concludes with some comparisons between our method and abstract interpretation. 

Let t be a term and O = {VI~-+Q,... ,V,~-*tn} a substitution. The following notation will 
be used: 

variables (t) is the set of (object language) variables occurring in t ,  
vaxiables( t l , . . . ,  t , )  = variables(Q) U . . .  W var iables( t , ) ,  
dom(O) = { V l , . . . ,  V J ,  
variables(O) = variables(tl,...,t ). D 

We use the traditional definition of SLD-derivation as presented in [Lloyd] restricting it 
to the fixed computation rule of Prolog. We must make explicit some assumptions which are 
s tated there, but  not precisely enough. For a most general unifier (mgu) 6 of t l  and t2 we 
require that  it does not introduce new variables: 

variables(0) _ variables(t1) U variables(t2). 
Note that  0 does not use unnecessary variables: 

dom($) _C variables(t1) U variables(t2). 
For an SLD-derivation we require that  variables are standardized apart.  That  is, if 

Go, G1 , . . .  ;C1, C2, . . .  ; 81,02,. . .  is an SLD-derivation then for every i < j 
variables(C~) n variables(C/) = 0 and 
variables(G/) N varlables(C/) = 

(where Go, G1 , . . .  is the goal sequence, C1, C2, . . .  is the clause variant sequence and 01,02,. 
is the unification sequence of the derivation; the sequences may be finite or infinite). 

DEFINITION 4.1 
An asserted program P is correct iff for every SLD-derivation of P where Go, G1,... is 

the sequence of goal clauses and 01,02, . . .  is the sequence of substitutions and for every i if 

Gi=:--al~...~arn, m > O  

then 
1. a l  satisfies its precondition, 
2. if there exists j > i such that  

Gj = : - (a2  . . . . .  am)Oi+l . . .8 i 
then (al ,  a10i+1 . . .  0j) satisfies its postcondition for the least such j .  [:] 
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Informally, ai is a procedure call, 0i+z . . .  8:" the corresponding computed answer substi- 
tution, a181+1 ...Oj the iustantiation of a l  at the moment of its success. The part  of the 
SLD-derivation between i and j is, intuitively, the computation corresponding to procedure 
call a l .  

To facilitate formulation of the main theorem we introduce the notion of a valuation se- 
quence. 

DEFINITION 4.2 
A sequence of substitutions Po, . . .  ,pr, (n _> 0) is a valuation sequence for a clause 

ao : -  a~ , . . .  ,a,~ and for an atomic formula (a goal) b iff 
0. variables(b} N vaxiables(a0, a l , . . . , a n )  = 0 
1. po is an mgu of b and ao 

and there exist a l , . . . , a N  (called an answer sequence) such that  for i -- 1 , . . . ,  n 
2. Pi  "= P i - - lCr l  

3. dom(ai)  ___ vaxiables(a/pi_l) 
4. variables(ai) N variables((a0 : - a l  . . . . .  a~}pi-1) C variables(alpi_l) .  [] 

Pi can be understood as a valuation of clause variables upon a success of aip~-i (provided 
it succeeded}, ai is the corresponding computed answer substitution. Using the notation from 
the previous section, Vpi = V~ for any variable V occurring in the clause. 

The theorem below is the main result of this paper and the basis of our proof method. 
In the theorem we assume that  a0 = goa l  for a goal clause where goa l  is a special predicate 
symbol which does not occur elsewhere. The assertion for goa l  is p r e  t rue ;  p o s t  t rue .  

THEOREM 4.1 (verification condition) 
Let P be an asserted program. A sufficient condition for P to be correct is: 

for every ao : -  a l , . . . ,  an being a clause of P (n > 0), 
for every b which satisfies its precondition, 
for every their valuation sequence Po, . . .  ,P,~ 

1. the precondition for alpo is satisfied, 
2. for every k -- 1 , . . . ,  n - 1, if (alpo, nip1) , . . . ,  (akPk-1, akPk) satisfy their postconditions 

then the precondition for ak+lPk is satisfied, 

3. if (alPo,a~pl) . . . .  , (a,~p,~-l,anpn) satisfy their postconditions then the postcondition 
for (b, aopn) is satisfied. [] 

Note that  for a unary clause (n = 0) the conditions 1., 2., 3. above reduce to 
3. the postcondition for (b, aoPo) is satisfied. 

