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Abs t rac t .  In this paper a description of a consistent design of an em- 
bedded hard real-time control system is given. To provide for the overall 
predictability of tasks' temporal behaviour, which is the ultimate require- 
ment in such systems, all influencing factors are taken into account in a 
holistic manner: system and hardware architecture, operating system is- 
sues, programming language and application design methodology. Based 
on the resulting guidelines, a consistent prototype was implemented. 

1 Introduct ion 

Instead of computer speed, which cannot guarantee that  specified timing require- 
ments will be met, almost a decade ago a different ultimate objective in design- 
ing consistent systems for embedded hard real-time applications was generally 
accepted: predictability of temporal  behaviour. While, for the systems usually 
employed in process control, testing of conformance to functional specifications 
is well established, temporal  circumstances, being an equally important  design 
aspect, are seldom verified consistently. Almost never it is proven at design time 
that  such a system will meet its temporal requirements in every situation that  
it may encounter. 

Although the domain of real-time systems substantially gained interest in re- 
cent years, the results of fundamental research are not broadly used in hard real- 
time applications, yet. One of the reasons for this situation is that  most studies 
consider selected topics only, and assume that  other system constituents behave 
predictably. This assumption makes it very hard for the application designers to 
set up consistent systems from different components. For that  reason we initi- 
ated a project systematically addressing all crucial layers to provide practically 
usable design guidelines and techniques for hard real-time control systems. A 
consistent prototype implementation of an embedded hard real-time system was 
designed and will be briefly sketched in this paper. For those who are interested 
in the details, thorough reference to our detailed publications on specific topics 
resulting from this project is given~ where also comments on, and references to, 
related work of other research groups can be found. 
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2 C o n c e p t  o f  t h e  E x p e r i m e n t a l  H a r d w a r e  P l a t f o r m  

Using static scheduling algorithms, severe problems regarding the non-determinism 
of temporal  task execution behaviour could be avoided. However, following the 
very nature of real-time applications, it is necessary to provide for dynamic task 
scheduling. The algorithms which guarantee that,  once successfully scheduled, all 
tasks will meet their deadlines, are referred to as feasible. In the literature, several 
such algorithms have been reported. For our purpose, the earliest-deadline-first 
scheduling algorithm, which was shown to be feasible for scheduling tasks on sin- 
gle processor systems, was chosen and implemented in the kernel of an operating 
system [3]. 

For process control applications, where process interfaces are usually physi- 
cally hard-wired to sensors and actuators establishing the contact to the envi- 
ronment, it is natural to implement either single processor systems or dedicated 
asymmetrical multiprocessors acting and being programmed as separate units. 
Thus, the earliest-deadline-first scheduling policy can be employed without caus- 
ing any restrictions. 

[ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . 

External Process Environment 
:i 

[ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

f . . . . . . . . . . .  ~ C  ~ C i ~ C  I t . . . . . . . . . .  ; t . . . . . . . . .  "t 

" " " i TPc ', i TPA I i TPB i " i 
: MC68301 l :l MC68307 l: : MC68307 : 
11 °ont link RT¢I. I 11 cont. link RTcI.I: :lco.t link RTcI.I: 

external e ents ~ MC68306 (process signal. ~ : I 
[ . . . . . . . . . .  

Fig. 1. Scheme of an experimental hardware platform 

In classical computer architectures the operating systems are running on 
the same processor(s) as the application software. In response to any occurring 
event, the context is switched, system services are performed, and schedules are 
determined. Although it is rather likely that  the same process will be resumed, 
quite a bit of computer capacity is wasted by superfluous overhead. This sug- 
gests to employ a second, parallel processor, to carry out the operating system 
services. Such an asymmetrical architecture turns out to be advantageous, since, 
by dedicating a special-purpose, multi-layer processor to the real-time operating 
system kernel, the user task processor(s) are relieved from any administrative 
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overhead. The kernel processor and the task processors are connected point-to- 
point by serial links, thus avoiding collisions on common communication media 
as a possible source of non-determinism. This concept was in detail elaborated 
in [7] and [2]. The implementation is shown in Figure 1. 

