
Tracking Line Segments * 

Rachid DERICHE - Olivier FAUGERAS 
INRIA Sophia-Antipolis 
2004 Route des Lucioles 

06565 Valbonne Cedex France 
deriche@rhodes.inria.fr 

Abstract 

This paper describes the development and the implementation of a line segments based 
token tracker. Given a sequence of time-varying images, the goal is to track line segments 
corresponding to the edges extracted from the image being analyzed. We will present a 
tracking approach that combines a prediction and a matching steps. The prediction step 
is a Kalman filtering based approach that is used in order to provide reasonable estimates 
of the region where the matching process has to seek for a possible match between tokens. 
Correspondence in the search area is done through the use of a similarity function based 
on Mahalanobis distance between attributs carefully chosen of the line segments. The 
efficiency of the proposed approach will be illustrated in several experiments that have 
been carried out considering noisy synthetic data and real scenes obtained from the INRIA 
mobile robot. 

1 I n t r o d u c t i o n  

The problem we want to adress is to detect and track features in a sequence of time 
varying images acquired by a camera on a robot moving in an indoor environment. At 
this end, edges are first detected through the use of an optimal operator developed in one 
of our previous work (see [1]). An edge linking step and a polygonal approximation yield 
the line segments that best approximate the extracted edges. A tracking approach based 
on a close cooperation between a prediction and a matching step is then developed. The 
prediction step utilizes a Kalmanfilter to estimate the position in the next image of each 
primitive in the current image. The matching step then need to be applied only within 
the predicted region. Matching employs a normalized distance based on the most stable 
parameters of each primitive. 

The organization of the paper is as follows : A first section presents the problem 
of the representation for the line segments, and shows in particular why the mid point 
representation has been chosen. Section 2 gives a general overview of the developed 
approach and presents how the algorithm works. Section 3 explains in particular why 

*This work was partiMly completed under Esprit P940 
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adding an error to the model is strongly recommended in our approach and how this 
remark can be taken into account in the Kalman filtering equations, Section 4 is devoted 
to the presentation of the matching process. A last section, before the conclusion, is then 
devoted to the experiments carried out on synthetic and real data. 

2 W h a t  r e p r e s e n t a t i o n  f o r  t h e  l i n e  s e g m e n t s  ? 

An important sub problem is to choose an appropriate representation for the line segments 
since the tracking wilt be based on this representation. It is clear for example that tracking 
both endpoints Of each segment will be very difficult, since they are not at all reliable due 
to the fact that segments can be broken from one frame to another. For this reason, two 
types of representations have been considered. 

2 . 1  T w o  R e p r e s e n t a t i o n s  for L i n e  S e g m e n t s  

In the first representation, a line segment having endpoints at points Pl (x l , y l )  and 
P2(x2, Y2) is characterized by the vector v l  = [c, d, O, l] T where 0 represent the orientation 
of the line segment, l its length, the parameter c denotes the distance of the origin to the 
line segment and the parameter d, the distance along the line from the perpendicular 
intersection to the midpoint of the segment. These parameters are derived from the 
endpoints as follows : 

0 = arctan (2~_=~) 
t 5ff 2 - ~ 1  " 

I= - Xl)  + - 

c =  ( z 2 * m - z l * y 2 )  l 

(1) 

2, /  

The second representation that we considere is the midpoint representation and char- 
acterizes a line segment by the vector v2 = [xm, ym, 0, l] T where the point (x~, y.~) defines 
the coordinates of the mid point P m  of the segment. Figure I illustrates both represen- 
tations. 

2 . 2  c ,d ,0 ,1  o r  m i d p o i n t  r e p r e s e n t a t i o n  ? 

In order to find what representation is more appropriate for our tracking algorithm, we 
have to calculate the covariance matrices associated to the vectors vl  and v2 that define 
both representations from those of the endpoints. At this end we use the nonlinear 
relations that give theses vectors function of the vector p=[xl, yl, x2, y2]T and the following 
relation : 

av  9v T Av= S  (2) 
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0v is a the 4*4 Jacobian matrix and E is the 4*4 covariance matrix of the Where 

vector p=[xl, yl, x2, y2] T. Assuming no correlation between the endpoints and the same 
covariance matrix A for both endpoints leads to the following covariance matrix E : 

 =(A0 A0) 
where A is the 2*2 covariance matrix associated to each endpoint. 

