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Abstrac t  

Computing surface curvature would seem to be a simple application of differen- 
tial geometry, but problems arise due to noise and the quantized nature of digital 
images. We present a method for determining principal curvatures and directions of 
surfaces estimated from three-dimensional images. We use smoothness constraints 
to connect different surface points and by then comparing information over local 
neighbourhoods we iteratively update the information at each point to ensure that 
this information is consistent over the estimated surface. 

1 I n t r o d u c t i o n  

Differential geometry supplies the tools necessary for the computation of surface tangent 
and curvature. However, applying these tools to the determination of the structure of 
surfaces in digital three-dimensional images is problematic since surfaces are only implicit 
in image intensities (the "edge detection" problem), and computations are adversely af- 
fected by image quantization and noise. In this paper, we are concerned with estimating 
the following from 3-D images: the surface trace (that is, the image points lying on a sur- 
face); the surface normal (or tangent plane) at each surface trace point; and the principal 
curvatures and directions of the surface. 

A simple paradigm for computing surface structure consists of the following steps: (i) 
extract the surface trace points from the image; (ii) fit some surface(s) to the points; (iii) 
compute tangent and curvature for the fit surface(s); and (iv) take this information as 
belonging to the underlying surface. In practice, this straightforward approach generally 
leads to unsatisfactory results due to well-known problems with the so-called "edge detec- 
tors" for computing (i), and to instabilities in the surface fitting process (ii). The general 
conclusion has been that curvature computations are somewhat delicate. 
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We show that  this need not be the case, that  curvature computation can indeed be 
made reliable. We largely follow the above scheme, but consider that it yields only an 
initial estimate of local surface characteristics which must be further refined. In particular, 
we consider that  local surfaces fit in (ii) correspond to the differential geometric notion of 
a chart, and that the surface itself consists of overlapping charts. The fundamental idea 
then is to look for such a surface within a class of admissible surfaces which minimizes 
and appropriate functional ensuring that local curvature information is consistent river 
neighbourhoods. The implementation of these ideas of local curvature consistency is by 
iterative minimization with similarities to relaxation labeling procedures [1]. At each  
step of the iterative refinement process, information at each trace point is updated by 
making it more consistent with information over local neighbourhoods. This leads to 
more consistent information over the whole surface. 

In this paper, we present experiments in applying these methods to clinical 3-D mag- 
netic resonance (MR) imagery. Work related to ours is found primarily in the domain of 
laser rangefinder image understanding, e.g., [2,3,4], with the difference that  their surface 
trace points, albeit noisy, are available a priori (see Ferrie et al [5] for an application of 
methods based on ours to rangefinder images). 

2 L o c a l  s u r f a c e  p a r a m e t r i z a t i o n  

Our working definition of a surface 8 (technically a 2-dimensional differentiable mani- 
fold [6]) is a set of points such that for every r 6 S, there exist open sets U C ]R 2, and 
V C ]R 3 with r E V, and a diffeomorphism ¢ : U --+ V A 8  (recall that  a diffeomorphism is 
a smooth bijective map with a smooth inverse). The pair (¢, U) is a parametrization ors  
at r, ¢(U) = O is a coordinate neighbourhood, and ¢-1 is a chartwhich assigns coordinates 
at  r. Note that  when r is in two different coordinate neighbourhoods r G O1 N 02 (we also 
say that  r is in overlapping charts or parametrizations), then the change of coordinate 
mapping taking (part of) ]R 2 into ]R 2 

o ¢,: n n 

is smooth with a smooth inverse. Our refinement methods of §3 are based in an essential 
way on the change of coordinate mappings at overlapping parametrizations. 

We depart slightly from the above notation by explicitly including a set of right-handed 
orthonormal axes in the notion of local chart, writing (¢, U, ~) where ~ = (/~, (~,/V), 
/5, Q,/V e ]13. 3, and U C span(/3, Q). The vector/V is always the normal of the surface 
at r, and (/5, ~)  spans the tangent plane so that  ~ is a Darboux trihedron or frame [6] of 
S bound to r. Note that,  as defined, the tangent plane basis (/~, Q) is arbitrary up to 
orthonormality constraints - -  when/5,  (~ are the principal directions of the surface at r, 
then ( is the principal direction frame, and we term such a chart a principal chart. 

