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Abstract 

I describe a neural-network which decomposes a set of inputs into a sequence of generative parame- 
ters. It uses a series of coupled parameter finding and removing networks and requires the input to 
be in a particular temporal format. 

Introduction 

ff a multi-layer neural-network is required to develope its own representations, a good technique is 
to teach it to reconstruct its input at its output. The hidden layer has to code the inputs in some way 
and it is this code that can be used as a representation, Hidden layers taught by back-propagation 
tend to adopt all-or-nothing responses to one or more 'features' in the input. If the particular inputs 
are examples from a continuous set, as is the case in shape description, we actually want the hidden 
units to adopt a continuous coding using one or more parametric variables. 

Learning to parameterise 

There are several techniques which use a combination of competition between hidden units for activa- 
tion (winner-takes-all) and adoption of similar activity in neighbouring units (where the neighbour- 
hood relation is defined on some topology) and generate exactly these continuous parametric vari- 
ables [1,2]. I have chosen Saund's technique as it incorporates back-propagation and so can inte- 
grate with hidden unit layers which are not being forced to parameterise. He uses an additional error, 
related to this mixture of competition for activation and spreading of activity between neighbours, 
which is added to the back-propagation error in the parameterising hidden units. 
Figure 1 shows the hidden unit responses to a set of images of the pixel values of circles of varying 
diameter centred in the image. The first part of the figure shows the result of back-propagation alone, 
the units respond in an all or nothing fashion to one or more small ranges of circle diameter. Diameter 
is then coded by bands where a different set of units are switched on or off. It is not possible, just 
looking at the hidden unit responses, to know how similar two inputs are to each other, except where 
their coding is identical. The second part of the figure show a parametric coding - the units lie on a 
1D array and their activity presents a single parameter which codes the inputs, in this case it  corre- 
sponds to the diameter. A least-squares fit of a gaussian to the hidden unit responses shows a virtu- 
ally linear relationship to diameter, except for very small circles where there is probably a quantisa- 
tion problem. 
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Figure 1. 

Hidden unit responses 
to a set of circles of varying 
diameter. Unit response 
is up the page, the 
diameter of the circles 
across the page. Only 
back-propagation has been 
used. 
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Sequential parameterisation 

Dealing with inputs requiring many parameters would only seem to involve extending the topology to 
the necessary dimensions. However there are problems with this even if we can cope with the com- 
putational costs. 

• The isotropic nature of the function which spreads activation over the neighbourhood means there 
is an arbitrary relationship between the axes of the internal parametric space and any particular 
'natural parameters' of the input set. 
• The distribution of the the internal parametric space depends only on the similarity of the inputs 

and no account can be taken of relationships such as the fact that two inputs close together in time 
are likely to require similar internal representations (shape constancy). 
An alternative is to perform a sequential parameterisation. The value of a single most explanatory 
parameter is found and this value is used to 'correct' the input for that parameter, i.e. transform the 
inputs in a way that corresponds to setting that parameter to a fixed, prototypical, value. For exam- 
ple undoing position means transforming the image so that an object is centred on the origin. Then 
the next most explanatory parameter is found and so on. 
Leyton [3] suggests that shape perception consists o f  just such a sequential parametric decomposi- 
tion. The parameters can be considered as the generative processes that have formed the shape, 
The assumption that allows learning such a series of parameters is that they have a temporal order- 
ing, with each parameter changing faster than those after it. Over some time interval a parameter can 
assume that the parameters following it wiU remain constant. We don' t  have to worry about the pa- 
rameters before it in the ordering as they will have been removed by the prototyping networks. 

Two networks are required to learn the parameterisation. Consecutive sets of inputs are formed 
from time slices of a larger input set. The first network, having used Saund's technique to distribute a 
parameter over the first of these sets then continuously modifies this distribution for the following 
sets. The parameterising hidden layer responses of this network are used to train a second, 3-layer 
back-propagation network working from the associated input. Eventually this network will generate 
the parameter over the full set of inputs. 



612 

Another network takes this parameter value to effect the prototypication. The best way to construct 
a neural-network to perform coordinate axis transformations is not known, but Zipser and Anderson 
[4] use a 3-layer network and I have done the same. To teach it the transformation which will undo 
the parameter we have to decide whether it represents a prototypicaI value or not. If it is the associ- 
ated input is transferred to a stored training image. The transforming network is taught to produce 
this stored image as output, with the original input plus the output of the parameter assigning net- 
work as input. 

A two step parameterisation 

This multiple network training scheme was used to prototype lines of different orientation and length. 
The orientation changed I00 times faster than the length of the lines. The parametric grid that the 
two stages produce is shown in figure 2. 

Figure 2 

Parametric grid 
for 2 stage 
parameterisation 
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Conclusion 

The aim of this scheme is to allow a network to generate its own representations of a particular input 
but to know in advance the properties of the representation it will develope, so it can be used by oth- 
er networks. The scheme appears to be viable, though only trivial inputs have so far been prototyped. 
Its success depends on the data having the right temporal format. An Active Vision System, able to 
control the position of its sensors, could arrange this. For instance it could arrange that rotations 
along the axis of the camera are very much less frequent than panning motions of the camera. As the 
sequential parameters are found it could move its sensors in different ways to correctly format the 
sensory data. 
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