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A b s t r a c t  

Both the tangential and normal components of the flow can be compuled reliably where the image Hessian 
is well-conditioned. A fast algorithm to propagate flow along contours from such locations is proposed. 
Experimental results for an intrinsically parallel algorilhm for Computing the flow along zero-crossing contours 
are presented. 

1 I n t r o d u c t i o n  

An algorithm for the computation of optic flow should satisfy (at least) the following two conditions: 

(i) it should estimate flow vectors accurately, particularly if it is to be used to determine usable 

three-dimensional scene reconstructions; and (ii) it should provably and demonstrably compute 

flow vectors fast. As a result of research over the past decade or so, many methods have been 

proposed to compute optic flow. Most time and effort has been concentrated on achieving the 

first of the above properties: correctness and accuracy. Murray and Buxton (1989) forthcoming 

book, as well as Scott (1986) and Gong (1989b) survey previous work. Many algorithms operate 

on the basis of the motion constraint equation, which corresponds to a Taylor's series expansion 

of the image functi'on I (x ,  y, t) up to first order. In that case, the computation of optic flow is 

under-constrained, and additional smoothness constraints are imposed. These are implemented as 

local weighted averaging of flow estimates, inevitably, the resulting algorithms are inherently slow, 

and this prevents them from being useful in practice. 

In earlier work (Gong 1988; Gong 1989a) we proposed an additional constraint, which we call the 

Curved Motion Constraint Equation, to develop ttildreth's scheme (Hildreth 1984) for estimating 

the flow along zero-crossing contours. We restrict attention to zero crossings of a Laplacian operator. 

In that case, assume that: (i) the intensity function is spatio-temporally differentiable up to second 

order, and (ii) third order derivatives of the intensity function can be ignored. Then it can be 

shown that 

1 
( tTHn)( tTH#)  + (tTHn)(VI~ . t) + ( tTHt)(Vl t  • n) + 3 d e t ( H ) ( n .  #) = 0 (1) 

By expanding # in the local (t, n) coordinate frame, we deduce that (t .#) (and hence the full flow 

#) can be estimated in a well-conditioned manner wherever ( tTHn)  and ( tTHt)  are significant. We 

extend Hildreth's scheme to take account of the initial well-conditioned estimates of the tangential 
flow. We minimise 

o =  + + # -# T]2 d s .  (2) 
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Here/3(s) is a Lagrange multiplier that expresses confidence in the tangential fow estimates 

#T, and is a function of the local Hessian matrix, fl = detH -7--,  where e is the condition number of the 

Hessian matrix. 

In this paper, we show how to adapt a mixed wave-diffusion algorithm (Scott, Turner and 

Zisserman 1988) to propagate quickly the full flow from known edge loci to all other edge locations 

at which only the normal component is known initially. ~;e demonstrate the robust performance of 

an implemented algorithm on a number of real image sequences and compare its performance with 

Hildreth's scheme. We have designed a parallel implementation of our algorithm for a network of 

Transputers; but for reasons of space it will be reported elsewhere. 

2 P r o p a g a t i n g  F l o w  

The time required by Hildreth's algorithm (and by the improved version us!ng the Curved Motion 

Constraint Equation that we described above), is mostly spent on iterations of the conjugate 

gradient subroutine, which is inherently sequential. To overcome this problem, we have developed 

a novel, intrinsically local, propagation mechanism, which is described in this Section. 

Even using the Curve Motion Constraint Equation, full flow estimates are still restricted to a 

few locations along image curves, and so the minimisation computation suggested by Hildreth is 

iI[-posed. An additional smoothness constraint is required to guarantee that a minimum is reached. 

Inspired by (Ynitle 1988), we develop a modified one-dim'gnsional Motion Coherence Theory which 

captures the essence of our problem. In order to have a smooth flow field, the functional to be 

milfimised in terms of both flow components #(s) along a curve C can be formulated as: 

E1D ][M(#(s))  M,(s)]2ds + A / "om#(s)'2" = - c m t ~ s ~  ) as (3) 
m ~ O  

where )~ > 0 is a Lagrange multiplier, the constants cm >_ 0 weight the various derivative (smooth- 

hess) t.erms, and M ,  (s) are the initial local measurements of the continuous flow field along a curve. 

