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Abst rac t :  This paper presents an extension to lines of Ullman's incremental rigidity 

scheme, originally formulated for a set of points. The formulation is based on the angular 

and distance invariance of rigid configurations of lines. It is shown that the line structure 

can be recovered incrementally from its motion. 

1. L i n e - b a s e d  i n c r e m e n t a l  r i g i d i t y  s c h e m e  

The incremental rigidity scheme for the recovery of structure from motion, as pro- 

posed by Ullman [1] for a structure of points, constructs an internal estimated model of 

the structure which is continuously updated, as rigidly as possible, at each time a new 

image is available. The current estimated model is modified by the minimal "physical 

change" that is sufficient to account for the observed, transformations in the new image. 

According to Ullman's results, the proposed incremental rigidity scheme converges to 

the correct structure. The goal of this study is to examine a line-based formulation of 

Ullman's scheme. Albeit with an additional weak constraint, we show that results similar 

to those of Ullman with point structures can be obtained with configurations of'lines. 

The viewing system is modelled as in Figure 1 (cartesian reference system and parallel 

projections, the Z-axis pointing to the observer). The line-based formulation we propose 

consists of two successive steps, the first step being the recovery of the orientation of the 

lines and the second being the complete recovery of the structure. Using the principle 

of angular invariance, the scheme estimates the orientations of the lines; recovery of 

structure is completed using distance invariance. 

We will take the model M(t) of the line structure at time t to be the set {Ui, Zi}, 

i = 1, ..., N, where Ui is the unit orientation v~ctor of line Li, Zi is the depth of any 
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point on line Li and N is the number of lines in the structure. At t = 0, the model is 

taken to be "flat" (all the lines lying in a plane parallel to the image plane). 

1.1 A n g u l a r  i nva r i ance :  r e c o v e r y  o f  orientations 

For a rigid motion of a set of lines, the principle of angular invariance states that 

the angles between the lines do not change as a result of this motion [2]. Let L i and Lj 

be two lines in space, having projections I i and lj, respectively (see Figure 1). Let unit 

vectors on i i  and i t be Ui, Uj at time t and U~, U} at time t'. Then, the principle of 

angular invariance states that (we assume that correspondence between lines, and their 

direction, has  been established): 

In expanded form, with unnormalized vectors V: 

l I I I l I 
Vl,iVl,j + v2,iv2,j "+" v3,iv3, j _ Vl,iVl,j + v2,iv2, j + v3,iv3, j 

ll lillV ll llV/'tlllVjll (2) 

Equation 2 is written for each pair of lines (some equations may be redundant). Given 

the current estimate of the orientations and a new 2-D image, the problem is to determine 

the unknown parameters v I i = 1, N so as to minimize the overall deviation from a j ,  ..., 

a rigid transforrnation as prescribed by the incremental rigidity scheme. The following 

function qg is considered for minimization: 

N-1 N 

i=l j=i+l 

[ vt v' ] 2 V I _ l l I 
9" 3°/'i- = Vl'iVl'j + v2'iv2'j + v3'iv3'j l'iVl'j "{- v2'iv2'j + 3,i 3,j 

13 llllV/ll - tlV/llllt 'll (4) 

After function ~ is minimized, resulting in a new set of v t i = 1, ..., N,  the corre- 3,i, 
sponding orientations become part of the current version of model M. 

1.2 Distance invariance: r e c o v e r y  o f  structure 

The distances between each pair of lines remain constant during rigid motion. If 

we observe two lines L i and Lj at t and t l, then dij ~ d~j, The objective here is to 

incorporate this rigidity constraint into the incremental rigidity scheme, using the line 

orientations obtained at the previous step, 
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At time t, let Ui = (uI,i, u2,i, u3,i), Uj = (Ul,j, u2,j, u3,j) be unit vectors on Li and 

Lj  respectively, and Pi = (xi, Yi, zi) and Pj = (xj ,  yj,  zj) be points on L i and Lj.  At 

time t t, let the unit vectors be U~ t t u t t u t t = (Ul,i, u2,i, 3,i), U~ = (Utl,j, 2,j, u3,j) and points be 

pt = (x~,y~,z~), PJ = (x~,y~.,z~) (Pi,Pj and P~, PJ are arbitrary and unrelated; no point 

correspondences are assumed). 