In this paper, we can only present a brief sketch of the process of instantiating the 
local charts from the input image (the reader is referred to [7] for details). Following 
the scheme outlined in the introduction, step (i) estimates surface trace points as the 
thresholded output of a 3-D gradient operator [8]. The operator also returns an estimate 
of the surface normal which .allows us to set up a frame representing the local tangent 
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plane coordinate system. There is a wide choice for the mapping ¢ of step (ii), and we 
take it to be a parabolic (or non-central) quadric surface 

1 (ap2 + 2bpq + cq2), (1) ¢(p, q) = (p, q, n(p, q)) ; n(p, q) = -~ 

where p, q, n are in the local coordinates (/3, Q, 57). This is the simplest smooth surface 
from which curvature can be computed. We instantiate a chart at each trace point r 
by fitting a parabolic quadric via least-squares error minimization to the positions and 
normals of neighbouring estimated trace points. Note that  for the quadric surface fit at r, 
¢(0, 0) = r = (0, 0, 0). In step (iii), we compute principal curvatures and directions of the 
chart from Eq. (1). We use the principal directions as a new basis for the tangent plane 
at r so that  the frame ~ becomes (.~f, r~, 57) where ~r, r~ are the principal directions cor- 
responding to the maximum and minimum principal curvatures ~, )~ respectively. In this 
principal chart, the mapping ¢ assumes a particularly significant form with parameters 
a = ~,b = 0, c = )~. 

As we show in §4, the results obtained by steps (i)-(iii) do not warrant step (iv) di- 
rectly - -  they should only be treated as rough estimates of the structure of the underlying 
surface. In the following section, we develop a method for refining such estimates. 

3 R e f i n i n g  e s t i m a t e d  l o c a l  i n f o r m a t i o n  

Our goal is to determine a surface of the form introduced above which minimizes a resid- 
ual functional based on local tangent and curvature" compatibilities. In practice, our 
approach to refining estimated surface structure is similar to relaxation labeling [1] in 
that  the information at each candidate surface point is updated based on information 
from neighbouring surface points. It differs in that we don't use explicit quantized labels 
but keep everything in the continuous domain. 

We will develop a rule (¢T, U~, ~) i  ~_~ (¢~, U~, ~T)i+l for iteratively updating the prin- 
cipal chart at each estimated surface point r E S i so that  the outcome of iteration i is to 
effectively update the whole estimated surface S / ~ Si+l. Three issues must be specified: 

1. which neighbouring points s should contribute to the support of the principal chart 
at r, Le., which points determine its contextual neighbourhoodA/'~; 

2. how the information at point s E A/'~ supports the principal chart at r; 

3. given 1 and 2, how to update the principal chart at r. 

For consistent notation, let r refer to the point being refined and s be a point of its 
supporting contextual neighbourhood. 

3 . 1  C o n t e x t u a l  n e i g h b o u r h o o d  

Recall that the principal chart (¢s, Us, ~s) at s G S determines the quadric surface patch 
Os = Cs(u ,v )=  (u,v,  ½(nsU 2 + .~sv2)), (u,v) E Us C span(Jl~fs, ms). We take the contex- 
tual neighbourhood of r E S to be the set 

= {s  6 S : l i t  - sl{ _ d and r 6 0 s } ,  

for some neighbonrhood radius d (I1 o I1 is the EucUdean norm). 
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3.2 Local support (compatibility) 
Given that s is in the contextual neighbourhood of r, we wish to determine how compatible 
the (principal) chart at r is with the (principal) chart at s. This cannot be computed 
directly since the charts are bound to different points. (Note the crucial fact that,  e.g., the 
inner product (M~, M~) is meaningless since M~, M~ are bound to different surface points, 
r and s respectively - -  computing the inner product would assume that  the surface 
was flat. See [7] for a discussion of the underlying notion of parallel transport.) Thus, 
we set up a mapping "transporting" the chart at s to the point r, which we denote 
(¢~, U~, ~ )  ~ (¢(~,~), U(,,~), ~(,,~)), as explained below. 

Support is developed with reference to the following commutative diagram. 7, fi are the 
principal curvature and direction computations respectively in a chart, e.g., from Eq. (1, 
and R is the rotation taking the principal directions from tangent plane coordinates into 
the image space coordinate system. 

