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1 I n t r o d u c t i o n  

In order to give a viewer information about a three dimensional scene many algorithms have 
been developed on several early vision processes, such as edge detection, stereopsis, motion, 
texture, and color. This information refers to properties of the scene as shape, distance, color, 
shade or motion. The input to these systems are usually noisy and some times sparse as well 
as its output and then more processing is necessary to extract the relevant information and 
fill in sparse data. In this way the problem of surface reconstruction starting from a set of 
noisy sparse data is prototypical for vision. In recent years many researchers[10][13][5] [3][4] 
have investigated the use of Markov random fields (MRFs) for early vision. They have also 
been used to integrate early vision processes to label physical discontinuities. Two fields are 
usually required in the MRFs formulation of a problem: one represents the function that has 
to be reconstructed, and the other is associated to its discontinuities. 

The essence of the MRFs model resides on Bayes theory with local interaction between the 
fields, where the posterior probability distribution for the configuration of the fields, given a set 
of data, is given as a Gibbs distribution. The model is then specified by the a priori information 
about the system and a conditional probability of the/data given the fields. In the standard 
approach an estimate of the field and its discontinuities is given by the configuration that 
maximizes the probability distribution. This becomes a combinatorial optimization problem, 
that can be solved by methods of the Monte Carlo type (simulated annealing[11], for example). 
The MRFs formulation has two main drawbacks: the amount of computer time needed for 
the implementation and the difficulty in estimating the parameters of the model. 

In this paper we propose a deterministic approach to MRFs models. It consists in explicitly 
writing down a set of equations from which we can compute estimates of the mean values 
of the field f and the line process. We use the mean field approximation and the saddle 
point approximation, both well known statistical mechanics tools, to obtain an approximated 
solution, that is given in implicit form by a set of non linear equations. We call these equation 
deterministic to underline the deterministic character of the whole procedure. 

An advantage of such an approach is that the solution of the deterministic equations is 
faster than the Monte Carlo techniques, fully parallelizable and feasible of implementation 
on analog networks. The possibility of  writing a set of equations is also useful for a better 
understanding of the nature of the solution and of the parameters of the model. 
We study the Weak Membrane model that has been already studied by several authors [2] [12] [14] [13]. 
It is interesting to notice that the GNC algorithm, proposed by Blake and Zisserman [2], arises 
naturally in the framework of statistical mechanics. This estabilish ~. connection between 
MRFs and deterministic algorithm already used in vision. The model is applied to dense data 
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and to sparse data as well. The problem of surface reconstruction (and image restoration) 
from sparse data is addressed and an algorithm to perform these tasks is obtained and imple- 
mented. We also outline an algorithm that solves the problem of aligning the discontinuities 
of different visual models with intensity edges that can be used for the integration of different 
modules. 
The paper is organized in the following way: section 2 presents an overview of MRFs in vision. 
section 3 discusses the deterministic approximation of MRFs for the three energy functions 
mentioned above. Section 4 dicusses the issue of parameters estimation. In section 5 some 
results are described including sparse data. Section 6 shows applications for the integration 
of visual modules with intensity edges. Section 7 concludes the paper. 

2 M R F s  a n d  t h e  W e a k  M e m b r a n e  m o d e l  

Here we briefly summarize how MRFs are applied to the Weak Membrane model. A more 
extensive discussion is given in Geman and Geman [10], Maxroquin[13], Chou[3], Gamble and 
Poggio[5], Gamble, Geiger, Poggio, Weinshall [4] and Geiger [9]. 
Consider the problem of approximating a surface given sparse and noisy depth data, on a 
regular 2D lattice of sites. We think the surface as a field (surface-field) defined in the regular 
lattice, such that the value of this field at each site of the lattice is given by the surface 
height at this site. The Markov property asserts that the probability of a certain value of the 
field at any given site in the lattice depends only upon neighboring sites. According to the 
Clifford-Hammersley theorem, the probability of a state of the field f has the Gibbs form: 

P(f)  = 1---e-ZU(/) (2.1) 
zf 

where f is the field, e.g. the surface-field, Z] is the partition function, U(f) = ~ E~(f) is an 
"energy function" that can be computed as the sum of local contributions from each lattice 
site i~ and fl is a parameter that is called the inverse of the natural temperature of the field. 
If a sparse observation g for any given surface-field f is given and a model of the noise is 
available then one knows the conditional probability P(glf). Bayes theorem then allows to 
write the posterior distribution: 

P(glf)P(f)  1 = 7e (2.2) P(flg) = p(g) 

Geman and Geman [10] introduced the idea of another field, the line process, located on 
the dual lattice, and representing explicitly the presence or absence of discontinuities that 
break the smoothness assumption (2.2). 

