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One important component of model-based vision is the ability to solve for the values of all 
viewpoint and model parameters tha t  will best fit a model to some matching image features. 
This is important because it allows some tentative initial matches to constrain the 'locations of 
other features, and thereby generate new matches that can be used to verify or reject the initial 
interpretation. The reliability of this process can be greatly improved by taking account of all 
available quantitative information to constrain the unknown parameters during the matching 
process. In addition, parameter determination is necessary for identifying object sub-categories, 
for interpreting images of articulated or flexible objects, and for robotic interaction with the 
objects. 

Our solution for unknown viewpoint and model parameters is based on Newton's method 
of linearization and iteration to perform the n0n-linear minimization. This is augmented by a 
stabilization method that incorporates a prior model of the range of uncertainty in each param- 
eter and estimates of the standard deviation of each image measurement. This allows useful 
approximate solutions to be obtained for problems that would otherwise be underdetermined 
or ill-conditioned. In addition, the Levenberg-Marquardt method is used to always force con- 
vergence of the solution to a local minimum. These techniques have all been implemented and 
tested as part of a system for model-based motion tracking, and have been found to be reliable 
and efficient. 

P rev ious  approaches  

Attempts to solve for viewpoint and model parameters date back to the work of Roberts [14], but 
his solution methods were specialized to certain classes of objects such as rectangular blocks. In 
1980, the author [8] presented a general technique for solving for viewpoint and model parameters 
using Newton's method for nonlinear least-squares minimization. Since that time the method 
has been used successfuUy in a number of applications, and it also provides the starting point 
for the work presented in this paper. The application of the method to robust model-based 
recognition has been described by Lowe [9, 10], McIvor [12], and Worrall, Baker ~ Sullivan [16]. 
Verghese ~ Dyer [15] have used this method for model-based motion tracking. Ishii et aI. [5] 
describe the application of this work to the problem of tracking the orientation and location of 
a robot hand from a single view of LED targets mounted on the wrist. Their paper provides 
a detailed analysis that shows good accuracy and stability. Recently, Liu e~ aI. [7] and Kumar 
[6] have examined alternative iterative approaches to solving for the viewpoint parameters by 
separating the solution for rotations from those for translations. However, Kumar shows that 
this approach leads to worse parameter estimates in the presence of noisy data, so he adopts a 
similar simultaneous minimization as is used in the work above. 

Much work has been published on characterizing the minimum amount of data needed to 
solve for the six viewpoint parameters (assuming a rigid object) and on solving for each of 
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the multiple solutions that can occur when only this minimum data is available. Fischler and 
Bolles [2] show that up to four solutions will be present for the problem of matching 3 model 
points to 3 image points, and they give a procedure for identifying each of these solutions. A 
solution for the corresponding 4-point problem, which can also have multiple solutions under 
some circumstances, is given by Horaud e~ al. [3]. Huttenlocher and Ultman [4] show that the 
3-point .problem has a simple solution for orthographic projection, which iS a sufficiently close 
approximation to perspective projection for some applications. In ~he most valuable technique 
for many practicM applications, Dhome et al. [1] give a method for determining all solutions 
to the problem of matching 3 model lines to 3 image lines. This could be particularly useful 
for generating starting positions for the iterative techniques used in this paper when there are 
multiple solutions. 

While this work on determining all possible exact solutions will no doubt be important for 
some vision applications, it is probably not the best approach for practical parameter determina- 
tion in general model-based vision. One problem with these methods is that they do not address 
the issue of ill-conditioning. Even if a problem has only one analytic solution, it will often be 
sufficiently ill-conditioned in practice to have a substantial number and range of solutions. Sec- 
ondly, all these methods deal with specific properties of the six viewpoint parameters, and there 
is little likelihood that they can be extended to deal with an arbitrary number of internal model 
parameters. In addition, these methods fail to address the problem of what to do when the solu- 
tion is underconstrained. The stabilization methods desct~bed in this paper allow an approximate 
solution to be obtained even when a problem is underconstrained, as will often be the case when 
models contain many parameters. Possibly the most convincing reason for believing that it is 
not necessary to determine all possible solutions is the fact that human vision apparently also 
fails to do so. The well-known Necker cube illusion illustrates that human vision easily falls into 
a local minimum in the determination of viewpoint parameters, and seems unable to consider 
multiple solutions at one time. 

Stabi l iz ing the  solut ion 

As long as there are significantly more constraints on the solution than unknowns, Newton's 
method will usually converge to a stable solution from a wide range of starting positions. However, 
in both recognition and motion tracking problems, it is often desirable to begin with only a few 
of the most reliable matches available and to use these to narrow the range of viewpoints for later 
matches. Even when there are more matches than free parameters, it is often the case that some 
of the matches are parallel or have other relationships which lead to an ill-conditloned solution. 
These problems are further exacerbated by having models with many internal parameters. 

All of these problems can be solved by introducing prior constraints on the desired solution 
that are used in the absence of further data. In many situations, the default solution will simply 
be to solve for zero corrections to the current parameter estimates. However, for certain motion 
tracking problems, it is possible to predict specific final parameter estimates by extrapolating from 
velocity and acceleration measurements, which in turn imply non-zero preferences for parameter 
values in later iterations of non-hnear convergence. The general form of this process for motion 
tracking would be equivalent to the use of the extended Kalman filter [17], but the predictive 
component does not play a role in recognition applications. 