(Note that in YuiUe's original formulation, the data points M(Ui) are at sparse image locations.) 

Equation (3) is reminiscent of Hildreth's scheme, which in fact, it generalises. In that case, 

cl = 1, and all other c~ are zero. Using the Curve Motion Constraint Equation, instead of#(s).n(s), 

as used by Hildreth, the local flow field measurement M(#(s)) is #(s). For cl = 1, the Euler-- 

Lagrange equation is: 

) , ( ~ )  = [,(~) - M.(~)] 

Now M~(s) is the initial local measurement of the flow field, that is #e(s) = M~(s). Iterating, 

/~(.s) - #0(s) = d#(s) = Oi 

As usual, we treat At as a unit time interval between successive iterations of the procedure. It 

follows that the Euler-Lagrange equation of E:I  can be re-written as the diffusion equation: 
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o~,(~,t) o,(~,t) :~(--~-~) - at (4) 
In a diffusion equation, the physical interpretation of A has dimensions of length 2 × time -1. 

Therefore, a combination of variables s and t with ), gives a dimensionless parameter: r / =  s2/),t. 

Then 

1 fs --1/2"~ 

#(s, t) = 14--/~" t " aa(y)du  (5) 
dO 

where K = v~-B is a constant. It follows that  to construct the flow field # along a curve by 

minimising the above functional is tO propagate the initial local measurements of flow by a Gaussian 

interaction. The problem with diffusion processes is that they are too slow. This is clear from the 

above equation, which shows that that  the flow field is a function of st -1/2. That is, points along 

s at time t, such that st -1/2 has a particular value, should all have the same flow vector. In other 

words, at any specific time t, there is a particular flow vector which has moved along the positive 

(as 0 < s < N where N _ 0) curve direction, with a distance proportional to the square root of the 

time. This means tha t  the speed of propagation of a flow vector is c = ~ t '  where ~ is a constant 

corresponding to the strength of the flow vector being propagated. This speed decreases according 

to the root of the time and, since bigger ~ means faster c, larger flow vectors propagate faster. On 

the other hand, as the diffusion progresses, the ~a of flow vectors being propagated gets smaller as 

time t elapses. 

To address this problem, Scott, Turner and Zisserman (1988) have proposed the use of a mixed 

wave-diffusion process. They were primarily concerned with the computation of symmetry sets 

(such as the symmetric axis transform, and smoothed local symmetries) for two-dimensional visual 

shape representations. We show that their technique can be adapted to propagate quickly flow 

between locations at which the curved motion constraint equation is well-conditioned. 

A wave propagates information at some constant speed C. The wave equation needs boundary 

conditions that  specify #(s, 0) and its velocity a#(s,  o) /at  = ~(s)  (say) at time t = 0. In our case, 

#(s, 0) = M , ( s )  = #0(s), and ~(s)  = 0. The (d'Alernbert) solution to the wave equation is given 

by: 

1 1 f~+c, 
#(s, t) = ~[#0(s - C 0  + #0(s + Ct)] + 2C J~-c ,  ~(~)d~ 

which, in our case reduces to: 

1 
~(s, t) = ~[~o(s - Ct)  + ,0(~ + Ct)] (6) 

This means that the every flow vector that is measured initially is propagated in both directions 

along the curve, each at ha l f the  strength. 

Theoretically, this is a very attractive property as the speed of the wave can be chosen to be 

much faster than the diffusion equation. However, a wave equation itself does not impose any 

constraint through the process and, furthermore, numerically, there is another problem associated 

with wave which can be seen from the following form of equation (6): 
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#(s , t  + 1)' = #( s , t ) '  + C 2 Os 2 

t + 1) = t)' + t) 

(t = O, 1 ,2 , . . . , c~ )  (7) 

Here #(s , t )  is the wave displacement, #(s , t ) '  and #( s , t  {- 1)' represent the velocities for the wave 

equation at time t and t + 1 at a curve location s. Because of quantisation errors and noise in 

the digital image, the second order partial derivatives ~ are unstable. This causes unpredictable 

pulses in the velocity, which are then propagated. Therefore, propagation according to a wave 

equation is unstable for digitised images unless the chosen propagation speed C is small. Smaller 

C compensates for errors in the computation of the partial derivatives. 