(a) 

A ~Tx O'xy 
= 2 2 (4) O'xy Cry 

Due to the fa~:t that line segments may be broken differently from one image to another, 
an endpoint is not reliable. We model this segmentation noise, introduced by the polygonal 
approximation, as follows : We assume that A is diagonal in the coordinate system 
defined by uit and u±, two units vectors parallel and perpendicular to the line segment, 
respectively. In this coordinate system, A is written : 

0 

Noting that the coordinate system defined by ull and ux is obtained using a rotation of 
an angle 0 around the origin, leads to the following relations for the covariance matrix A : 

2 % = cr~ • cos(O) 2 + ~r I , sin(O) 2 
= oI  • + **in(o7 (6) ryy 

= - * • c o , ( O )  O'xy 

Applying these results to the vectors v l  = [c, d, O, I] T and v2 = [x~, ym, O, 1] T, we find 
after some algebra that their covariance matrices Av 1 and Av 2 respectively are given as 
follows : 

Av 2 

~ - f f  /2 t2 12 0 
-2*c*d*er~. ~ 2.c2.a~. 2 . . . .  3. 

Avl i= + l= 12 0 
12 12 12 0 , 
0 0 0 2 *o~ 

( @~o,(e)2+~1.,i,~(o) ~ (~-~[).,i~(e) .. . .  (o) 
(~2_oi).~? (0).co4O) ~[,co~(0)2~.~2.,i~(o)2 0 0 

,i ' J~ 0 0 
2 2 2*a~. 
0 0 ;~ 0 
0 0 0 2 . ~  

(7) 

(s) 

From these results, one can say that the c, d, 0, l representation leads to a covariance 
matrix that depends strongly on the position of the associated line segment into the image 
through the parameters c and d that appear on the covariance matrix Av 1 Therefore two 
given segments with the same length and orientation will have their uncertainty on the 
(c,d) parameters completely differents depending on their position within the image. This 
is not the case for the mid point representation since the uncertainty associated to the 
mid point (z.~, y.~) depends only on the uncertainty of the endpoints. 
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A second important point to note for the mid-point representation is the decorrelation 
that  exists between the parameters (x,n, ym) and the parameters 0 and I. This decorel- 
lation between the parameters does not exist for the representation c, d, 0, I. Adding to 
that,  it is easy to check that for the particular case where a 2 = a~. = c@ then the four 
parameters xm, ym, 0, l are completely decorellated, while it is not the case for the c, d, 0, l 
representation, where we have to assume that  a± is equal to zero in order to decorellate 
the paramaters. This question of decorellation is important if we want to use for efficiency 
consideration, differents Kalman filters on each parameters. 

From these remarks, it is clear that  the mid point representation (xm, y,~, O, I) is more 
appropriate to our tracking algorithm where each segment is represented by four points 
in a 1 dimensional space : the x and y-position information and the length and orienta- 
tion information. When a given segment moves in the image, these four points follow a 
trajectory in the 1D space. The kinematics of the motion of the given line segment is the 
kinematics of the fourth points i.e trajectory, velocity and acceleration. Therefore we will 
run four Kalman filters independently on each parameter. 

3 Tracking 

The tracking approach we have developed is based on the following steps : 

1. Assign a kinematics model to each parameter of the representation of the line seg- 
ment. 

2. Use the model to predict the position of the given parameter in the next frame and 
the associated uncertainty. 

3. Use the uncertainty to determine the search area around the predicted position. 

4. Inside the search area, use a normalized distance to determine the best match. 

5. tf a match is found, use it as a new measure to update the kinematics model. 

Initially a t = 0, no information is available about the kinematics of the line segments 
in the image. This is called the bootstrapping stage. We assume zero velocities and 
accelerations with large uncertainties indicating that we do not trust these guesses. We 
say that a line segment of the current frame is inside a searching area if the distance 
of each parameter to its predicted posit;ion is less than a given threshold. A similarity 
function that combines the fourth distances is then used in order to compute a score for 
each correspendance between the predicted position and the position of the line segments 
lying inside the searching area. Once a line segment from the current frame has been 
matched to a line segment of the model, its parameters are then used as a new measure 
in order to update the kinematics of the model. 

