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Abstract .  A practical methodology for compilation of trustworthy real- 
time programs is introduced, tt combines new program development and 
timing analysis techniques with traditional compilation and assembly 
technologies. 

1 I n t r o d u c t i o n  

Programming real-time systems in a high-level language is difficult because it is 
the machine code generated by the compiler and assembler, not the high-level 
source program, that ultimately determines timing correctness. Contemporary 
compilers make no attempt to generate code with predictable timing characteris- 
tics [8], undermining their value for real-time applications. Consequently, safety- 
critical real-time programs are often written in assembly language, forsaking the 
well-established productivity benefits of high-level language programming. 

The Topaz project is currently applying formal methods to compilation of 
trustworthy real-time programs. Topaz comprises 

- a real-time refinement theory for formally translating high-level programming 
language 'specifications' to time-verified machine code 'implementations', 
and 

- a practical methodology for instantiating this theory in existing, or planned, 
programming environments. 

In this article we introduce the second of these two aspects, the Topaz method- 
ology, via a small example. 

2 T h e  T o p a z  m e t h o d o l o g y  

As shown in Figure 1, the Topaz methodology extends traditional high-level lan- 
guage (HLL) program compilation. The program development, compilation and 
assembly phases are extensions of their traditional (untimed) counterparts. The 
timing path analysis and timing verification phases are new. Below we illustrate 
key aspects of the methodology using a small "transmitter" example [1]. 
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Fig. 1. Overview of the Topaz real-time compilation strategy. 

2.1 P r o g r a m  deve lopment  

Figure 2 shows the time-annotated HLL program fragment for our case study, 
in guarded command language notation. Hayes and Utting explain in detail how 
this program can be formally developed using stepwise refinement [1]. 

Its functional behaviour is straightforward. It assumes the existence of an ar- 
ray msg, of length size, containing a message to be transmitted. Special variable 
out is a memory-mapped output location. The program fragment of interest, 
between labels A and D, simply writes each character in msg to out. 

The required timing behaviour is expressed through the directives labelled 
A, B, C and D. Statement A is an assumption [6] that we may expect to be 
true when this program segment starts executing. Let start be the absolute 
time by which the first character must be available, and early be the minimum 
duration before start at which the program fragment begins. Statement A tells 
us that initially the current time, denoted by imaginary specification variable 
now, is expected to be at least early time units before start. No executable 
code is generated for assumptions [6], but we may use them when analysing the 
program. 

Directive B is a so-called real-time coercion [1]. Let duration chsep be the 
required separation of characters transmitted. The deadl ine  directive occurs 
immediately after transmission of the n th  character, and tells us that we must 
reach this point no later than n times chsep units from time start. This de- 
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[[ var size : nat;  
msg: array(O..  (size -- 1)) of  char; 
out : char  * 

A: {now + early <<. start}; 
][ v a r n  : nat  • 

n := 0; 
do n ~ size----r 

out := msg(n); 
B: deadl ine  start + chsep * n; 
C: delay unt i l s tar t  4- chsep • n 4- chdef; 

n : = n + l  
od 

]1; 
D: deadl ine  start + chsep * size 

Fig. 2. High-level language program annotated with timing directives [1]. 

fines the initial availability of the n th output  character, since it constrains the 
preceding assignment statement to finish before this time. 

Statement C is a conventional d e l a y  u n t i l  statement of the form found in a 
programming language like Ada 95 [2]. Let chdef  be the minimum duration for 
which each output  character must be stably defined. The delay statement tells 
us that  we may pass this point no earlier than n times chsep plus chdef units 
from time start.  This defines the final availability of the n th  output  character, 
since it prevents the program from performing any actions that  may change out 
until after this time. 

Finally, s tatement D is another coercion, this time placing an overall timing 
constraint on the whole code segment to finish within a time proportional to the 
number of characters in msg from start. 

2.2 T i m i n g  p a t h  ana lys i s  

Hayes and Utting explain how the timing constraints expressed in Figure 2 can 
be simplified using control flow analysis [1]. All control paths between significant 
pairs of timing directives can be statically identified, and an overall worst-case 
execution t ime constraint for each such path defined. This reduces the timing 
requirements to simple execution time bounds on 'straight-line' code segments. 

For the example in Figure 2, Hayes and Utting identify the following worst- 
case execution time constraints. 

W C E T ( A , , ~ D )  = early 

W C E T (  C, ,~B) = chsep - chdef 
W C E T ( A ' , ~ B )  = early 

W C E T (  C-,.*D) = chsep - chdef  
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Path A.,~D is that  followed when the loop is not entered at all, i.e., when 
size is 0. In this case the expression at point D simplifies to 'start' ,  so the time 
available to get from A to D may be as low as 'early'. 

Path  A..~B is the time taken to transmit the first character, including the 
loop initialisation activities. In this case n is 0 at point B, so again as few as 
early t ime units may be available to reach this point from A. 