AS a simple example, when the surfaces (surface-fields) axe expected to be smooth but not 
at the discontinuities and the noise is Gaussian, the energy, for the one dimensional case, is 
given by 

E(f ,  ltg ) = ~ { $ , ( f i  - gl) 2 '[- a E [(fl - fJ)2( 1 - lij)] --[- E Vc(lij)}, (2.3) 
i jeNi C 

where ,~i = 1 or 0 depending on whether data are available or not and Ni is a set of sites 
in an arbitrary neighborhood of the site i. lij is the dement of the binary fidd l located 
between site i, j .  The term Vc(llj), where C is a clique defined by the neighborhood system of 
the line process (binary field), reflects the fact that certain configurations of the line process 
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are more likely to occur than others. Depth discontinuities are usually continuous and non- 
intersecting, and rarely consist of isolated points. These properties of physical discontinuities 
can be enforced locally by defining an appropriate set of energy values Vv(lij)  for different 
configurations of the line process ([!0], [14]). In our models the cliques will be simplified to 
the nearest neighbors. 

2.1 The  Line Process  for two dimensions 

In this case we define a horizontal line process hij and a vertical line process vii. We point 
out that aaaother possible approach is considered by Geiger and Yuille [8] and Geiger[9], where 
the line process is a scalar quantity in two dimensions. Any how, the line process hij connects 
the site ( i , j )  to the site ( i , j  - 1), while vii connects the site ( i , j )  to the site (i - 1,j). 

2.2 The  Weak Membrane  model  

A special case of (2.3) is the Weak membrane model given in two dimensions, for sparse data, 
by 

El ( f ,  h, v) = E l g ( f  ) + E l t ( f  , h, v) + Ez(h, v) (2.4) 

where 

E : a ( f )  = ~ ~,j( f i5 - g i , j )  2 , Ez(h, v) = "7 ~ , (h i , j  + vis) (2.4a) 
i , j  i , j  

E y t ( f  , h, v) a ~_, [(fl,s 2 = - - f i - l d )  (1 hi,s)] (2.4b) - -  f/,j-1) (1 Vl.j) + (fi,j : -- 

a and 7 are positive valued parameters and Aij is 1 when there is data and zero otherwise. 
The first term, as in the previous case, enforces closeness to the data and the second one 

contains the interaction between the field and the line processes: if the horizontal or vertical 
gradient is very high at site ( i , j )  the corresponding line process will be very likely to be active 
(hi,j = 1 or vi5 = 1), to make energy decrease and signal a discontinuity. The third term takes 
into account the price we pay each time we create a discontinuity and is necessary 1~o prevent 
the creation of discontinuities everywhere. 

The maximum of the posterior distribution (MAP) or other related estimates of the "true" 
data-field value can not be computed analytically, but sample distributions of the field with 
the probability distribution of (2.2) can be obtained using Monte Carlo techniques such as 
the Metropolis algorithm [15]. These algorithms sample the space of possible values of the 
surface-field according to the probability distribution P ( f l g ) .  

3 A d e t e r m i n i s t i c  a p p r o x i m a t i o n  o f  M R F s  

3.1 Mean field theory and Weak Membrane  

We assume that there is uncertainty in the model and that (2.4) should be understood within 
the context of (2.2). We then propose to estimate the mean field values from the statistical 
model. The mean field value of f ,  f ,  is given by 
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1 ftke_Z(~ij[;~,j(.f~_#~)~+F.s~+Ed) ~= ~ 
],h,v 

where ~:,h,. represents the sum over all possible configurations of the fields f ,  h and v. A 
configuration of the field f is a possible set of values assumed by f in the lattice. Z is given 
by 

Z = E e-1~El('f'h'v) 
.f ,h,v 

From these definitions the following equality is derived: 

1 OZ 
( 3 1 )  

We still have to compute the partition function Z. In the case of (2.4) Z becomes 