The kernel  processor  (KP) is responsible for all operating system services. 
It maintains the real-time clock, and observes and handles all events related 
to it, to the external signals and to the accesses to the common variables and 
synchronisers, each of these conditions invoking assigned tasks into the ready 
state. It performs earliest-deadline-first scheduling on them and offers any other 
necessary system services. 

External processes are controlled by tasks running in the task processors 
(TP) without being interrupted by the operating system functions. A running 
task is only pre-empted if, after re-scheduling caused by newly invoked tasks as a 
consequence of an event, it is absolutely necessary to execute one of the arriving 
tasks immediately in order to allow for all tasks to meet their deadlines. Each 
task processor supports a peripheral serial I2C bus. To these buses intelligent 
peripheral interfaces are connected, enhancing fault tolerance by adding certain 
intelligence to them enabling reasonable reactions in exceptional situations, and 
increasing system performance by providing higher level I/O services. 

3 C o n c e p t  o f  a R e a l - T i m e  P r o g r a m m i n g  T o o l  

To program applications for the above hardware platform a tool is being con- 
structed [8], into which also a specific exception handling mechanism [4] is inte- 
grated. Its ultimate objective is to produce the best possible program code for 
embedded hard real-time applications, and realistic upper bound estimations of 
the code's execution time. In the tool two parts are closely interleaved: a com- 
piler for an adapted standard real-time programming language, and a program 
execution time analyser. The latter is providing the necessary information for a 
schedulability analyser currently being beyond the scope of our research. 

Being aware of the unpopularity of defining new languages and writing "own" 
compilers, we had several arguments for doing so. One is that commercially avail- 
able and widely used high-level programming languages and compilers still do 
not meet all the needs of hard real-time application programming. Another ar- 
gument in favour was the co-design of the particular experimental hardware 
architecture, the corresponding operating system, and the application develop- 
ment tool rendering it impossible to use any of the existing compilers. Finally, 
experience with run-time analysis of high-level source code programs demon- 
strated that access to the internal structures of a compiler is required in order 
to gain reasonably realistic results. 

The language introduced was called miniPEARL [8]. It is a simplified version 
of PEARL [6], a standard language for programming real-time applications, 
which, however, may produce temporally unpredictable code for several reasons. 
To eliminate these problems, PEARL's syntax was modified. Further, to support 
efficient mapping onto typical target architectures certain features were removed. 
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Finally, it was enhanced by some constructs specific to real-time systems, as 
proposed by Halang and Stoyenko [7]. 

The main differences between PEARL and miniPEARL are: 
• no GOTOs (LOOP and REPEAT instead); 
• pointers and recursion renounced; 
• number of loop iterations strictly boundedl 
• signals not directly supported; 
• temporally bounded statement execution, including 

synchronisation mechanisms and process I /O operations; 
• possibility to explicitly assert execution time of software blocks; 
• PEARL's  DATIONs not implemented; 
• improved task activation scheme and scheduler support. 
To allow for schedulability analysis, precise execution times of application 

tasks must be known in advance. In our tool, two methods for the estimation of 
program run-times are supported: 

1. Analysis of executable code. In this method, an automatic analyser is used 
to estimate execution times. Source code is transformed into an intermediate 
form (modified syntax tree) prior to the generation of executable code. Each ele- 
meat of this form is associated with a macro block that  is used for two purposes. 
The first one is to generate code, and the second one to obtain its execution time. 
Since the execution time of a block can be data-dependent, as much information 
as possible about operands should be passed to it. An operand can be a register, 
a constant, a local or a global variable. When a macro is expanded, the sum of 
times needed for accessing these operands is added to the basic execution time 
of the macro. 

