
OCEANS:
Optimizing Compilers for Embedded Applications*

Bas Aarts 1 , Michel Barreteau 2, Franqois Bodin 3, Peter Brinkhaus 4,
Zbigniew Chamski 3, Henri-Pierre Charles 2, Christine Eisenbeis 5, John Gurd 6,

Jan Hoogerbrugge 1, Ping Hu 5, William Jalby 2, Peter M. W. Knijnenburg 4,
Michael F. P. O'Boyle 7, Erven Rohou 3, Rizos Sakellariou 6, Henk Schepers],
Andr@ Seznec 3, Elena StShr 6, Marco Verhoeven 1, and Harry A. G. Wijshoff 4

1 Philips Research, Information and Software Technology, Prof. Holstlaan 4,
5656 AA Eindhoven, The Netherlands.

2 Laboratoire PRISM, Universit@ de Versailles, 78035 Versailles, France.
3 IRISA, Campus Universitaire de Beaulieu, 35042 Rennes, France.

4 Department of Computer Science, Leiden University, P.O. Box 9512,
2300 RA Leiden, The Netherlands.

5 INRIA, Rocquencourt, BP 105, 78153 Le Chesnay Cedex, France.
6 Department of Computer Science, The University, Manchester M13 9PL, U.K.

Department of Computer Science, The University, Edinburgh EH9 3JZ, U.K.

Abstract . This paper describes the recently funded ESPRIT project
OCEANS. Its aim is to investigate and develop advanced compiler infras-
tructure for embedded VLIW processors, such as the Philips TriMedia.
Such processors promise high performance at low unit cost. This paper
outlines the project's aims~ presents the compiler infrastructure and its
application to a typical case study.

1 Introduction

Increasingly, general-purpose processors are used for embedded applications ra-
ther than customised hardware. As processor cost drops, it becomes more attrac-
tive to use one processor for several applications rather than designing specific
hardware. Multimedia based applications are typical of the growing uses of em-
bedded systems, requiring cost-effective implementation and high performance.
Very Long Instruction Word (VLIW) processors are an attractive solution for
such applications as they provide potentially high performance, due to multiple
parallel functional units, and are relatively cheap to manufacture due to the
simple processor architecture. However, sophisticated optimizing compiler tech-
nology is necessary to exploit the fine-grain parallelism as assembly programming
of complex applications is not feasible. With current compiler technology, the
average number of operations per cycle in VLIW processors is only 2 to 2.5 [1].

* This research is supported by the ESPRIT IV reactive LTR project OCEANS, under
contract No. 22729.

1352

The goal of the OCEANS project is to investigate and develop state-of-the-art
compilation techniques to allow high performance implementations of embedded
applications. In such applications, long compilation times can be afforded as
each embedded processor will usually execute a limited number of applications
throughout its lifetime. This makes it feasible to use more aggressive compilation
techniques than previously considered. A brief presentation of the project is
provided in this paper. In particular, the project objectives are highlighted in
Section 2; Section 3 presents the structure of the compiler, that is, the front-
end, the back-end, and their interaction. Finally, Section 4 examines the possible
implications for the compiler when optimizing codes that are frequently used in
embedded applications.

2 P r o j e c t O b j e c t i v e s

Within the OCEANS project, we intend to meet the following objectives:
High-Level Opt imiza t ions Objec t ives : We aim to develop high-level

restructuring transformations for the exploitation of VLIW processors. These
transformations are primarily designed to enable successful later low-level ex-
ploitation of fine-grain parallelism. The strategy, or sequence of transformations,
employed will be based on a cost model of the processor and will be guided by
feedback from other stages.

Low-Level Opt imiza t ions Objec t ives : We intend to develop low-level re-
structuring techniques, concentrating on a highly retargetable object code sched-
uler that includes optimizing techniques suited for embedded applications and
VLIW architectures. This is achieved through a multifunction testbed tool which
can manipulate assembler code in order to implement low-level code restruc-
turing as well as to provide the high-level code restructurer with information
collected from the assembler code and from instruction profiling.

In teg ra t ion Objec t ives : We intend to integrate the above into a proto-
type system based on iterative compilation, where a close interaction between
the high and low-level exists, allowing better exploitation of available informa-
tion. The validation and the evaluation of the efficiency of this approach will
be carried out in close collaboration with the industrial validator, the compiler
technology group at Philips Research. The main back-end target for this project
is the Philips TriMedia (TM-1) processor [5]. The objective is to show that this
approach yields more efficient code for this particular processor, eventually as
optimal as hand-optimized code, while cutting down the code development time
considerably.

An overall aim of this project is to achieve high retargetability of the code
optimization process. The reason for this is that the cost of the development
of compilers for embedded architectures must be amortized across variations of
hardware implementations using the same instruction set architecture.

