
A Methodology for Compilation
of High-Integrity Real-Time Programs

Karl Lermer Colin Fidge

Software Verification Research Centre
School of Information Technology

The University of Queensland

Abstract . A practical methodology for compilation of trustworthy real-
time programs is introduced, tt combines new program development and
timing analysis techniques with traditional compilation and assembly
technologies.

1 I n t r o d u c t i o n

Programming real-time systems in a high-level language is difficult because it is
the machine code generated by the compiler and assembler, not the high-level
source program, that ultimately determines timing correctness. Contemporary
compilers make no attempt to generate code with predictable timing characteris-
tics [8], undermining their value for real-time applications. Consequently, safety-
critical real-time programs are often written in assembly language, forsaking the
well-established productivity benefits of high-level language programming.

The Topaz project is currently applying formal methods to compilation of
trustworthy real-time programs. Topaz comprises

- a real-time refinement theory for formally translating high-level programming
language 'specifications' to time-verified machine code 'implementations',
and

- a practical methodology for instantiating this theory in existing, or planned,
programming environments.

In this article we introduce the second of these two aspects, the Topaz method-
ology, via a small example.

2 T h e T o p a z m e t h o d o l o g y

As shown in Figure 1, the Topaz methodology extends traditional high-level lan-
guage (HLL) program compilation. The program development, compilation and
assembly phases are extensions of their traditional (untimed) counterparts. The
timing path analysis and timing verification phases are new. Below we illustrate
key aspects of the methodology using a small "transmitter" example [1].

1275

Real-time 1
specification

Program
cvelopment 1

HLL program with
timing directives

[Compilation I [fTimingpathanalysis }

Assembler [I Timing path
code with[~constralnts timing points~

Assembly ~ _[Timing
J Machine [verification]
code and [

timing points [machine[Time-verifiedcode

Fig. 1. Overview of the Topaz real-time compilation strategy.

2.1 P r o g r a m deve lopment

Figure 2 shows the time-annotated HLL program fragment for our case study,
in guarded command language notation. Hayes and Utting explain in detail how
this program can be formally developed using stepwise refinement [1].

Its functional behaviour is straightforward. It assumes the existence of an ar-
ray msg, of length size, containing a message to be transmitted. Special variable
out is a memory-mapped output location. The program fragment of interest,
between labels A and D, simply writes each character in msg to out.

The required timing behaviour is expressed through the directives labelled
A, B, C and D. Statement A is an assumption [6] that we may expect to be
true when this program segment starts executing. Let start be the absolute
time by which the first character must be available, and early be the minimum
duration before start at which the program fragment begins. Statement A tells
us that initially the current time, denoted by imaginary specification variable
now, is expected to be at least early time units before start. No executable
code is generated for assumptions [6], but we may use them when analysing the
program.

Directive B is a so-called real-time coercion [1]. Let duration chsep be the
required separation of characters transmitted. The deadl ine directive occurs
immediately after transmission of the n th character, and tells us that we must
reach this point no later than n times chsep units from time start. This de-

1276

[[var size : nat;
msg: array(O.. (size -- 1)) of char;
out : char *

A: {now + early <<. start};
][v a r n : nat •

n := 0;
do n ~ size----r

out := msg(n);
B: deadl ine start + chsep * n;
C: delay unt i l s tar t 4- chsep • n 4- chdef;

n : = n + l
od

]1;
D: deadl ine start + chsep * size

Fig. 2. High-level language program annotated with timing directives [1].

fines the initial availability of the n th output character, since it constrains the
preceding assignment statement to finish before this time.

Statement C is a conventional d e l a y u n t i l statement of the form found in a
programming language like Ada 95 [2]. Let chdef be the minimum duration for
which each output character must be stably defined. The delay statement tells
us that we may pass this point no earlier than n times chsep plus chdef units
from time start. This defines the final availability of the n th output character,
since it prevents the program from performing any actions that may change out
until after this time.

Finally, s tatement D is another coercion, this time placing an overall timing
constraint on the whole code segment to finish within a time proportional to the
number of characters in msg from start.

