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Abstract .  This paper describes the recently funded ESPRIT project 
OCEANS. Its aim is to investigate and develop advanced compiler infras- 
tructure for embedded VLIW processors, such as the Philips TriMedia. 
Such processors promise high performance at low unit cost. This paper  
outlines the project's aims~ presents the compiler infrastructure and its 
application to a typical case study. 

1 Introduction 

Increasingly, general-purpose processors are used for embedded applications ra- 
ther than customised hardware. As processor cost drops, it becomes more attrac- 
tive to use one processor for several applications rather than designing specific 
hardware. Multimedia based applications are typical of the growing uses of em- 
bedded systems, requiring cost-effective implementation and high performance. 
Very Long Instruction Word (VLIW) processors are an attractive solution for 
such applications as they provide potentially high performance, due to multiple 
parallel functional units, and are relatively cheap to manufacture due to the 
simple processor architecture. However, sophisticated optimizing compiler tech- 
nology is necessary to exploit the fine-grain parallelism as assembly programming 
of complex applications is not feasible. With current compiler technology, the 
average number of operations per cycle in VLIW processors is only 2 to 2.5 [1]. 

* This research is supported by the ESPRIT IV reactive LTR project OCEANS, under 
contract No. 22729. 
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The goal of the OCEANS project is to investigate and develop state-of-the-art 
compilation techniques to allow high performance implementations of embedded 
applications. In such applications, long compilation times can be afforded as 
each embedded processor will usually execute a limited number of applications 
throughout its lifetime. This makes it feasible to use more aggressive compilation 
techniques than previously considered. A brief presentation of the project is 
provided in this paper. In particular, the project objectives are highlighted in 
Section 2; Section 3 presents the structure of the compiler, that is, the front- 
end, the back-end, and their interaction. Finally, Section 4 examines the possible 
implications for the compiler when optimizing codes that are frequently used in 
embedded applications. 

2 P r o j e c t  O b j e c t i v e s  

Within the OCEANS project, we intend to meet the following objectives: 
High-Level  Opt imiza t ions  Objec t ives :  We aim to develop high-level 

restructuring transformations for the exploitation of VLIW processors. These 
transformations are primarily designed to enable successful later low-level ex- 
ploitation of fine-grain parallelism. The strategy, or sequence of transformations, 
employed will be based on a cost model of the processor and will be guided by 
feedback from other stages. 

Low-Level  Opt imiza t ions  Objec t ives :  We intend to develop low-level re- 
structuring techniques, concentrating on a highly retargetable object code sched- 
uler that includes optimizing techniques suited for embedded applications and 
VLIW architectures. This is achieved through a multifunction testbed tool which 
can manipulate assembler code in order to implement low-level code restruc- 
turing as well as to provide the high-level code restructurer with information 
collected from the assembler code and from instruction profiling. 

In teg ra t ion  Objec t ives :  We intend to integrate the above into a proto- 
type system based on iterative compilation, where a close interaction between 
the high and low-level exists, allowing better exploitation of available informa- 
tion. The validation and the evaluation of the efficiency of this approach will 
be carried out in close collaboration with the industrial validator, the compiler 
technology group at Philips Research. The main back-end target for this project 
is the Philips TriMedia (TM-1) processor [5]. The objective is to show that this 
approach yields more efficient code for this particular processor, eventually as 
optimal as hand-optimized code, while cutting down the code development time 
considerably. 

An overall aim of this project is to achieve high retargetability of the code 
optimization process. The reason for this is that the cost of the development 
of compilers for embedded architectures must be amortized across variations of 
hardware implementations using the same instruction set architecture. 

3 T h e  O C E A N S  C o m p i l e r  

The OCEANS compiler consists of a front-end, incorporating a high-level re- 
structuring tool, MT1, and a back-end, incorporating a system for assembly 



1353 

Size of basic/blocks, f a ~ o . - t , h ,  1".~"'~ Data~Dependence Information, 
Register[pressure, ~ . . . . . . . .  ~' ~ I Control Flow Information, 

. . . .  . . . . . . . . .  j _  
,' L o w - l e v e l  I o p t i m i z a t i o n  / , . ~--"--, "--~-'- . . . . . .  , ' ~ / ~ ' ~ ' - ~  ,, Profihng 
, r - - ] ~ ~ j /  ~ l Information 

, ', 

Fig. 1. The OCEANS compiler. 

language transformation and optimization, Salto; the latter makes use of PiLo 
and LoRa, which are packages for software pipelining and loop register alloca- 
tion, respectively. Their interaction is illustrated in Figure 1. It is intended that  
quantitative (e.g. number of instructions, slot occupancy, execution time) and 
qualitative information (e.g. pipelining failed due to register pressure) be used 
to guide the compilation process. By using an accurate cost model, the system 
can iterate until an acceptable level of performance is achieved. 