Any of these prior constraints on the solution can be incorporated by simply adding rows to 
the linear system constructed on each iteration of Newton's method. Let J be the Jacobian matrix 
of partial derivatives with respect to each model or viewpoint parameter, and e be the vector of 
error measurements from the.current solution to corresponding image features (see the full-length 
version of this paper for efficient methods for calculating these). Then Newton's method solves 
the following matrix equation on each iteration for the vector of parameter corrections, x: 

J x ~ e  



410 

The solution can b e  stabilized by adding rows to this equation specifying prior desired 
parameter values, d, in the absence of constraints from the image. If we assume that the errors, 
e, have unit standard deviation, then the prior estimates of the parameter values should be 
weighted by a diagonal matrix W in which each weight is inversely proportional to the standard 
deviation, ai, for parameter i: 

1 

Incorporating these new constraints, we wish to minimize the following stabilized system: 

We will minimize this system by solving the corresponding normal equations (see full-length 
paper for discussion of the numerical stability of the normal equations): 

which multiplies out to 

[:vl x [;d] 

( j T j  + w T w  ") x = JTe  + W T W d  

Since W is a diagonal matrix, w T w  is also diagonal but with each element on the diagonal 
squared. This means that  the computational cost of the stabilization is trivial, as we can first 
form JT3 and then simply add small constants to the diagonal that are the inverse of the square 
of the standard deviation of each parameter. If d is non-zero, then we add the saree constants 
multiplied by d to the right hand side. If there are fewer rows in the original system thma 
parameters, we can simply add enough zero rows to form a square system and add the constmxts 
to the diagonals to stabilize it. 

Fo rc ing  conve rgence  

Even after incorporating this stabilization based on a prior model, it is possible that the system 
will fail to converge to a minimum due to the fact that this is a linear approximation of a non- 
linear system. We can force convergence by adding a scalar parameter A that  can be used to 
increase the weight of stabilization whenever divergence occurs. The new form of this system is 

This system minimizes 
I tJx  - ell ~ + ~ l l W ( x  - d) l l  ~ 

This as an example of regularization using a Tikhonov stabilizing functional, as has Been 
app|ied to many areas of lowdevel vision (Poggio e~ al. [131). In this c~se, the parameter A controls 
the trade-off between approximating the new data, 113x - ell  2 ,  and minimizing the distance of 
the solution from its original starting position, d, prior to non-linear iteration, ~211w(x - d ) l l  2. 

The use of this pezameter ~ to force iterative convergence for a non-linear system was 
first studied by Levenberg and later reduced to a specific numerical procedure by Marquardt 
[11]. Marquardt did not assume a~y prior knowledge of the weighting matrix W ,  but instead 
estimated each of its elements from the  euclidean norm of the corresponding column of jT3 .  In 
our case, the availabIity of W allows the aigorithm to perform much better  when a column of 
JT3 is near zero. When the solution fails to improve on any iteration, increasing the value of 
(by factors of 10, as suggested by Marquardt) will essentially freeze the parameters having the 
lowest standard deviations and therefore solve first for those with higher standard deviations. 
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Figures 1-4: Parameter solving during a motion tr~cking sequence, 

Results of implementation 

One initial application of these methods has been to the problem of motion tracking. A Datacube 
image processor is used to implement Marr-Hildreth edge detection in real time on 512 by 485 
pixel images. The image contaiifing these edge points is transferred to a Sun 3/260, where the 
edges are linked into lists on the  basis of local connectivity. A fairly simple matching technique 
is used to identify the image edges that are closest to the current projected contours of a 3-D 
model. The few best initial matches are used to perform one iteration of the viewpoint solution, 
then further matches are generated from the new viewpoint estimate. Up to 5 iterations of 
this procedure are performed. For simple models with straight edges, all of these steps can be 
performed in less than 1 second, resulting a system that can perform robust but rather slow 
reM-time motion tracking. Full details of the components of this system other than parameter 
solving will be published in a separate paper. 

Figures 1-4 show the operation of the system for one frame of motion tracking. However, 
due to the complexity of the model, this version requires about 6 seconds of processing per frame 
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and does not operate in real time. Figure 1 shows an image of a hand drill from which edges 
are extracted. A simple matching algorithm is used to identify image edges that are close to 
the projected model curves. These matches are ranked according to their length and average 
separation, and the best ones are chosen for minimization. The selected matches are shown with 
heavy lines in Figure 2 along with the perpendicular errors between model and image curves that 
are minimized. After one iteration of model fitting, the new model position is shown in Figure 3 
along with a new set of image matches generated from this position. Note that the rotation of 
the handle is a free parameter along with the viewpoint parameters. After this second iteration 
of convergence, the final results of model fitting are shown superimposed on the original image 
in Figure 4. Note that due to occlusion and errors in low-level edge detection, this final result is 
based on only a small subset of the predicted image edges. However, due to the overconstrained 
nature of the problem, in which far more measurements are available than unknown parameters, 
the final result can be reliable and accurate. 
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