Z = ~_, e - ~ , , f l  :''(s''~-g~'~)%'Y] ~ e-~Y2,,J [(h''~-~)a~+('''~-l)aU] 
(:} {h,v} 

h 2 v C~A~j 2, Ah"  = f i , j  - -  f i - l , j  and A~,i = f~,i - fij-1- where Ghi = "7 -- a A i j  , Gi,i = "7 - ,,3 

(3 .2)  

3.1.1 Averaging Out the  Line Process 

The contribution of the line process to the partition function can be exactly computed. Indeed 
the line process term in (3.2) is the partition function of two spin systems (h and v) in an 
external field (G h and G ") with no interaction between neighboring sites. Then each spin 
contributes to the partition furlction independently from the others and its contribution is 
(1 -t- e ~G~J) for the horizontal field and a similar factor for the vertical one. The partition 
function can then be rewritten as 

z = ~ .  :~E,,:~.(: ,  : . , ,:+~J 1-[(1 + ~ , ) (1 + o , : 
U} ij 

(3.3). 

3.1.2 Th e  Effect ive Po ten t i a l  

We discuss how the interaction of the field f with itself has changed after the line process has 
been eliminated from the partition function. From (3.3) we notice that the partition function 
can be rewritten as 

where 

Z = ~_,e -~(EI~(])+E~Is{])) 
(s} 

~Ge3 Eo::(/) = ~ ' y -  1~[(1 + : a ~ 0 ( 1  +~  ,, )] 

and E.cg(f) is given by (2.4a). This is the partition function of a system composed of one 
continuous valued field, whose energy is Efg -}- Eel:. We interpret this result as the effect of 
the interaction of the line processes with the field f .  This effect can be simulated by modifying 
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Figure 1: A slice of the  effective potential as a function of A~.  a) For/3 = 0.002. b) Zero 
temperature limit (/3 ~ cx)). 

appropriately the interaction of the field with itself, substituting the smoothing te rm in the 
energy function with a new tempera ture  dependent potential.  
In figure 1 the effective potential  is depicted for different temperatures.  It simulates the effect 
of the line processes on the field f .  Notice that  the energy function is still the sum of local 
interactions between first neighbors. For the zero temperature  limit one can see in figure 1 that  
the smoothing te rm is active only when the gradient is smaller than a threshold, proportional 
to the ratio between 7 and ~. 

3.1.3 The saddle point approximation 

The saddle point approximation substitutes the partition function in (3.3) b y  its largest term, 
SO 

Z ~ m a x f e  -~j[Ai~(A~-ai~)2+E`11(f)] = e -$~ij[A'j(<f'j>-gi~)2+E~/f(<f>)] (3.4) 

where < f > minimizes the free energy 
Efg + E~fy( f )  = ~ i j  A,i(fl j - gij)2 + 7 - ~ln[(1 + eZG~)(1 + e~C:'.i)]. Under this approxi- 

mation < f > is the mean field of f .  

3.1.4 M F  e q u a t i o n s  for  h~ v, a n d  f 

Once we obtained the parti t ion function in (3.4) we can now compute the mean field values 
of h, v, and  f .  

• Solving ]'or the line process, h and v 
In analogy to (3.1) we can derive the mean field equation for h to be 

1 0 l n Z  
[Zlk = I 

and similarly we find the mean field equation for v. So after some algebra we derive 

1 1 
/q'J = 1 + e~('Y-~(£,J--~-I,D 2) and vi,j = 1 + E~('Y-~(~,s-~,J -~)2) (3.5). 

where f = <  f > is the mean field solution (under the saddle point approximation) that  we 
calculate next. It is interesting to notice that  the mean value of the line process  can vary 
continuously from 0 to 1. Moreover the value of l that  is defined everywhere in the tattice, 
stresses the strength of the edges. This can be used to decide the existence or not of an 
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edge and to analyze its shape. In the zero temperature limit (8 --+ co) (3.5)becomes the 
Heaviside function (1 or 0) and the interpretation is simple: when the horizontal or vertical 
gradient (~,j - ~,j-1 or ~,j - )~'-l,j) are larger than a threshold (V/~ ~) a vertical or horizontal 
discontinuity is created, since the price to smooth the function at that site is too high. 