3 T h e O C E A N S C o m p i l e r

The OCEANS compiler consists of a front-end, incorporating a high-level re-
structuring tool, MT1, and a back-end, incorporating a system for assembly

1353

Size of basic/blocks, f a ~ o . - t , h , 1".~"'~ Data~Dependence Information,
Register[pressure, ~ ~' ~ I Control Flow Information,

. j _
,' L o w - l e v e l I o p t i m i z a t i o n / , . ~--"--, "--~-'- , ' ~ / ~ ' ~ ' - ~ ,, Profihng
, r - -] ~ ~ j / ~ l Information

, ',

Fig. 1. The OCEANS compiler.

language transformation and optimization, Salto; the latter makes use of PiLo
and LoRa, which are packages for software pipelining and loop register alloca-
tion, respectively. Their interaction is illustrated in Figure 1. It is intended that
quantitative (e.g. number of instructions, slot occupancy, execution time) and
qualitative information (e.g. pipelining failed due to register pressure) be used
to guide the compilation process. By using an accurate cost model, the system
can iterate until an acceptable level of performance is achieved.

The main back-end target of the OCEANS compiler is the Philips TriMedia
(TM-1) processor [5], a state-of-the-art general purpose microprocessor, which
has been enhanced to boost multimedia performance. At the heart of it, there
is a 400 MB/s bus, which connects autonomous modules that include video-in,
video-out, audio-in, audio-out, an MPEG variable length decoder, an image co-
processor, a communications block and a VLIW processor. The VLIW processor
includes a rich instruction set with many extensions for handling multimedia,
and is capable of sustaining 5 RISC operations per clock cycle at 100 MHz. It
contains 27 functional units which are pipelined ranging from 1 to 3 deep. The
processor also includes 32 KB of instruction cache memory and 16KB of data
cache memory.

The MT1 Restructuring Compiler: Over the past few years, a full Fortran 77
compiler, called MT1, has been developed at Leiden University [2]. An impor-
tant aspect of the MT1 compiler is that it provides a facility for specifying

1354

program transformations that can be applied interactively. These are defined
by an input pattern, an output pattern and a condition under which the trans-
formation can be applied. Input patterns may contain meta-variables that are
bound to program expressions or statements. These meta-variables may be used
in specifying the output pattern and the condition. Moreover, functions that act
directly on the internal representation may be defined and may be used in the
output pattern and the condition. Conditions typically check for the existence
of dependences between certain parts of the input pattern.

SALTO: A Retargetable System for Assembly Language Transformation and Op-
timization: Salto [7] is a retargetable framework for developing a whole spec-
trum of tools that manipulate assembly language programs. The objective of
the system is to provide the user with a single environment that facilitates the
implementation of performance tuning tools for low-level codes. This set of tools
includes assembly code schedulers, profiling, and tracing tools. Salto is retar-
getable with respect to instruction sets and hardware details.

Salto consists of three parts; a kernel, a machine description file and an op-
timization or instrumentation algorithm. The kernel performs the parsing of the
assembly code and of the machine description file, and the construction of the
internal representation. The internal representation is then available via the user
interface. The machine description file provides a model of hardware configura-
tion and the complete description of the instruction set, including per-instruction
resource reservation tables. The optimization or instrumentation algorithm is
supplied by the user, via a user-supplied function Salto__hook.

The user interface of Salto is object-oriented and provides classes to represent
a complete description of the control-flow graph of the program and a model of
the target architecture.

PiLo and LoRa: PiLo and LoRa are packages for software pipelining and loop
register allocation developed at INRIA Rocquencourt. PiLo has one heuristic
mode based on the decomposed software pipelining algorithm [8], as well as one
exact mode for code scheduling under register constraints based on an integer
programming formulation. LoRa is a package that optimally allocates the loop
variables into registers while controlling loop unrolling when necessary [6]. PiLo
and Lora are connected to Salto via an interface describing architectural and
dependency constraints among instructions.

Integration: In order to implement an iterative compilation process, MT1 con-
structs two output files for each input program. One consists of sequential TM-1
assembly code, to be scheduled by Salto, and the other consists of the result of
program analysis by MTI, written in a format that can be read by Salto. This file
includes high-level dependence information and information about loop struc-
tures. It also contains questions for Salto, such as "How does software pipelining
perform on this loop?". After code scheduling by Salto and possibly profiling
the resulting code, answers to these questions are used in the next compilation
round and drive the selection of transformations and strategies to be applied.

1355

4 A C a s e S t u d y

In this section we present a case study of the optimizations a compiler can per-
form on multimedia applications. We consider four sets of benchmark programs,
publically available on the Web. They consist of an MPEG2 encoder/decoder
for converting uncompressed video frames into MPEG1/2' arid vice versa, an
MPEG1/2 player, an implementation of the CCITT G.7tI,~G.721, and G.723
voice compression standards, and a very low bit-rate video.encoder producing
H.263 bitstreams. Profiling information has been obtained Using gprof and fur-
ther analysed using tcov. Although there are differences between the computa-
tionally most expensive functions of various programs, a regular pattern can be
observed: typically, such functions contain double nested loops, having a rather
small number of iterations, and embodying only a few statements mainly involv-
ing operations between array elements. For a more concrete example, consider
the code fragment shown below taken from a function of the MPEG2 encoder
in which approximately 67% of the program's execution time is spent.