Path C-.~B is the time taken to iterate, after the end of the stable period 
for the n th character at t ime start + chsep * n + chdef, up to the beginning of 
the stable period for the (n + 1) th character , and includes the time required 
to evaluate the (true) loop guard. In this case n is incremented in going from 
C to B, so 'n + 1 ~ must be substituted for 'n '  in the expression at point B. 
Simplification then yields the overall constraint shown above. 

Path C-.~D is the time required to exit the program after the last character 
has been transmitted at t ime start + chsep * (size - 1) + chdef, and includes 
the overhead of evaluating the (false) guard for the last time. In this case it is 
known at point C that  n equals size - 1. 

The final machine code program must be proven to satisfy these worst-case 
path constraints. IIowever, it is not necessary to check the timing behaviour 
of 'best-case' paths, such as B-,~C, because their correctness is guaranteed by 
correct implementation of the d e l a y  u n t i l  statement. 

2.3 Compilation 

Figure 3 shows a MIPS R3000 [3] assembler code program developed from the 
fiLL program in Figure 2. Here size and msg are symbolic constants representing 
local addresses for these variables; body, delay and lest are symbolic instruction 
addresses; chsep and dt are compile-time constants, where dt equals start + 
chdef; and clock and out are hardware-dependent global addresses used to read 
the current absolute time and write to the output  location, respectively (we 
assume an on-board synchronous clock that  can be read with a normal load 
instruction, and a memory-mapped output  location). Variables St0 to $t7 are 
symbolic register names [3]. 

Keep in mind that,  due to the way instructions overlap in a RISC pipeline, 
the instruction following a branch is always executed, whether the branch is 
taken or not [3]. Also the result of a load from memory that  takes more than 
one cycle is not immediately available to the following instruction [3]. 

Timing points corresponding to the labelled directives in Figure 2 are promi- 
nently marked. A, B and D mark the points where upper timing bounds oc- 
curred. No code is generated for these constructs. C a and C ~ mark the begin- 
ning and end of the d e l a y  u n t i l  statement,  respectively. The compiler generates 
several instructions to implement the lower timing bound required by tILL state- 
ment C. Since this statement is no longer atomic we separately mark both its 
beginning and end. The functional code appears in paths A-,zB and Cw-,~D. 

The d e l a y  u n t i l  implementation in path C~'.~C ~ is a busy wait on label 
delay. At each iteration it reads the clock value, and compares it with the time 
at which the delay expires. 



1278 

body : 

delay : 

test : 

l a  
lb 
li 

lb 
lb 

J 
hop  

lb 
nop  

sb 

lb 
hop  
sub  

bgtz  
nop  
add  

add  
bne  
add  

A m 

$tO, msg 
$tl,  size 
$t2,0 
$t3, dt 
$t4, chsep 
test 

St6,($ts) 

$t6, out 
B ~  

C a ~  
$t7, clock 

StT,$t3,$t7 
$t7, delay 

$t3, $t3, $t4 

$t2, $t2, 1 
$tl, $t2, body 
$t5, $t2, St0 

D 

tO := msg base address 
t l  := size (length of msg) 
t2 := 0 (loop counter n) 
t3 := first delay time (start q- chdef) 
t4 := constant chsep 
goto loop test 
jump delay slot 
t6 := msg(n) 
load delay slot 
output location := msg(n) 

t7 := current time 
load delay slot 
t7 := delay time - current time 
busy wait if current time < delay time 
branch delay slot 
next delay time := delay time + chsep 

increment n 
goto loop body ff n #- size 
address of rasg(n) := msg base + n 

Fig. 3. MIPS R3000 assembler code for the high-level program in Figure 2. 

2.4 A s s e m b l y  

Figure 4 shows binary machine code generated for our program by the SPIM 
assembler [4]. The first column contains instruction addresses, and the second 
the instructions themselves. A mnemonic version is shown on the right. 

Symbolic constants, addresses and register names have been substi tuted with 
particular values. More significantly, however, some assembler instructions have 
generated several machine code instructions. For instance, the first assembler 
' load byte '  f rom Figure 3 puts the value of local variable size in register ' $ t l ' .  
The equivalent machine code consists of two instructions: firstly, a ' load upper 
immedia te '  stores da ta  area base pointer 4097 in machine register number  1; 
secondly, a machine-level load byte instruction stores the contents of memory  
location 4097 plus offset 5 in register number  9 (the register number  correspond- 
ing to name ' $ t l '  [3]). It  is for this reason tha t  we can undertake accurate t iming 
verification only on the final machine code program. 