2.2 T i m i n g p a t h ana lys i s

Hayes and Utting explain how the timing constraints expressed in Figure 2 can
be simplified using control flow analysis [1]. All control paths between significant
pairs of timing directives can be statically identified, and an overall worst-case
execution t ime constraint for each such path defined. This reduces the timing
requirements to simple execution time bounds on 'straight-line' code segments.

For the example in Figure 2, Hayes and Utting identify the following worst-
case execution time constraints.

W C E T (A , , ~ D) = early

W C E T (C, ,~B) = chsep - chdef
W C E T (A ' , ~ B) = early

W C E T (C-,.*D) = chsep - chdef

1277

Path A.,~D is that followed when the loop is not entered at all, i.e., when
size is 0. In this case the expression at point D simplifies to 'start' , so the time
available to get from A to D may be as low as 'early'.

Path A..~B is the time taken to transmit the first character, including the
loop initialisation activities. In this case n is 0 at point B, so again as few as
early t ime units may be available to reach this point from A.

Path C-.~B is the time taken to iterate, after the end of the stable period
for the n th character at t ime start + chsep * n + chdef, up to the beginning of
the stable period for the (n + 1) th character , and includes the time required
to evaluate the (true) loop guard. In this case n is incremented in going from
C to B, so 'n + 1 ~ must be substituted for 'n ' in the expression at point B.
Simplification then yields the overall constraint shown above.

Path C-.~D is the time required to exit the program after the last character
has been transmitted at t ime start + chsep * (size - 1) + chdef, and includes
the overhead of evaluating the (false) guard for the last time. In this case it is
known at point C that n equals size - 1.

The final machine code program must be proven to satisfy these worst-case
path constraints. IIowever, it is not necessary to check the timing behaviour
of 'best-case' paths, such as B-,~C, because their correctness is guaranteed by
correct implementation of the d e l a y u n t i l statement.

2.3 Compilation

Figure 3 shows a MIPS R3000 [3] assembler code program developed from the
fiLL program in Figure 2. Here size and msg are symbolic constants representing
local addresses for these variables; body, delay and lest are symbolic instruction
addresses; chsep and dt are compile-time constants, where dt equals start +
chdef; and clock and out are hardware-dependent global addresses used to read
the current absolute time and write to the output location, respectively (we
assume an on-board synchronous clock that can be read with a normal load
instruction, and a memory-mapped output location). Variables St0 to $t7 are
symbolic register names [3].

Keep in mind that, due to the way instructions overlap in a RISC pipeline,
the instruction following a branch is always executed, whether the branch is
taken or not [3]. Also the result of a load from memory that takes more than
one cycle is not immediately available to the following instruction [3].

Timing points corresponding to the labelled directives in Figure 2 are promi-
nently marked. A, B and D mark the points where upper timing bounds oc-
curred. No code is generated for these constructs. C a and C ~ mark the begin-
ning and end of the d e l a y u n t i l statement, respectively. The compiler generates
several instructions to implement the lower timing bound required by tILL state-
ment C. Since this statement is no longer atomic we separately mark both its
beginning and end. The functional code appears in paths A-,zB and Cw-,~D.

The d e l a y u n t i l implementation in path C~'.~C ~ is a busy wait on label
delay. At each iteration it reads the clock value, and compares it with the time
at which the delay expires.

1278

body :

delay :

test :

l a
lb
li

lb
lb

J
hop

lb
nop

sb

lb
hop
sub

bgtz
nop
add

add
bne
add

A m

$tO, msg
$tl, size
$t2,0
$t3, dt
$t4, chsep
test

St6,($ts)

$t6, out
B ~

C a ~
$t7, clock

StT,$t3,$t7
$t7, delay

$t3, $t3, $t4

$t2, $t2, 1
$tl, $t2, body
$t5, $t2, St0

D

tO := msg base address
t l := size (length of msg)
t2 := 0 (loop counter n)
t3 := first delay time (start q- chdef)
t4 := constant chsep
goto loop test
jump delay slot
t6 := msg(n)
load delay slot
output location := msg(n)

t7 := current time
load delay slot
t7 := delay time - current time
busy wait if current time < delay time
branch delay slot
next delay time := delay time + chsep

increment n
goto loop body ff n #- size
address of rasg(n) := msg base + n

Fig. 3. MIPS R3000 assembler code for the high-level program in Figure 2.