O, N O~ 

¢2(o  n a)  n o,) 

] R x ] R  

× × (o ,o ,1)  × × (o ,o ,1)  

~a  x nR? x ]R a 

By the assumption that  s E Af~ we have r E O~ n (.9~, and if we consider that r E (.9~ 
then coordinates assigned by ¢~-1(r). In this chart, the principal curvatures and directions 
at  r are computed along the right-hand side of the above diagram as % o ¢71(r) and 
R~ o ~ o ¢~-1(r) respectively. We have "direct" access to the principal curvatures and 
directions here since these are updated  from the previous iteration, and are available in 
r ' s  principal chart itself as the coefficients ~ ,  ~ of ¢~, and as ~ respectively. 

On the other hand, r E (.9~ and hence its coordinates in the chart at s are given 
by ¢~1(r), with the corresponding principal curvatures and directions computed along 
the left-hand side of the diagram as % o ¢;1(r) and R, o 5~ o ¢:1(r)  respectively. These 
are less direct to determine than along the right-hand side since r ~ ¢~(0, 0); details 
may be found in [7]. We consider this computation as the determination of the mapping 
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(¢~, Us,~s) H (¢(s,O, U(~,O, ~(s,~)) since it says what r 's structure ought to be as seen from 
8 .  

Now we have the principal curvatures and directions at r in its own principal chart 
along the right-hand side of the diagram, and a l soas  a point of s's chart as computed 
along the left-hand side of the diagram. These principal curvature measures are directly 
comparable as scalars - -  indicated in the diagram by mappings 7 into the same 1R x ]R 
space. The principal directions computed by 5 as frames (~ = (Mr, ~ ,  Nr) at r as a point 
of Or, and ~(~,r) = (2tl(~,r), rfi(~,~), bT(s,r)) at r as a point of O~ consist of vector components 
now bound to r and, once transformed by R into the common image space coordinate 
system, permit the computation of inner products (Mr,/~(*,r)), (Nr, N(s,r)). 

3.3 Updating local in format ion  

The mapping (¢s, Us, ~s) ~-~ (¢(s,r), U(~,r), ~(s,r)) transports the principal curvatures and 
directions along the left-hand side of the above diagram from supporting point s to the 
point r being refined. Curvatures computed along the right-hand side say what the current 
estimated data is at r. The contextual neighbourhood of r consisting of k points, say, 
thus contributes k estimates of the local information at r. We now use this support 

/ (¢(s,r),U(~,r),~(~,r))i,S eAfr} to map (¢r,U~,~r) i ~-~ (¢r, brr,~r) i+1, producing a better  
ocal estimate of the principal direction chart at r which contributes to updating the 

surface S i F-+ S i+1. Briefly, the new chart is the one that best fits, in the natural least- 
squares error sense, what the supporting points indicate that the principal chart at r 
"ought" to be. Some care must be taken with the fit due to the possibility of umbilic 
points (where a = A), since no unique principal direction frame exists there. However, the 
normal direction remains valid for the computation of the best fit/V. Thus we decompose 
the fit into two steps: 

1. all k surface normals from Aft are used to determine/q,  the surface normal compo- 
nent of the new frame; then 

2. the k non-umbilic points determine the new frame by selecting principal direction 
(r~ follows by orthonormality of /q ,  AI). 

Principal curvatures can be computed at all k points in step 1, since only the principal 
directions are singular at umbilics. Figure 2 shows the increasing support of a representa- 
tive r from the MR image in Fig. 1 with its neighbouring support points over the course 
of several iterations. 

We will make the common assumption that the noise in the data is roughly zero mean 
Gaussian i.i.d. (independent and identically distributed), so that a linear least-squares 
estimator can be used (this assumption is supported in [7]). 

Let us write the k charts from the s~ E Aft, a = 1 , . . . ,  k as (¢(~,r), U(~,r), ~(a,r)), with 
(N(~.r)~, N(~,r)~, N(a,~),) = hV(a,r) e ~(~,~) being the components of the surface normal, etc. 
Step 1 above determines their best fit unit normM/V as 

) = ~=1 N(~,r)~ ~ =  (~,r). /V (N~,Ny, N~) = [ ~ = 1  (-,~)~ ~k  k N 
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Figure 1: Eight images from a sequence of 41 slices from an MR image of the head. The 
images are 256 × 256 pixels in the xy plane, with a resolution of 0.2 cm. in the z direction. 
(Courtesy Dr. T. Peters, Montreal Neurological Institute.) 