• Solving for the field f 
The mean field solutions for f are obtained by minimizing the free energy. The set of 

deterministic equations can be written as 

0 
Ofiz (Egg + Eefy(f)) =- 0 

and after some computation 

$ij~,j = ;~ijg,,j - a(~, j  - )~5-1)(i - ~,,j) + ~()~5+1 - / i , j ) ( 1  - vlZ+l) 
- a ( ~ , j  - ~_~,j)(1 - hl,j) + a ( ~ + l , j -  )~,j)(1 - tti+,,j) (3.6) 

where hi,j and vi5 are given by (3.5). 
Equation (3.6) gives the field at site i , j  as the sum of data at the same site, plus an average 
of the field at its neighbor sites. This average takes in account the difference between the 
neighbors. The larger is the difference, the smaller is the contribution to the average. This is 
captured by the term (1 - / i , j ) ,  where ll,j is the line process. At the zero temperature limit 
(/~ --. c¢) the line process becomes 1 or 0 and then only terms smaller than a threshold must 
be taken in account for the average. This interpretation helps us in understanding the role 
of the a and 7 parameters, as it will be discussed in section 4. Notice that the form of (3.6) 
is suitable for the application of a fast, parallel and iterative scheme of solution. In order to 
solve (3.6) we can introduce a damping like force 0_£ (o~) to the effective potential such that the 
fixed point of the dynamic equation 

of  o 
= - ~ ( E : g  + E~:/(f)) (3.7) 

0-7 

is the mean field solution, This is a gradient descent algorithm. 

3.1.5 T h e  effective po ten t i a l  and  the  g r a d u a t e d  non convex i ty  a l g o r i t h m  

We have to point out that this energy function has been studied by Blake and Zisserman [2], 
in the context of edge detection and surface interpolation. They do not derive the results from 
the MRFs formulation but they simply minimize the Weak Membrane energy function. From 
a statistical mechanics point of view the mean-field solution does not minimize the energy 
function, but this becomes true in the zero temperature limit, so their approach must be 
recovered from the MRFs formulation in this limit. This is indeed the case, and it is easy 
to show that  the effective potential becomes the Blake and Zisserman potential when/~ goes 
to infinity. In order to obtain the minimum of the energy function E1 Blake and Zisserman 
introduce the GNC (graduated non convexity) algorithm that can be embedded in the MRFs 
framework in a natural way. Let us review briefly the GNC algorithm. The main problem with 
the Weak Membrane Energy is that is not a convex function and a gradient descent method 
can not be applied to obtain the minimum because one could be trapped in a local minimum. 
In order to solve this problem Blake and Zisserman introduce a family of energy functions E (p), 
depending continuously o n a  parameter p, pc[O, 1], such that E0) is convex, E (°) _-_- E1 and 
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E(p) are non convex for pc[0,1). Gradient descent, as in (3.7), is successively applied to the 
energy function E (p) for a prescribed decreasing sequence of values of p starting from p = 1, 
and this procedure is proved to converge for a class of given data. The construction of the 
family of energy functions E(P)is ad hoc and uses piecewise polynomials. In our framework, a 
family of energy functions with such properties is naturally given by E,/] (T) where T is the 
temperature of the system. The GNC algorithm can then be interpreted as the tracking of 
the minimum of the energy function as the temperature is lowered to zero (like a deterministic 
annealing). In this way the approach of Blake and Zisserman can be viewed as a deterministic 
solution of the MRFs problem. 

4 P a r a m e t e r s  

The parameters a, 7, and fl must be estimated in order to develop an algorithm that smoothes 
and finds the discontinuities of the given data-field. 

4.1 The  parameter 

The parameter c~ controls the balance between the "trust" in the data and the smoothing 
term. The noisier are the data the less you want to "trust" it so ~ is larger, the less noisy are 
the data the more you "trust" it so c~ should be smaller. To estimate ~ various mathematical 
methods are available. The generalized cross validation method introduced by Wahba [17] and 
the standard regularization method described by Tikhonov [16, 1] give good pratical results. 
For a more detailed analysis see, for example, Geiger and Poggio [7]. 