For n = 1 they reduce to 
1. the precondition for alpo is satisfied, 
3. if (alpo, alpl) satisfy its postcondition then the postcondition for (b, aopl) is satisfied. 

The verification condition is-expressed in semantic terms. While proving implications 2. 
and 3. one has to refer to properties of substitution composition, substitution application and 
unification. An interesting problem is finding a set of proof rules which would correspond 
to theorem 4.1 and would allow to perform proofs in a syntactic way, like in the axiomatic 
semantics. This could make possible automatization of the method. 

Two example proofs of program correctness axe given at the end of the previous section. 
Here we present another two examples relating to mode declarations. 
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EXAMPLE 4.1 
Consider the following program 

:-- q(T). (0) 

q(L) :-p(L,M,N), s(N, L1,L2). (1) 

p([],[],[])- (2) 
p([A]LA], [B]LB], [pair(A, B) ILC]) :- p(LA, LB, LC). (3) 

4[],[] ,[]) .  (4) 
s([XtL], [X]L1], L2) : -  s(L, L1, L2). (5) 

s([XIL], L1, [XIL2 D : -  s(L, L1, L2). (6) 

(where the procedure p is the same as in the previous examples) with the assertions 

q : pre  t rue;  pos t  t rue  

p :  pre  t rue;  pos t  p~ = [T1,...,T~], n >_ 0 & Vi~var(Ti) 

s :  p re  °s, = [TI, . . . ,Tn],  n > 0 & Vi-~var(Ti) & var(*s2) & var(°s3); pos t  t rue  

As the correctness proof for the program is easy, we present here proofs for clauses (1) and 
(5) only. 

A proof for (1): Let the head of (1) be unified with b satisfying its precondition. As the 
precondition is t rue,  b = q(S) (where S is any term) and p0 = {L~-~S} or, if S is a variable, 
P0 = (S~-*L}. Let al = p(L,M, N) and a2 = s(N, L1, L2). Then alPo satisfies its precondition. 
Assume that (alPo, alpl) satisfies its postcondition. This means that Np~ = [T~,...,T,~], n _> 
0 & Vi-war(Ti) and the precondition for a2pl = s((Npl) ,L1,L2) holds. This completes the 
proof for (1) since the postcondition for q is t rue.  

A proof for (5): Let b = s([T1,...,Tn],U,V) satisfies its precondition (this means n > 0, 
U,V are variables, T1,...,T,~ are not variables). Let b be unified with the head of (5) by mgu 
P0- Then n > 1, 

bpo = s([XiL ], IX]L1], L2)po = s([T1][T2 . . . .  , Tn]], [TllW], X) 

(where W, X are variables) and 

s(L, L1, L2)p0 = s([T2,.. . ,  Tn], W, X) 

which satisfies its precondition. This completes the proof for (5) since the postcondition for s 
is t rue.  

From the precondition for s it follows that the procedure s may be given a mode declaration 
s ( + , - , - )  (since at every call of s the first argument is not a variable and the remaining 
arguments are variables). [] 

EXAMPLE 4.2 
Consider the program fragment 

p :- q(/(a), X), r(X). (1) 
s(Y) :- q(Y,X), t(X). (2) 

q(f(X), X). (3) 

with the assertions 

p :  p re  t rue;  pos t  t rue  

q : p re  t rue;  pos t  ground(°ql) =~ ground(q~) 