A Kalman filter is used to perform tracking by providing reasonable estimates of 
the region where the matching process has to seek for a possible match between tokens. 
Kalman filtering is a statistical approach to estimate a time-varying state vector Xt from 
noisy measurements Zt. Consider the estimation of Xt+k from the measurements up to 
the instant k, Kalman filtering is a recursive estimation scheme designed to match the 
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dynamic system model, the statistics of the error between the model and reality, and the 
uncertainty associated with the measurements. 

In our application, four KMman filters are applied independently on each parameter 
of the representation (x,~,ym,O,l). Each state vector is just the position of the given 
parameter x ( i.e x,~, y,~, O, l ) , its velocity 2 and its acceleration ~. The following discrete 

time steps notation is used for the state vector at the t th time step Xt = [xt, ~t, i~t] T. The 
model of the system dynamics and the measurements model are given as follows in our 
application : 

X t + l  = Ot+l,tXt -~- ~t 
(9) 

Vt = CtXt + ~t 
where ~ is assumed to be a zero mean Gaussian noise sequence of covariance Qt 

representing the error of the model, Or+l, t is the matrix which evolves the position x, 
the velocity 2 and the acceleration 2 from one time sample to another. Vt is a vector of 
measurements with an uncertainty ~t, assumed to be a zero-mean Gaussian noise sequence 
of covariance Rt. In our application, 0 t + l ,  t a s s u m e s  a motion with constant acceleration 
and the measurement model assumes that  the position x is measurable from the matching 
process while the velocity 2 and the acceleration ~ are not. 

The classical K~lman filtering equations (see [3] for example) allows to compute the 
optimal estimates of the state vector Xt = Xtp of Xt recursively from the data  V0, V1, ..., Vt 
and the initial estimation E(Xo) and Var(Xo). 

4 E r r o r  M o d e l l i n g  

Implementing the classical theoretical Kalman filter equations leads to results strongly 
linked to the accuracy of the model. When there is a discrepancy between the true system 
model and the model assumed by the Kalman filter, the resulting estimation simply does 
not correspond to that predicted by theory. The Kalman filtering approach developed 
for our tracking algorithm is based on an assumed model of the trajectory ( i.e constant 
velocity or acceleration ). It is clear that  this model can be considered as correct only 
locally. This means that  we assume that the trajectory of each parameter of the line 
segment can always be approximated locally by a first or second degree polynomial. This 
is a more reasonable assumption than the one that considers that all the trajectory can 
be fitted by a first or second degree polynomial. Among all the solutions that have 
been proposed in the literature (see reference [3]) in order to deal with this discrepancy 
problem, we have chosen and implemented the following two techniques : 

• A d d  process  noise.  

This solution, consisting in the addition of process noise to the system model as 
done in equation 9 with the term ~t, is attractive for preventing divergence. In our 
application, the covariance Qt of 4k in 9 is taken as : 

2 0 0 ) 

%o o 
2 0 0 ~ 

(lo) 
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It can be shown that  in such case, the Ricatti equation associated to the system 
model 9 can be resolved to get the following s teady state Katman filtering equations : 

2~lt = 2tj~-i +G(Vt - C~2tl~-l) (11) 

Thus the filter will always track the data. This has to be compared to the case 
where no errors on the model were assumed. In such case the Kalman gain G~ will 
tend to zero as t tends to the infinity and thus the filter will no longer continue to 
track. The elements of Q (the values of a ] , 4  and a~) depends to a great  extent 
upon what is known about the unmodeled states. In our application all the used 
values have been derived from the simulation experiments. However the choice of 
a~,  the variance on the position, is done in a manner reflecting our a priori estimate 
of the amount of noise to be expected from the previous step ( Digitizing effects, 
edge detection and polygonal approximation). 

It should be pointed out that  the Ricatti equation may be solved before the filtering 
process is being performed. Therefore if we assign to the Kalman Gain G the follow- 
ing constant values G = [a,/3] T in our application that  deals with a constant velocity 
model, then it can be shown that  we obtain the following decoupled equations : 

X t / t  = --(OL -~- f l  - -  2)  * X t - l / t - i  - -  (1 - -  Ct) * X t _ 2 / t _  2 -~- O~ * V t -~- ( - - O l  2[_ /~)  , Vt-1 

~, = --(~ + ~ - -  2)  * ~ ,_~ / ,_~  - -  (~ - -  ~ ) ~ _ ~ / ~ - ~  + 9 * ( ~  --  ~-~) 
(12) 

and the following covariance matrix P : 

~m ~ /~ (~3) 
P -  1 -  ~ fl fl * (~  -{- fl ) 

o~ 2 o~ is a real positive scalar less than 1 and/3 a real positive scalar less than 1-~' 

This limiting Kalman filtering is the well known near optimal a,fl tracker [3]. It 
has been implemented in our application and found that  it is extremely ef~cient 
since all the coefficients of the recursive equations given above can be calculated 
before the tracking starts. 