for (j=O; j<h; j++)
{ for (i=O; i<16; i++)

{ v = ((unsigned int)(pl[i]+pl[i+l]+l)>>l) - p2[i];
if (v >= O) s += v; else s -= v;

}
pl+= ix; p2+= ix;

}

For typical RISC instruction sets, the innermost loop will require 14 instruc-
tions to execute one iteration. If we assume a latency of 3 cycles for load/store
and a delay of 3 cycles for a jump, a naive sequential schedule would require 336
cycles to execute the entire i loop. Conversely, if we assume that a scheduler
was able to utilise fully all five function units, without regard to resource and
dependence constraints, and the latency of loads and jumps was masked, then
the minimal execution time is 45 cycles. Thus, we have an upper and a lower
bound on expected performance.

Modulo scheduling with an initiation interval I I = 5 cycles generates code
with prologue and epilogue costs of 5 cycles each, giving a total of 80 cycles for
the inner loop. If more sophisticated scheduling with I I = 4 is used, then the
inner loop takes 68 cycles. The prologue and epilogue costs increase in this case
to 6 and 10 cycles respectively. However, even this optimized schedule takes 50%
longer to execute than our ideal lower bound. This is largely due to the prologue
and epilogue overhead for small iteration counts. Unlike many scientific bench-
marks, multimedia application codes are characterised by short inner loops, and
therefore additional techniques are required to improve function unit utilisation.

Since scheduling with I I = 3 is not possible due to dependence constraints,
we cannot improve the performance by reducing I I further and other techniques
should be devised. Unroll and jam [3] is a technique which may be used to in-
crease the size of inner loop bodies, thus reducing the loop overhead. In [4], a
quantitative approach to the application of this technique is described showing

1356

improvements in most cases when applied to the Perfect Benchmarks. Unrolling
the j loop once in this example and fusing (or jamming) the resulting two inner
loops allows the new inner loop body to be scheduled with I I = 6 and a prologue
and an epilogue cost of 6 cycles each. Thus, two iterations of the outer loop take
96 cycles or 48 cycles for one iteration - just 6% longer than the lower bound.
This has been achieved due to the greater freedom in scheduling more instruc-
tions and fewer jump instructions. This illustrates the importance of looking
beyond simple pipelining of inner loops and applying high-level transformations
when examining multimedia applications.

The above analysis, although encouraging, has not considered the impact of
cache misses. Typical cache lines can hold 64 bytes or 16 words and therefore
2 new cache lines will be loaded on each iteration of the j loop. If we assume
an 11 cycle delay per cache miss then the execution time for the inner loop will
increase to 102, 90 or 70 cycles depending on the scheduling employed. In order
that any gains from exploiting instruction level parallelism are not lost due to
cache misses, it is necessary to prefetch the cache line towards the end of the
execution of the inner loop. Thus, careful attention to prefetching is needed.

5 Conclusion

A brief overview of the OCEANS project has been presented. The main innova-
tion of this project is the use of an iterative approach to compilation applying
both high and low-level optimizations. These are guided by information gained
from either level as well as previous compilation runs. A small example illustrated
the need for both high-level transformations and low-level scheduling when opti-
mizing typical multimedia codes, and indicated that VLIW architectures, given
sufficient compiler support, are capable of delivering high performance.

References

1. G. Araujo et al. Challenges in Code Generation for Embedded Processors. In Code
Generation for Embedded Processors. Kluwer Academic Publishers, pp. 49-64, 1995.

2. A. J. C. Bik, H. A. G. Wijshoff. MTI: A Prototype Restructuring Compiler. Tech-
nical Report 93-32, Department of Computer Science, Leiden University, Oct. 1993.

3. S. Cart, K. Kennedy. Improving the ratio of memory operation to floating-point
operations in loops. ACM ToPLaS, 16(6), Nov. 1994, pp. 1768-1810.

4. S. Carr. Combining Optimizations for Cache and Instruction-Level Parallelism. Pro-
ceedings of PACT'96.

5. B. Case. Philips Hope to Displace DSPs with VLIW. Microprocessor Report, 8(16),
5 Dec. 1994, pp. 12-15. See also http://www.trimedia-philips.com/

6. C. Eisenbeis, S. Lelait, B. Marmol. The meeting graph: a new model for loop cyclic
register allocation. Proceedings of PACT'95.

7. E. Rohou, F. Bodin, A. Seznec, G. Le Fol, F. Charot, F. Raimbault. SALTO: Sys-
tem for Assembly-Language Transformation and Optimization. Technical Report
1032, IRISA, June 1996. See also http://www.irisa.fr/caps

8. J. Wang, C. Eisenbeis~ M. Jourdan, B. Su. Decomposed Software Pipelining: a New
Perspective and a New Approach. International Journal on Parallel Processing,
22(3), 1994, pp. 357-379.