The instability of wave processing comes from second order spatial differentiation and further- 

more, this second order differentiation only affects non-linear changes in the displacement. Thus, in 

order to reduce the sensitivity of the velocity computation, we smooth any large non-linear changes 

in the displacement caused by noise. From the earlier discussion of the diffusion equation, it is 

clear that diffusion is well suited to that  task. Following Scott, Turner and Zisserman (1988)~ we 

propose a combined procedure such that every iteration of a wave propagation is followed by an 

iteration of a diffusion process. This combined procedure has the following desirable features: 

1. 

2. 

3. 

It quickly damps out the violent non-linear changes that  are most likely to be caused by 

quantisation errors and noise in the displacement. This stablises the propagation process, 

and enables a reasonably fast wave speed to be used. On the other hand, a faster wave speed 

implies more smoothing between each successive iteration of the propagation. 

It imposes a consistent smoothing on the flow vectors through the propagation. Although 

this side-effect of smoothing the fiow vectors does not apply any constraint explicitly and it 

will not constrain the flow field to be interpolated under the smoothness constraint, the flow 

field is modified towards the desired distribution. It reduces the task of smoothing in the 

next step to be carried out by a diffusion. 

It propagates a weaker influence from any source if the distance along t h e  curve from this 

source is greater, This is certainly an improvement over a pure wave propagation which would 

propagate the same strength of data, half of the original, irrespective of the distance from the 

source. Actually, this is another way to see that the combined procedure carries out a weak 

smoothing interpolation. 

The combined wave-diffusion propagation does not impose a smoothness constraint or a Gaus- 

sian interaction between the flow vectors. With fixed boundary values, it will carry on indefinitely. 

We need to stop the wave-diffusion propagation when the data at the two ends of the curve reach 

each other simultaneously. For a pure wave, the propagation speed is C. For a modified wave-- 

diffusion, which smooths the flow while it is propagating values, the speed of propagation is faster 
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than C. From experiments, we find that the propagation speed and the time at which to stop the 

processing can be approximated heuristically by: 

1 
C ~  = C + ~ and T~d = 

where 1 is the length of the image curve. 

C + 1/loglol 
(s) 

3 E x p e r i m e n t a l  E v a l u a t i o n  

In order to evaluate our algorithm, we have tested it on dozens of image sequences of real moving 

objects. We compare optic flows computed by our algorithm (curved motion constraint extension 

addition to  Hildreth, plus mixed wave-diffusion propagation) with those computed by a reimple- 

mentation of Hildreth's method. First, we estimate the optic flow for two toy cars moving in the 

same direction, where the larger one moves with greater speed. This motion takes place parallel to 

the image plane (see (a) in figure 1). 

It is clear from (b) and (d) in figure 1 that the derivative based local computations are noise 

sensitive, especially for the second order based local tangential flow. Median filtering is crucial for 

the interpolation of the tangential flow (see (c) and (e) in figure 1). The flow fields shown in (f) and 

(g) of figure i are computed respectively by our scheme and by Hildreth's. Both schemes detect 

the greater speed of the larger car, but Hildreth's scheme imposes stronger smoothness on the flow 

field. As a result s it computes more accurate magnitudes of the flow vectors in this case, but it is 

also more noise sensitive. It  also makes errors at the points indicated by rectangles in the figure. 

As a second example, in figure 2, the optic flow estimated for a hand moving in the image plane 

is given. The hand moves from the bottom line towards the top right corner of the image plane, 

while at the same time, the fingers spread out slightly. 

Both schemes recover the flow vectors at the finger tips, where the motions are parallel to the 

edges (aperture problem). But notice that Hildreth's scheme propagates the flow field across the 

edge that joins the second finger and a texture line in the background (indicated by a rectangle). 

On the other hand, our scheme does not, and is more desirable for tasks such as flow based object 

segmentation. Again, Hildreth's scheme computes erroneous flow at points such as that indicated 

by a rectangle at the top right corner in (g). 

In the third example, two static coffee mugs whose surfaces were marked with features were 

taken by a moving camera that moved from the left to the middle in the image plane coordinate 

(see figure 3). 

Both schemes demonstrate an ability to recover smoothed flow fields, but Hildreth's scheme 

smooths the flow field more than ours. As a whole, the optic flows computed by both schemes are 

similar. Our scheme is, however, considerably faster than Hildreth's. 