The main back-end target of the OCEANS compiler is the Philips TriMedia 
(TM-1) processor [5], a state-of-the-art general purpose microprocessor, which 
has been enhanced to boost multimedia performance. At the heart of it, there 
is a 400 MB/s bus, which connects autonomous modules that  include video-in, 
video-out, audio-in, audio-out, an MPEG variable length decoder, an image co- 
processor, a communications block and a VLIW processor. The VLIW processor 
includes a rich instruction set with many extensions for handling multimedia, 
and is capable of sustaining 5 RISC operations per clock cycle at 100 MHz. It 
contains 27 functional units which are pipelined ranging from 1 to 3 deep. The 
processor also includes 32 KB of instruction cache memory and 16KB of data  
cache memory. 

The MT1 Restructuring Compiler: Over the past few years, a full Fortran 77 
compiler, called MT1, has been developed at Leiden University [2]. An impor- 
tant  aspect of the MT1 compiler is that  it provides a facility for specifying 
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program transformations that can be applied interactively. These are defined 
by an input pattern, an output pattern and a condition under which the trans- 
formation can be applied. Input patterns may contain meta-variables that are 
bound to program expressions or statements. These meta-variables may be used 
in specifying the output pattern and the condition. Moreover, functions that act 
directly on the internal representation may be defined and may be used in the 
output pattern and the condition. Conditions typically check for the existence 
of dependences between certain parts of the input pattern. 

SALTO: A Retargetable System for Assembly Language Transformation and Op- 
timization: Salto [7] is a retargetable framework for developing a whole spec- 
trum of tools that manipulate assembly language programs. The objective of 
the system is to provide the user with a single environment that facilitates the 
implementation of performance tuning tools for low-level codes. This set of tools 
includes assembly code schedulers, profiling, and tracing tools. Salto is retar- 
getable with respect to instruction sets and hardware details. 

Salto consists of three parts; a kernel, a machine description file and an op- 
timization or instrumentation algorithm. The kernel performs the parsing of the 
assembly code and of the machine description file, and the construction of the 
internal representation. The internal representation is then available via the user 
interface. The machine description file provides a model of hardware configura- 
tion and the complete description of the instruction set, including per-instruction 
resource reservation tables. The optimization or instrumentation algorithm is 
supplied by the user, via a user-supplied function Salto__hook. 

The user interface of Salto is object-oriented and provides classes to represent 
a complete description of the control-flow graph of the program and a model of 
the target architecture. 

PiLo and LoRa: PiLo and LoRa are packages for software pipelining and loop 
register allocation developed at INRIA Rocquencourt. PiLo has one heuristic 
mode based on the decomposed software pipelining algorithm [8], as well as one 
exact mode for code scheduling under register constraints based on an integer 
programming formulation. LoRa is a package that optimally allocates the loop 
variables into registers while controlling loop unrolling when necessary [6]. PiLo 
and Lora are connected to Salto via an interface describing architectural and 
dependency constraints among instructions. 

Integration: In order to implement an iterative compilation process, MT1 con- 
structs two output files for each input program. One consists of sequential TM-1 
assembly code, to be scheduled by Salto, and the other consists of the result of 
program analysis by MTI, written in a format that can be read by Salto. This file 
includes high-level dependence information and information about loop struc- 
tures. It also contains questions for Salto, such as "How does software pipelining 
perform on this loop?". After code scheduling by Salto and possibly profiling 
the resulting code, answers to these questions are used in the next compilation 
round and drive the selection of transformations and strategies to be applied. 
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4 A C a s e  S t u d y  