r : p re  gronnd('rl);  pos t  t r u e  

Let all the remaining assertions be pre  t rue;  pos t  t rue.  It is easy to prove that this asserted 
program is correct (under the assumption that the procedure q consists only of (3) and that 
the only invocation of r occurs in (1)). So the procedure r may be given a mode declaration 
r (+) .  [] 
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Neither of the mode declarations that  are shown to be correct in these examples can be 
found using the abstract  interpretation method of [Mellish]. In Example 4.1 this is because 
of too restricted domains of abstract interpretation. To find the mode declaration for s it is 
necessary to know that  p~ is a list of non-variable elements, but  the abstract interpreter supports 
no description between "ground term" and "term whose arguments are variables". (Actually, 
this shows why the abstract  interpreter is not able to find an adequate mode declaration for 
the procedure split in the program serialize [Bowen et all, since the procedure s is a simplified 
version of split). To find the mode declaration from Example 4.2 it is necessary to treat the 
calls of a in (1) and (2) in a different way. This is possible iri our approach (implications in a 
binary postcondition can be used for this purpose) but  impossible in the abstract interpretation 
method mentioned above. 

This weakness of abstract  interpretation is due to its automaticity: the same apparatus 
is applied to every program while a proof method like ours can use assertions tailored to the 
problem on hand (cf. Examples 2.1, 2.2, 2,3, 4.1 where four distinct assertions are given to the 
same procedure). 

5. PROOF OF THE VERIFICATION THEOREM 

This section proves the soundness of our method. To facilitate the proof we introduce some 
definitions. Let Go, G I , . . .  ; C1, C2, . . .  ; 01,02, . . .  be an SLD=derivation (the reader is referred 
to [Lloyd] for s tandard definitions and theorems). 

DEFINITION 

A k,l=subrefutation (of this derivation) is G k - 1 , . . . ,  Gl; C k , . . . ,  Ct; Oh,.. . ,  Ol such that 
Gk-  1 = :-b, b l , . . . ,  bin, m ~ 0 
Gl = : - ( b l , . . . , b m ) 0 k . . . 0 t  

and l is the least such number. [] 

DEFINITION 

A k,j-subderivation (of this derivation) is G~-I . . . . .  Gj;Ck . . . .  ,Cj ;  0 k , . . . , 0  i such that 
G k - l  = :-b, b l , . . . , bm,  m ~_ O 
and for k _< i < 3" G~ is not of the form : - (b l , . . . , b ,~ )O k . . .O i .  [] 

A subrefutation beginning with : - b , . . .  is a fragment of an SLD-derivation related to a 
successful procedure call b. A subderivation beginning with the same goal may be treated as a 
not yet completed computation associated with b. 

The sufficient condition from the Theorem 4.1 will often be referred to as (SC). 

LEMMA 5.1 

Let G k - 1 , . . . ,  Gz; C k , . . . ,  Cl; Ok, . . . ,  0t be a subrefutation of an SLD-derivation of a pro- 
gram P for which (SC) is satisfied. Let k < i < l and 

G k - i  = : -b ,  b l , . . .  ,bin, 
ai ---- Ok,. . . ,Oi,  
Gi = : - (A i ,  b l , . . . ,  bm)ai, where Ai is a sequence of atomic formulas. 

Then 
dom(:d c variables(b, C~,..., Cd, 
variables(ai) _C variables(b, C k , . . . ,  Ci) and 
variables(Aiai) C_ variables(b, C k , . . . ,  Ci). D 
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COROLLARY 
Let Go, G 1 , . . .  ; C1, C2 , . . .  ; 01,02, . . .  be an SLD-derivation of a program for which (SC) 

is satisfied. Let there exist a k , / - subrefuta t ion  of the derivation. Let Gk-1 = :-b,  b l , . . . , b m .  
Then 

G k - l O k . . .  Oz = G k - l a  
where 

a = 0k. . .0ttvariables(b) (and t is defined by 0tX = {V~-+t C 0 I V C X}) .  
More generally, for every s _~ k 

G~-1 0 s . . . S l  = G s - 1 0 s . . . 0 k - l a  [] 

LEMMA 5.2 
Let Go, G 1 , . . .  ; C1, C2 , . . .  ;81 ,02 , . . .  be an SLD-derivation of a program for which (SC) is 

satisfied. Let a k , / - subrefu ta t ion  of the derivation exist. Let Gk-1  = :-b,  b l , . . . , b m  where b 
satisfies its precondition. Then (b, bOk...Ol) satisfies its postcondition. [] 