Finally, the optic fiow of a hand moving in depth is estimated (see figure 4). In addition, 

the moving object is brightly lit, so that the image is much noisier. This is shown in the locally 

computed normal and tangential flow in (b) and (d) of figure 4. Without median filtering, some 
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parts of the flow field computed by Hildreth's scheme are unstable and render the entire flow field 

almost useless. 

For comparatively simple scenes giving rise to few edges, our scheme is about 3 times faster 

than Hildreth's (two cars moving in the image plane, a hand moving in the image plane, and a 

hand moving against the distinguished background). However, as the scene becomes more complex 

(more and longer edges in the image), the relative advantage of our scheme increases. This is 

strongly demonstrated by the results from coffee mug's ego-motion~ an approaching hand, and the 

hand rotating in depth. 

R e f e r e n c e s  

S.G. Gong, 1988 (September). Improved Local Flow. In Alvey Vision Conference, pages 129-134, 

University of Manchester, Manchester, England. 

S.G. Gong, 1989a (March). Curve Motion Constraint Equation and its Applications in the Parallel 

Visual Motion Estimation. In IEEE Workshop on Visual Motion, University of California, Irvine, 
California. 

S.G. Gong, 1989b (September). Parallel Computation of Visual Motion. PhD thesis, Departmant 

of Engineering Science, Oxford University. 

E.C. Hildreth, 1984. The Measurement of Visual Motion. MIT Press, Cambridge, Massachusetts. 

D.W. Murray and B.F. Buxton, 1989. Experiments in the Machine Interpretation of Visual Motion. 
MIT Press, Cambridge, Massachusetts. 

G.L Scott, 1986. Local and Global Interpretation of Moving Images. PhD thesis, Cognitive Studies 

Program, University of Sussex, England. 

G.L. Scott, S. Turner and A. Zisserman, 1988 (September). Using a Mixed Wave/Diffusion Process 

to Elicit the Symmetry Set. In Alvey Vision Conference, University of Manchester, Manchester, 
England. 

A. Yuille, 1988 (December). A Motion Coherence Theory. In IEEE International Conference on 
Computer Vision, Tampa, Florida. 



130 

(a) 

(b) 

, ,~. Z!; ~ 

(d) 

~..#llll,. i 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  i 

(0 
Figure 1: (a) Two cars move in the image plane. 
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(g) 
(b) Nor':l.al )flow before median filtering. (c) Median 

filtered normal flow. (d) Tangential flow before median filte~'ing. (e) Median filtered tangential flow. (f) 

Diffusion smoolhed full flow. (g) The associafed full flow from ttildreth 's scheme. 



131 

2...-.y..~z ) 

(a) 

(b) (c) 

.., , . .  Ii. . ' % i .  il'i "i 

~,r'-> ........... i : ' 3  - - - " - Z - - "  "%,.. 
.,=::_ .... .,,,~:.. -..:.-" ,~ .~ 

(d) (e) 

(l) (g) 

F i g u r e  2 :  (a) A hand moves in the image plane. (b) Normal flow before median filtering. (c) Median filtered 

normal flow. (d) Tangential flow before median filtering. (e) Median filtered tangential flow. (f) Diffusion 

smoothed full flow, (g) The associated full flow from Hildreth's scheme. 
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(t) (g) 

F i g u r e  3: (a) Ego-motion of cups. (b) Normal flow before median filtering. (c) Median filtered normal flow. 

(d) Tangential flow before median filtering. (e) Median filtered tangential flow. (f) Diffusion smoothed full 

flow. (g) The associated full flow from Hildreth's scheme. 



133 

(a) 

/" ~ ............. : ..... ....::~ 
j i pp~E~ 

,.'S"?fljZ, 7 'S 

(c) 

• "/Y" .,.'Y ...... ;ii~ ............... ......) "::::::::::::t::* 

" , ..... y...::: ....... ) /  ,,-.-'-" 

(e) 

Figure 4: (a) A hand approaches the viewer. (b) Normal flow before median filtering. (c) Median filtered 

normal flow. (d) Tangential flow before median filtering. (e) Median fiZtered tangential flow. (f) Diffusion 

smoothed full flow. (g) The associated full flow from Hildreth ' s scheme. 