2.4 A s s e m b l y

Figure 4 shows binary machine code generated for our program by the SPIM
assembler [4]. The first column contains instruction addresses, and the second
the instructions themselves. A mnemonic version is shown on the right.

Symbolic constants, addresses and register names have been substi tuted with
particular values. More significantly, however, some assembler instructions have
generated several machine code instructions. For instance, the first assembler
' load byte ' f rom Figure 3 puts the value of local variable size in register ' $ t l ' .
The equivalent machine code consists of two instructions: firstly, a ' load upper
immedia te ' stores da ta area base pointer 4097 in machine register number 1;
secondly, a machine-level load byte instruction stores the contents of memory
location 4097 plus offset 5 in register number 9 (the register number correspond-
ing to name ' $ t l ' [3]). It is for this reason tha t we can undertake accurate t iming
verification only on the final machine code program.

To support the t iming verification phase some way of associating t iming
points with particular instructions is needed. The assembler must generate a
table associating t iming point A with address 0x00400020, point B with address
0x00400054, and so on.

1279

A m
[0x00400020] 0x3c081001 lui$8,4097
[0x00400024] 0x3c011001 lui$1,4097
[0x00400028] 0x80290005 lb $9,5($1)
[0x0040002c] Ox340aO000 ori $10,$0,0
[0x00400030] 0x3c011001 lu|$1,4097
[0x00400034] Ox802bO006 lb $11,6($1)
[0x00400038J 0x3c011001 lui$1,4097
[0x0040003c] 0x802c0007 lb $12,7($1)
[0x00400040] 0x0810001c j 0x00400070
[0x00400044] 0x00000025 or $0,$0,$0
[0x00400048] 0x81ae0000 lb $14,0($13)
[0x0040004c] 0x00000025 or $0,$0,$0
[0x00400050] 0xa38eS000 sb $14,-32768($28)

- - B
_ _ C a

[0x00400054] 0x838f8001 lb $15,-32767($28)
[0x00400058] 0x00000025 or $0,$0,$0
[0x0040005c] OxO16f7822 sub $15,$11,$15
[0x00400060] OxldeOfffd bgtz $15,-12
[0x004000643 0x00000025 or SO,SO, SO
[0x00400068] 0x016c5820 add $11,$11,$12

_ _ C ~ _ _

[0x0040006c] 0x214a0001 addi $10,$10,1
[0x00400070] 0xl52afff6 bne $9, $10, -40
[0x00400074] 0x01486820 add $13, $10, $8

- - D

Fig. 4. MIPS R3000 machine code for the assembler program in Figure 3.

2 . 5 T i m i n g v e r i f i c a t i o n

The timing verification phase checks the timing behaviour of machine code paths
against the timing constraints derived from the HLL timing directives. For the
purposes of this paper we used the SPIM $20 simulator [4] to verify the timing
behaviour of the machine code program in Figure 4.

For clarity below, assume there are no caching overheads (although the SPIM
tool is capable of simulating such overheads [7]). We can then treat all machine
code instructions in Figure 4 as taking exactly one cycle. It is then merely nec-
essary to count all instructions a path contains. Let numi be the number of
instructions for each path in Figure 4:

,~umi(A-,~D) = 12 ,u , , i (A--~B) = 15

We must then compare the number of instructions in each machine-level path
with the W C E T timing constraints calculated during the HLL timing analysis

1280

phase (Section 2.2). This tells us that we must satisfy the following four equa-
tions. Let constant t be the elapsed 'real' t ime per instruction, calculated as the
number of cycles per instruction multiplied by the machine-specific elapsed time
per processor cycle [3]. The 'lateness' value is explained below.