Figure 2: Increasing support over the contextual neighbourhood for the two principal 
directions at a typical point of the MR image. Initial estimate, one, three, and five 
iterations. 

where 

by minimizing 

d =  

k 

subject to the constraint [[NI[ = 1 (by the method of Lagrange multipliers, see [7] for 
details). Step (2) subsequently determines the principal direction corresponding to the 
maximal principM curvature, subject to unit length and ortho~onality with the surface 
normal. W'e set this up as the problem of determining the M = (Mz, My, M~) which 
minimizes 

k 
E~, : ~ ~ - ~ , ~  2 

o : : l  
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subject to the constraints (/vl,/~r) = 1 and (M, h 7) = 0. This gives 

" - 2E,~=IM(~,~)u )~GN~ - 2~,=1M(~,,~)~ t~I = /\GN~ - 2 E k = l  M(,~,~)~ A v i  u k 1, 

where 

k ~ k 
)~a = 2(N, ~ M(,~,,), + Ny ~ M(,~,~)~ + IV~ ~_, M(~,,)~), 

a = l  a = l  c l= l  

2 k 2 2 

2 2 A measure of the quality of the new chart is given by the residual errors EN, EM of 
the frame fit, and 

2 (A _ A(~,~))2 

of the best fit principal curvatures ~, A, so that  

= + + 

gives an "overall squared residual" of the fit of the principal chart at r. 
It is evident that  when E 2 is small, the contextual neighbourhood of r is strongly 

supportive of the estimated chart there, so we take 

• ({(¢~, U~,~) ' , r  e S'}) = ~ E ~ 
r E 8  ~ 

as the functional to be minimized by updating the surface S i ~-* S I+1. 

4 E x p e r i m e n t s  

The Gaussian curvature at a point of a surface is the product K = ~A of the principal 
curvatures, and its sign can be used to segment the surface into regions of elliptic (K > 0) 
and hyperbolic (K < 0) points. Figures 3, 4 show the iterative improvement of the 
Gaussian curvature segmentation in the face and lateral venticle regions of the MR image 
(lateral ventictes are internal structures in the brain seen as the dark grey areas near the 
centre of the images in the lower panel of Fig. 1). 

Figures 5, 6 show the progressive improvement in the principal direction estimates 
over the course of severM iterations until (approximate) convergence of the algorithm. 

5 D i s c u s s i o n  

In this paper, we have shown that  surface trace, tangent and curvature can indeed be 
computed from digital images. However, that  most commonly used tool of differential 
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Figure 3: Coarse segmentation by Oaussian curvature classes of the face region of the 
MR image. Bright points are elliptic and dark are hyperbolic. Shaded tangent plane 
orientations, initial segmentation, one, and seven refinement iterations. 

i..i.:.~~.i.i~#<>:~i~.<,~<%.~..,.<~i.,<>.'%:~.~: , .~ ~ i i ~ @ ~ i ~ } ~  ..<.,..:.~., . . . . .  ~.~<<,..~<~.~ . , .  

~ t L ' , . ~ ~  ~~ ..~.: • : ~: .< 

, , ' < , . < , : , ~ ~ i  " ' <  + "  '°>'~*<':<':":<' 

Figure 4: Curvature labeling of the top surface of the lateral ventricles. Shaded tangent 
plane orientations, initial labeling, two, and five refinement iterations. 

geometry, differentiation, is insufficient for the task, and other notions must be exploited 
as well. Specifically, the problem is how to develop a connection between different points, 
how to relate estimated information at different estimated surface points. 

We have presented an approach to this problem by considering the surface as a col- 
lection of local surface patches with smoothness constraints between overlapping patches 
imposing curvature consistency over neighbourhoods. Our methods are implemented as 
an iterative functional minimization process seeking a surface whose information at each 
point is maximally consistent with structure over a local neighbourhood. 

We presented experiments showing that this approach wbrks well in computing surface 
structure from clinical three-dimensional magnetic resonance imagery. 
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Figure 5: One of the principal direction field in the nose region of the MR image. Shaded 
tangent plane orientations, initial estimates, iterations one, and five. Apparent multiple 
principal directions are due to projection. 
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Figure 6: Principal direction field on a region of the surface of the lateral ventricles. 
Shaded tangent plane orientations, initial field, two, and three iterations. 
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