2. Direct measurement of executable code. This method can be used when a 
more precise value for an execution time than estimated is desired. To achieve 
this, object code is executed on the target system and the execution time is 
recorded. Direct implementation of this method has some obvious disadvantages. 
First, the complete target system must be implemented; thus, co-design of the 
hardware and the software of an application is not possible. Further, through 
recording, only average execution times can be obtained. For a usable analysis, 
however, worst-case execution times are needed," and it is usually difficult to 
create a test scenario leading to a worst-case situation. Finally, the impact of 
the delays caused by the input /output  devices is dependent on the run-time 
circumstances. 

By our approach, these disadvantages are eliminated. Only a task processor 
or its equivalent must be implemented. The longest path through a task is de- 
termined by the compiler, and "pilot code" is generated running only along that  
path. From a set of alternative constructs (IF and CASE statements, for exam- 
ple), the longest one is statically routed. All time-guarded commands, system 
calls and input /output  variable accesses are replaced by corresponding delays. 
This pilot code is then executed on the hardware platform. 

To practically and adequately support the design of embedded real-time ap- 
plications, it was considered to include new, and more explicitly emphasise the 
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existing, features in miniPEARL to enhance its suitability also for purposes of 
hardware and software system specification [5]. Instead of using strictly formal 
specifications, systems can be described in a simple and straightforward manner 
with a terminology which is close to application programmers and their way 
of thinking. Such descriptions are mixtures of clauses in syntactically correct 
formal notation and natural language inserts. Employing appropriate artificial 
intelligence methods [1], specifications are then gradually refined until programs 
in the real-time programming language miniPEARL are obtained. 

4 C o n c l u s i o n  

To provide for application layer predictability of an embedded real-time system, 
the main objectives pursued in its design as presented here were determinism 
and predictability of each of its layers. The alternatives to design such a system 
to an as large as possible extent of consistency with the guidelines set, using com- 
mercial off-the-shelf components and other easily available means, were verified 
and validated. Applications designed this way fulfill the requirements of hard 
real-time systems, viz., timeliness, simultaneity, predictability, and dependabil- 
ity, better than conventionally constructed ones. 

R e f e r e n c e s  

1. C. T. Cheung. Transforming Mixed Formal and Natural Language Specifications 
into High Level Language Code. Internal Report, Department of Computing, Hong 
Kong Polytechnic University, 1997. 

2. Matja~ Colnari~ and Wolfgang A. Halang. Architectural support for predictability 
in hard real-time systems. Control Engineering Practice, 1(1):51 59, February 1993. 
ISSN 0967-0661. 

3. Matja~ Colnari~, Wolfgang A. Halang, and Ronald M. Tol. Hardware supported 
hard real-time operating system kernel. Microprocessors and Microsystems, 
18(10):579-591, December 1994. ISSN 0141-9331. 

4. Matja~ ColnariS, Domen Verber, and Wolfgang A. Halang. Supporting high in- 
tegrity and behavioural predictability of hard real-time systems. Informatica, Spe- 
cial Issue on Parallel and Distributed Real-Time Systems, 19(1):59-69, February 
1995. ISSN 0350-5596. 

5. Matja2 ColnariS, Domen Verber, and Wolfgang A. Halang. A Real-Time Program- 
ming Language as a Means to Express Specifications. Control Engineering Practice, 
5(7), July 1997. 

6. DIN 66 253: Programming Language PEARL, Part 1: Basic PEARL. Beuth Verlag, 
Berlin, 1981. 

7. Wolfgang. A. Halang and Alexander D. Stoyenko. Constructing Predictable Real 
Time Systems. Kluwer Academic Publishers, Boston-Dordrecht-London, 1991. 

8. Domen Verber, Matja~ Colnari~, and Wolfgang A. Halang. Programming and time 
analysis of hard real-time applications. Control Engineering Practice, 4(10):1427- 
1434, October 1996. ISSN 0967-0661. 