numi(A-,~D)
numi(A-,.* B)

(numi(CW...,B) + lateness(C))
(n mi(D) + lateness(C))

• t <~ early
• t <~ early
• t <~ chsep - chdef
• t <~ chsep - chde]

We are not required to prove any timing properties of path B..~C ~, which
ends with a de l ay u n t i l statement. Nevertheless, the possible 'lateness' of this
path must be considered in analysing the following paths C-..~B and C-..*D. This
is because any practical implementation of the HLL statement ' de l ay u n t i l E '
cannot guarantee to finish at exactly time E. Thus lateness above represents the
number of instructions by which a path ending in a de l ay u n t i l statement may
exceed its specified finishing time. For the implementation of statement C above
we can calculate this as follows.

Firstly, if chdef is very small, then the delay time may pass while we are still
executing the first few instructions following point C a . In the worst case every
instruction executed between C a and C w contributes to an overrun.

l a t encs spassed=6- - [S~-~ j

It takes 6 cycles to get from C a to C ~ when the 'delay' loop in Figure 3 does
not iterate. However, we subtract the number of whole processor cycles that can
be completed before duration chdef expires, because these do not contribute to
lateness.

Secondly, when chdef is large, the de l ay u n t i l implementation in Figure 3
may overrun by going around the 'delay' loop too often. The worst case is where
the delay period expires fractionally after reading the time from the hardware
clock. In this situation it may take up to two entire iterations beyond the desired
finishing time to reach point C ~.

latenesstoops = 11
Thus, since the actual value of chdef is unknown, the most we can say about
lateness is as follows.

lateness(C) = max { lateneSSpassed, latenessloops } = 11

Substituting these calculated execution times into the WCET constraints,
and simplifying, yields the following inequalities.

15 • t <<. early 17 • t <<. chsep - chdef
If the programmer-supplied values for durations early, chsep and chdef, together
with the machine-specific constant t, satisfy these equations then the program
in Figure 4 can be considered to conform with the programmer's t iming require-
merits.

1281

3 C o n c l u s i o n

The Topaz methodology for development of verified real-time machine code in-
tegrates recent advances in real-time program specification and timing analysis
into traditional compiler technology. At the time of writing we are furthering the
approach through the development of a formal model for representing program
compilation [5].

Acknowledgements We are indebted to Ian Hayes, Mark Utting, Peter Kearney
and Steve Grundon for inspiring many of the ideas used in this paper. This work
is funded by Australian Research Council grant A49600176.

R e f e r e n c e s

1. I . J . Hayes and M. Utting. Coercing real-time refinement: A transmitter.
In D.J . Duke and A.S. Evans, editors, BCS-FACS Northern Formal Meth-
ods Workshop, Electronic Workshops in Computing. Springer-Verlag, 1997.
http://www.springer.co.uk/ewic/workshops/NFM96/.

2. ISO. Ada Reference Manual: Language and Standard Libraries, 6.0 edition, Decem-
ber 1994. International Standard ISO/IEC 8652:1995.

3. G. Kane and 3. Heinrich. MIPS RISC Architecture. Prentice-Hall, 1992.
4. J. R. Larus. Assemblers, linkers and the SPIM simulator. In J. L. Hennessy and

D. A. Patterson, editors, Computer Organization and Design-- The Hardware / Soft-
ware Interface. Morgan Kaufmann, 1994.

5. K. Lermer and C. J. Fidge. Compilation as refinement. In Proc. Formal Methods
Pacific '97, Wellington, New Zealand, July 1997. To appear.

6. C. Morgan. Programming from Specifications. Prentice-Hall, second edition, 1994.
7. A. Rogers and S. Rosenberg. Cycle Level SPIM. Department of Computer Science,

Princeton University, July 1993.
8. K. G. Shin and P. Ramanathan. Real-time computing: A new discipline of computer

science and engineering. Proceedings of the IEEE, 82(1):6-24, January 1994.