To support  the t iming verification phase some way of associating t iming 
points with particular instructions is needed. The assembler must  generate a 
table associating t iming point A with address 0x00400020, point B with address 
0x00400054, and so on. 
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A m 
[0x00400020] 0x3c081001 lui$8,4097 
[0x00400024] 0x3c011001 lui$1,4097 
[0x00400028] 0x80290005 lb $9,5($1) 
[0x0040002c] Ox340aO000 ori $10,$0,0 
[0x00400030] 0x3c011001 lu|$1,4097 
[0x00400034] Ox802bO006 lb $11,6($1) 
[0x00400038J 0x3c011001 lui$1,4097 
[0x0040003c] 0x802c0007 lb $12,7($1) 
[0x00400040] 0x0810001c j 0x00400070 
[0x00400044] 0x00000025 or $0,$0,$0 
[0x00400048] 0x81ae0000 lb $14,0($13) 
[0x0040004c] 0x00000025 or $0,$0,$0 
[0x00400050] 0xa38eS000 sb $14,-32768($28) 

- -  B 
_ _ C  a 

[0x00400054] 0x838f8001 lb $15,-32767($28) 
[0x00400058] 0x00000025 or $0,$0,$0 
[0x0040005c] OxO16f7822 sub $15,$11,$15 
[0x00400060] OxldeOfffd bgtz  $15,-12 
[0x004000643 0x00000025 or SO,SO, SO 
[0x00400068] 0x016c5820 add  $11,$11,$12 

_ _ C  ~ _ _  

[0x0040006c] 0x214a0001 addi  $10,$10,1 
[0x00400070] 0xl52afff6  bne  $9, $10, -40 
[0x00400074] 0x01486820 add $13, $10, $8 

- - D  

Fig. 4. MIPS R3000 machine code for the assembler program in Figure 3. 

2 . 5  T i m i n g  v e r i f i c a t i o n  

The timing verification phase checks the timing behaviour of machine code paths 
against the timing constraints derived from the HLL timing directives. For the 
purposes of this paper we used the SPIM $20 simulator [4] to verify the timing 
behaviour of the machine code program in Figure 4. 

For clarity below, assume there are no caching overheads (although the SPIM 
tool is capable of simulating such overheads [7]). We can then treat  all machine 
code instructions in Figure 4 as taking exactly one cycle. It is then merely nec- 
essary to count all instructions a path contains. Let numi be the number of 
instructions for each path in Figure 4: 

,~umi(A-,~D) = 12 ,u , , i (A--~B) = 15 

We must then compare the number of instructions in each machine-level path 
with the W C E T  timing constraints calculated during the HLL timing analysis 
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phase (Section 2.2). This tells us that  we must satisfy the following four equa- 
tions. Let constant t be the elapsed 'real' t ime per instruction, calculated as the 
number of cycles per instruction multiplied by the machine-specific elapsed time 
per processor cycle [3]. The 'lateness' value is explained below. 

numi(A-,~D) 
numi( A-,.* B) 

(numi( CW...,B) + lateness(C)) 
(n mi( D) + lateness(C)) 

• t <~ early 
• t <~ early 
• t <~ chsep - chdef 
• t <~ chsep - chde] 

We are not required to prove any timing properties of path B..~C ~, which 
ends with a de l ay  u n t i l  statement. Nevertheless, the possible 'lateness' of this 
path must be considered in analysing the following paths C-..~B and C-..*D. This 
is because any practical implementation of the HLL statement ' de l ay  u n t i l  E '  
cannot guarantee to finish at exactly time E. Thus lateness above represents the 
number of instructions by which a path ending in a de l ay  u n t i l  statement may 
exceed its specified finishing time. For the implementation of statement C above 
we can calculate this as follows. 

Firstly, if chdef is very small, then the delay time may pass while we are still 
executing the first few instructions following point C a . In the worst case every 
instruction executed between C a and C w contributes to an overrun. 

l a t encs spassed=6- - [S~-~ j  

It takes 6 cycles to get from C a to C ~ when the 'delay' loop in Figure 3 does 
not iterate. However, we subtract the number of whole processor cycles that  can 
be completed before duration chdef expires, because these do not contribute to 
lateness. 

Secondly, when chdef is large, the de l ay  u n t i l  implementation in Figure 3 
may overrun by going around the 'delay' loop too often. The worst case is where 
the delay period expires fractionally after reading the time from the hardware 
clock. In this situation it may take up to two entire iterations beyond the desired 
finishing time to reach point C ~. 

latenesstoops = 11 
Thus, since the actual value of chdef is unknown, the most we can say about 
lateness is as follows. 

lateness(C) = max { lateneSSpassed, latenessloops } = 11 

Substituting these calculated execution times into the WCET constraints, 
and simplifying, yields the following inequalities. 

15 • t <<. early 17 • t <<. chsep - chdef 
If the programmer-supplied values for durations early, chsep and chdef, together 
with the machine-specific constant t, satisfy these equations then the program 
in Figure 4 can be considered to conform with the programmer's t iming require- 
merits. 
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3 C o n c l u s i o n  

The Topaz methodology for development of verified real-time machine code in- 
tegrates recent advances in real-time program specification and timing analysis 
into traditional compiler technology. At the time of writing we are furthering the 
approach through the development of a formal model for representing program 
compilation [5]. 
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