According to the principle of distance invariance, the relation for lines L i and Lj  is: 

] ( x ~ - ~ ) p - ( y ~ _ - y j ) Z + ( z ~ - z i ) r  (x}- ~)p'- (y}- v~)~' +(z)-z~)~- '  

p = (u2,iu3, j -- u31iu2,j) a = (Ul,iU3,j - u3,iUl,j) "r = (Ul,iU2, j - u2,iUl,j) (6) 

p !  I l I f Orl I ! ! ! T ! ! ! ! t 
. . . . .  (u2,iu3, j =3,iu2,j) (Ul,iU3, j u3,iUl,j) (Ul,iU2, j -- u2,iUl,j) (7) 

Equation 5 is written for each pair of lines (some of these may be redundant). Given 

the current estimate of distances and a new image, the problem is to find the unknown 

depths z~, i = 1, ..., N in accordance with the incremental rigidity scheme. The following 

function h is minimized: 
N-1 N 

A - -  ~. ~ Aij (S) 
i=1 j=i+l 

[ (xj - x i ) p -  (_uj_-__yui)~+ (zj (x~ - x~)p' - (u~ - y~)~' + (z~ - z~)~' 2 

When A is optimized, a new set of z~, i = 1, ..., N is obtained and included in the 

current version of the model. A new image is acquired and the process is repeated: 

estimation of the new orientations using angular invariance, estimation of the positions 

using distance invariance, and update of the model. 

2. Experimental results 

For minimization, we used a quasi-Newton method. The initial values of vt3,i, i = 

1, ..., N,  were set all to +1 or all to - 1  [3]. Subsequent optimization steps used the 

current values of v3, i. We have experimented with several arbitrary line structures in 

motion [3]. The motion reported here is a rotation about an axis parallel to the Y-axis, 

and located on the Z-axis. For the orientations, performance is measured with: 

A = ~ ( 1  -cos00/u  (9) 
i 
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where cos Oi is the scalar product of the exact and estimated unit vectors of line i. For 

the positions of the lines in space, error function r is used: 

r = F ,  idij - d~ji/Np (10) 
i,j 

where Np is the number of pairs of lines and dij, d~j are respectively the exact and 

estimated distances for lines i and j. 

With a rigid structure of 6 lines, typical results for the error functions A and F are 

shown in Figures 2 and 3 (rotations of 20°). 

The scheme was experimented with different rotation angles (Figures 4 and 5). In 

general, results indicate that the convergence is accelerated with larger angular differences 

(also an observation in [1]). However when a sufficient level of difference is reached, 

greater angular variations do not necessarily increase the convergence rate. 

We also examined the scheme with a varying number of lines. For structures con- 

taining 2 or 3 lines, the scheme exhibits an oscillatory error behavior. Results indicate 

that the performance gradually increases with the number of lines (Figures 6 and 7). 

Experimental results also reveal that the estimation model can infer and maintain the 

exact structure in the presence of small deviations from rigidity. Performance deteriorates 

for larger perturbations. 

Finally, better convergence results are obtained if constraints can be imposed on the 

depth parameters v13,i (in practice, this amounts to knowing roughly the maximum size 

of the observed objects). 

Summary: The incremental recovery scheme developed by Ullman [1] for point 

structures has been extended to line structures. The process relies on theminimization of 

two functions which are based on the maximum rigidity hypothesis and which involve the 

principles of angular and distance invariance. Albeit an additional weak constraint is met, 

the model eventually converges towards the exact structure which is then maintained. 
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