P R O O F  by induct ion on I. 
Let the premises of the lemma hold. 

l = k  : 
Let G1, be derived from Gk-1 and a unary  clause a0 using an mgu 0k. Then  from (SC) 

follows the postcondit ion for (b, a00k). 

l > k :  
Let the lemma hold for every number  less than  1. Then 

Gk = : - ( a l , - . . , a n , b l , - . . , b r n ) 0 k  

is derived from Gk_ 1 and  a clause Ck = a o : - a l , . . .  , an ,  n > 0. The subs t i tu t ion  0k is an mgu 
of b and a0. 

There exist r o , . . . , r n  such that  ro =: k, r,~ = l  and, for i = 1 , . . . , n ,  

G~, = : - ( a i + l , . . . , a n , b l  . . . . .  bm)Ok.. .Or,,  

the derivation has a ( r i _ l + l ) , r i - s u b r e f u t a t i o n ,  and ri is the least index for which it holds. 
The (r /_l- t -1) , r / -subrefutat ion can be understood as a successful execution of the procedure 
call a i 0 k . . .  0r~_l • 

Let P0 = 0k and for i = 1 , . . . , n  

ai = 0t,_~ + 1 . . .  0r~ Ivaxiabtes(ai0k • • • 0r,_, ), 

and p¢ = p¢- la i  (ai may be t reated as a computed answer subs t i tu t ion  for goal a i 0k . . .  0r~_, ). 
We want to prove that  Po, ...,Pn is a valuation sequence for b and C1¢. It  remains to show that  
condit ions 3 and  4 of Definition 4.2 hold. 

Let G - Gk or G -= Gk- lOk.  From the Corollary it follows that  for i = 0 , . . .  , n  - 1 if 

GOk+i . . .  Or~ ----- G a l . . .  ai 

then 
G 0 k +  1 • . .  0 r~+ 1 : G a  1 . . .  a i +  1 . 

By induct ion G 0 k + l . . .  0r~ = Gal  . . . a i  for i ~ 0, . . . .  n .  Hence 

bp, = bOk . . .  Oz, 

a~Pi-1 = aiOk. . .  O~,_, (*) 

(and dom(ai )  C_ variables(aipi_l) which is condit ion 3 of Definition 4.2), 

alpi = aiOk ...Or~. 

By Lemma 5.1 applied to the ( r i _ t + l ) , r i - s u b r e f u t a t i o n  (where Gr~_~ ~- : - a i p i - 1 , . . .  
by (*)) variables(ai) _C variables(0r,_~+~.. .0r ,)  C var iables (a ip i_ l ,C~,_~+l , . . . ,Cr , ) .  Hence 
variables(oi) N varie~bles((ao . . . .  , an)pi-1)  C_ variables(aipi_l)  (since variables in the derivation 
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are standardized apart  and variables((ao . . . . .  an)pi-1) N var iab les (Cj )=  0 for j > r i -1 ) .  We 
have proved that  po , . . .  ,P• is a valuation sequence for b and Ck. 

Now, by (SC1), the precondition for alpo is satisfied. 
If the precondition for aipl- I is satisfied then the postcondition for (aipi- 1, aipi) is satisfied 

(for every i = 1 , . . .  , n ,  by the inductive assumption). 
The preconditions for a2Pl, . . .  ,anpn-1 hold (by (SC2)). 
The postcondition for (b, bp~) holds (by (SC3)). 
But bpn = bOk... Ol which completes the proof. [] 

LEMMA 5.3 
Let Go, G1 , . . .  ;C1, C2, . . .  ;01,02, . . .  be an SLD-derivation of a program for which (SC) is 

satisfied. Then for every s the first atomic formula of Go satisfies its precondition. [] 

PROOF by induction on s.  
If s = 0 then the thesis follows immediately from (SC1). Let the temma hold for every 

number less than s.  Two cases are possible. 