4.2 The  parameter 7 

From (3.5) one can see that ~/r~ is the threshold for creating a line in the Weak Membrane 

energy. For the stereo module, where the data field is a depth-field, ~ is the threshold for 
the changes in depth to be called a depth discontinuity. This value is determined accordin~ 
to the resolution of the stereo system available. For the intensity data , the parameter ~/~ 
represents the threshold for detecting edges. This value is somehow arbitrary, and probably 
context dependent. The exact value depends on the attention of the observer and/or the 
sensitivity of the system. 

4.3 The  parameter /~  

The parameter/~ controls the uncertainty of the model. The smaller is/3 the more inaccurate 
is the model. This suggests that for solving the mean field equations a rough solution can 
be obtained for a small value of ~ (high uncertainty) and thereafter we can increase/~ (small 
uncertainty) to obtain more accurate solutions. This can be called deterministic annealing. 

5 R e s u l t s  

For the implementation the zero temperature limit equations have provided results as good 
as the deterministic annealing with a faster computational time. We do not have proof of 
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Figure 2: a. 8-bit image of 256 X 256 pixels, b. The image smoothed with a = 1 , 7 = 19, 10 
iterations, c. The line process field for a = 0.1, 7 = 19, and 10 iterations. 

• .'i. ::!i:i.:!~ ~, 

b . ~  c, 

Figure 3: a. Randomly chosen 50 ~ of an original image. For display the other 50~  are filled 
with white dots. b. The algorithm described in (2.6) is applied to smooth and fill in at the 
same time with 3' = 208 and a = 4 for 10 iterations, c. For comparison and to stress the 
importance of  the line process field we show the result of  simply bluring the sparse data, when 
h = v = 0 everywhere 

convergence but only suggestive experimental results. In order to find the mean field solution 
we solved (3.6) using (3.7) together with (3.5) in a coupled and iterative way. 
The algorithm is parMtel depending upon the first neighbors. For a serial implementation we 
first update the even sites (like the white squares in a chess board) and then the odd sites 
(like the black squares). Typically the Mgorithm has converged in 10 iterations which takes 
about 1 minute for images of 64 x 64 pixels on a Symbolics 3600. 

When we apply the algorithm to a real still life image the result is an enhancement of 
specular edges, shadow edges and some other contours while smoothing out the noise (see 
Figure 2). 
Prom one face image we produced sparse data by randomly suppressing 50 % of the data (see 
Figure 3). We then applied the Weak Membrane model to sparse data. The parameters were 
kept the same as the other real image. We also compared the results with simply bturing the 
data (no line process). 
The reconstruction from sparse data can be applied to depth data in which case it is usually 
called surface reconstruction. 
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6 A l i g n m e n t  of  visual  module s  w i th  intens i ty  edges  

The integration of different visual modules to improve the detection of the discontinuities can 
also be addressed in this scheme. As suggested by Gamble & Poggio [5] , we can add the 
term 6(vii + hlj)(1 - e i j )  to the Weak Membrane model. Here eij is an external field, for 
example the edge map that is coupled with the stereo field, b%r implementation purposes the 
only consequence of adding this term is the change of the global parameter 7 into the local 
parameter 7~j = 7 - ~(1 - e~j). 

7 Conc lus ion  

We have used statistical mechanics tools to derive deterministic approximations of 
Markov random fields models. In particular we have studied an energy model that 
is suitable for image reconstruction or any field reconstruction. 

We derived a deterministic solution for the mean values of the surface and discontinuity 
fields, consisting of a system of coupled nonlinear equations. The "key" step was the 
elimination (averaging out) of the binary fields (h and v) from the "energy" function. 
An algorithm has been implemented to obtain a solution for this system: it is fully 
parallelizable, iterative and recursive, allowing efficient computation. 

• An understanding of the role of the parameters is possible, 

We have shown that the deterministic algorithm of GNC can be regarded as an approx- 
imation of the gradient descent method with a deterministic annealing schedule to solve 
the mean field equations. 

• We extended the model to deal with sparse data and alignment of the discontinuities of 
different modules with the intensity edges. 

This work suggests a unified framework to connect different methods used on image seg- 
mentation, restoration and surface reconstruction. We show in another paper[8] that several 
deterministic algorithms for image segmentation and reconstruction are approximations of two 
methods to solve the mean field equations: the gradient descent method discussed in this pa- 
per and the parameter space method discussed in [8]. In another paper [6] we analyze possible 
extensions to this model to include propagation of lines. 
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