In this section we present a case study of the optimizations a compiler can per- 
form on multimedia applications. We consider four sets of benchmark programs, 
publically available on the Web. They consist of an MPEG2 encoder/decoder 
for converting uncompressed video frames into MPEG1/2' arid vice versa, an 
MPEG1/2 player, an implementation of the CCITT G.7tI,~G.721, and G.723 
voice compression standards, and a very low bit-rate video.encoder producing 
H.263 bitstreams. Profiling information has been obtained Using gprof and fur- 
ther analysed using tcov. Although there are differences between the computa- 
tionally most expensive functions of various programs, a regular pattern can be 
observed: typically, such functions contain double nested loops, having a rather 
small number of iterations, and embodying only a few statements mainly involv- 
ing operations between array elements. For a more concrete example, consider 
the code fragment shown below taken from a function of the MPEG2 encoder 
in which approximately 67% of the program's execution time is spent. 

for (j=O; j<h; j++) 
{ for (i=O; i<16; i++) 

{ v = ( (unsigned int)(pl[i]+pl[i+l]+l)>>l ) - p2[i]; 
if (v >= O) s += v; else s -= v; 

} 
pl+= ix; p2+= ix; 

} 

For typical RISC instruction sets, the innermost loop will require 14 instruc- 
tions to execute one iteration. If we assume a latency of 3 cycles for load/store 
and a delay of 3 cycles for a jump, a naive sequential schedule would require 336 
cycles to execute the entire i loop. Conversely, if we assume that a scheduler 
was able to utilise fully all five function units, without regard to resource and 
dependence constraints, and the latency of loads and jumps was masked, then 
the minimal execution time is 45 cycles. Thus, we have an upper and a lower 
bound on expected performance. 

Modulo scheduling with an initiation interval I I  = 5 cycles generates code 
with prologue and epilogue costs of 5 cycles each, giving a total of 80 cycles for 
the inner loop. If more sophisticated scheduling with I I  = 4 is used, then the 
inner loop takes 68 cycles. The prologue and epilogue costs increase in this case 
to 6 and 10 cycles respectively. However, even this optimized schedule takes 50% 
longer to execute than our ideal lower bound. This is largely due to the prologue 
and epilogue overhead for small iteration counts. Unlike many scientific bench- 
marks, multimedia application codes are characterised by short inner loops, and 
therefore additional techniques are required to improve function unit utilisation. 

Since scheduling with I I  = 3 is not possible due to dependence constraints, 
we cannot improve the performance by reducing I I  further and other techniques 
should be devised. Unroll and jam [3] is a technique which may be used to in- 
crease the size of inner loop bodies, thus reducing the loop overhead. In [4], a 
quantitative approach to the application of this technique is described showing 
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improvements in most cases when applied to the Perfect Benchmarks. Unrolling 
the j loop once in this example and fusing (or jamming) the resulting two inner 
loops allows the new inner loop body to be scheduled with I I  = 6 and a prologue 
and an epilogue cost of 6 cycles each. Thus, two iterations of the outer loop take 
96 cycles or 48 cycles for one iteration - just 6% longer than the lower bound. 
This has been achieved due to the greater freedom in scheduling more instruc- 
tions and fewer jump instructions. This illustrates the importance of looking 
beyond simple pipelining of inner loops and applying high-level transformations 
when examining multimedia applications. 

The above analysis, although encouraging, has not considered the impact of 
cache misses. Typical cache lines can hold 64 bytes or 16 words and therefore 
2 new cache lines will be loaded on each iteration of the j loop. If we assume 
an 11 cycle delay per cache miss then the execution time for the inner loop will 
increase to 102, 90 or 70 cycles depending on the scheduling employed. In order 
that any gains from exploiting instruction level parallelism are not lost due to 
cache misses, it is necessary to prefetch the cache line towards the end of the 
execution of the inner loop. Thus, careful attention to prefetching is needed. 

5 Conclusion 

A brief overview of the OCEANS project has been presented. The main innova- 
tion of this project is the use of an iterative approach to compilation applying 
both high and low-level optimizations. These are guided by information gained 
from either level as well as previous compilation runs. A small example illustrated 
the need for both high-level transformations and low-level scheduling when opti- 
mizing typical multimedia codes, and indicated that VLIW architectures, given 
sufficient compiler support, are capable of delivering high performance. 
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