• E l i m i n a t i o n  of  old d a t a  

The basic idea in this approach is to consider the old data as no more meaningful and 
therefore to discard them. A simple way to accomplish this elimination is then to 
weight the old data according to when they occured. This means that, the covariance 
of the measurement noise must somehow be increased for past measurement. It can 
be shown that one simple manner of accomplishing this is to multiply at each new 
measure the covariance prediction for the state vector with the age weighting scalar 
factor a greater than or equal to one [3]. 
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5 Matching 

The search area is determined through a simple set of attribute tests using the result of 
the Kalman filtering. For each token of the image flow model, represented by a feature 
vector of 4 components, we wish to know which token might correspond to it. In selecting 
a cost function for correspondences, we wanted to take jnto account the distance between 
the expected parameter value with its uncertainty and the current value of the measure 
with its uncertainty. This leads to calculate the so called MahaIauobis distance, for each 
components and to declare a token of the new frame inside a search area if all theses 
distances are less than a fixed threshold. Inside the search area, the correspondence is 
then controlled by the value of the sum of these distances. It is calculated for each possible 
match and the best score is used to validate the most consistent. 

Let each new token, issued from the matching process, be represented by a feature 
vector of N components denoted T,~ with a covariance matrix r.  Let the estimated token 
represented by T~ with a covarianee matrix A. It is then easy to find that in the case 
where no correlation exists between both vectors Tm and Tp, then the covariance matrix 
S of the vector difference V =Tm - T~ is just the sum of F and A. The Mahalanobis 
distance is then defined to be: 

dx~ = (Tm,T~) = (T~ - T ~ ) T ( s ) - I ( T ~  - T~) (14) 

This distance has a )i2 distribution with N degrees of freedom, where N=I in our 
case. This distance deliminates the upper bound on the variation of V from its mean. 
The probability that dx~ is less than a given threshold ex2 may be obtained from a X 2 
distribution table. In order to deal with a search area where we have a probability of 95% 
eo find the measure, we set the value of the threshold to 3.84. 

6 Experimental Results 

Many experiments have been carried out considering several noisy synthetic data and 
differents reM scenes, however due to the limited number of pages, this part have benn 
considerably reduced from its original version. Figure 2 illustrates a noisy trajectory 
that have been synthetized in order to simulate an inaccurate constant+ramp model 
and the results given by the prediction without error modelling. Note that the results 
have not been superimposed but displaced in position in order to better compare the 
two trajectories. Figure 3 shows the predicted trajectories taking into account an error 
modelling through the value assigned to a~ ( 0.01 and 0.1 ). It appears that the lower 
the variance o-~ is, the more serious the divergence problem is. On the other hand, the 
higher the variance is, more noisy the prediction is, because the filter takes into account 
few data. 

The tra&ing on real data is illustrated in Figures 4 and 5 through the numbers assigned 
to ca& line segment. A close look at the results reveals how some line segments can 
appear or disappear. A new label is affected as soon as a new segment appears and 
the process continues without affecting the tracking algorithm. Through the number of 
real experiments, it has been demonstrated that the approach developped works well and 
gives satisfatory results. This approach is now an integral part of the standard project 
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demonstration and our industrial partner ITMI is incorporating it into hardware for the 
DMA machine of the Esprit project P940. 

7 C o n c l u s i o n  

A line segments based token tracker has been developed and implemented. Given a se- 
quence of time-varying images, it allows to track line segments corresponding to the edges 
extracted from the scene being analyzed. The results obtained through many experiments 
on real data seems very promising. We are currently working on the exploitation of these 
results for computing 3D motion and structure [2]. 
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Figure 1: Representations c,d,O,1 and xm, ym,O,1 
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Figure 2: Noisy ramp model and its prediction by a Katman without errors on the model 
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Figure 3: Prediction by a Kalman filtering with error modelling, c~=O.O01 (Up) and a~=0.1 (Down) 
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Figure 4: Hall scene 2 

Figure 5: Hall scene 1 