1. 
Gs = : - ( a l  . . . . .  a~,bl, . . . ,bm)Os, n > 0  

G8-1 = :-b, b l , . . . , bm 

The precondition for b is satisfied and G,  is derived from G8-1 and a clause ao:-al , . . .~an.  
88 is an mgu of b and ao. From (SC1) it follows that  the precondition for al0s is satisfied. 

2. (n  in the previous case is 0) 
There exists k < s (k > 0) such that  

Gs = : - ( b l , . . . , b m ) 0 k . . . 0 ~  

Gs-1 = : - ( b 0 , b l , . . . , b m ) 0 k . . .  Oa-1 

Gk = : - ( a l , . . . ,  a t ,b l , . . . , b~ , . . ,  b~)O~ 

Gk-1 = :-b,b~+l, . . . ,bm.  

Let k be the greatest such number (when k = 0 then let G-1  = : - g o a l ,  0o = e and Co be 
the goal clause g o a l : - . . . ) .  Repeating the construction from the proof of Lemma 5.2 using 
a l , . . . , a t , b l  . . . .  ,bu instead of a l , . . . , a n  and introducing rv only for v _< t (r0 = k, rt = ~) 
we prove that  the precondition for bl is satisfied. The evaluation sequence under consideration 
(for b and Ck) is Po,...,Pt+u where Pi = p i - la l ,  ai is as in the previous proof for i = 1,. . . , t .  
For i = t + l , . . . , t + u ,  a i = e .  W e o m i t  details of the proof. [] 

Theorem 4.1 follows immediately from lemmas 5.3 and 5.2. 

6.CONCLUSIONS 

In this paper,  the inductive assertion method for logic programs was introduced and proved 
sound. The metalanguage of assertions was defined. The assertions can describe properties 
that  are inexpressible in terms of the declarative semantics. The verification theorem makes it 
possible to prove the partial  correctness of programs with respect to their .assertions. 

We think that  the ability of stating and proving assertions is important for the following 
reasons: 

1. Assertions may improve the legibility of some logic programs. They may be treated as 
formalized comments specifying the actual form of procedure calls and successes. 

2. Prolog programmers quite often reason about their programs in terms of execution (this 
is reflected by comments, mode declarations, etc.). By introducing assertions one makes explicit 
some facts upon which this reasoning is based. 
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3. Intuitive principles of reasoning about logic programs can be formulated as a systematic 
method for proving the correctness of a logic program. 

4. The declarative semantics gives no formal explanation of the concept of the "logical 
variable" essential in many applications. The introduction of a metalanguage that refers to 
non-ground terms should make it possible to handle this concept in a more rigorous way. 

5. It may be conceivable to use a metalanguage similar to the one presented here in logic 
programming systems. A debugging tool might use assertions to perform additional checking. 
A compiler might use them to guide optimizations. 

Our approach can easily be extended to deal with some extra-logical built-in procedures. It 
can provide their formal semantics and also the absence of some run-time errors can be proved. 
The declarative semantics is inapplicable to this kind of procedures. 

EXAMPLE Axiomatic semantics of the Prolog [Bowen et all built-in procedure var  
The meaning of the procedure may be described by the assertion 

v a t  : p re  t r u e  ; 
pos t  v a r ( ° v a r l )  & °var 1 = v a r ~ .  E] 

EXAMPLE Correctness of use of the Prolog built-in procedure is 
Consider the assertion 

i s  : pre  intexpr(°is2) ; 
pos t  t r u e  

where intexpr(T) iff T is an expression built out of integers and arithmetical functors. If an 
asserted program with the above assertion is correct then no run-time error connected with 
wrong arguments of i s  occurs. [] 

Our method is valid for the Prolog computation rule and for every search strategy (thus 
including OR-parallelism). It is also valid for Prolog programs containing the cut and negation- 
as-failure (although it is not able to exploit specific properties of the cut and not,  cf. the 
assertion for not: pre  t rue;  pos t  aot~ = °not1) .  
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