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The deterministic Turing machine, though abstract, can still be seen as a 
model of a realistic computer. The same cannot be said for the nondeterministic 
Turing machine as a model of parallel computing. We introduce several ab- 
stract machines with fine-grained parallelism--the and-parallel Turing machine, 
the stronger parallel rewriting machine, and extensions of both with an inter- 
rupt capability. These machines are very powerful: the parallel rewriting machine 
can compute the permanent in polynomial time and the and-parallel machine 
with interrupt can simulate nondeterministic and alternating Turing machines 
of polynomial time complexity in polynomial time. All the same, they may be 
viewed as realistic models if time and space are suitably restricted. 

A n d - P a r a l l e l  T~arlng Mach ine s .  One way of viewing the nondeterministic 
Turing machine is to say that at each stage, when confronted with k choices, it 
splits into k replicas of itself, each of which makes one of the choices. The input 
string is accepted if one of these machines enters an accepting state. This kind of 
parallelism can be termed "or-parallelism". However, the nondeterministic Tur- 
ing machine does not model real parallel machines in which different processors 
communicate with each other. Also, when faced with an input of size n that  
must be read, it will need at least n units of time. But by then the machine may 
have arrived at an exponential number of possibilities, an unrealistic scenario. 

Our and-parallel machine works with an unbounded binary tree. (We take 
a binary tree for simplici ty--any bounded arity will do.) Instead of the square 
scanned by the "head" (representing the memory cell dealt with at the moment  
by a sequential computer),  the tree has a "frontier" of nodes, representing the 
memory cells dealt with at the moment by the processors comprising the parallel 
computer.  (By "frontier" we mean a subset of the binary tree such that  none 
of its nodes is an ancestor of another, while every node in the binary tree is 
either an offspring or an ancestor of a node in the frontier.) In the beginning 
the frontier consists of the root node. The input is a finite binary tree. Each 
node in the frontier is in one of a finite number of states, and can be thought 
of as being taken care of by a different processor. Given a binary tree with 
frontier, the transition function ~ acts on its frontier nodes and transforms it 
into another binary tree with frontier. It may  change the content of the nodes 
of the frontier in the following way: if N is a frontier node in state q with 
symbol t, (f can change the symbol at N. According to q and t, N may remain 
a frontier node, although its state may change. It can also be replaced in the 
frontier by its two children, who get states determined by g. If q and t are 
suitable, and N's  sibling N '  also has suitable symbol and state, then both N 
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and N ~ are removed from the frontier and their parent enters the frontier with 
a state determined by 5 according to the states and symbols of its children. 
This step models communication between different processors. If N is ready 
to be replaced by its parent and N t is not (see the following figure), it waits 
for N ~. This models suspension and synchronization. If N has a blank symbol, 
then it may be overwritten with a nonblank, and have two children appended. 
At each stage, 5 performs all the actions it can perform on the nodes of the 
frontier according to the above rules. We use deterministic rules, so the machine 
is deterministic. If there is a frontier node in a non-accepting state on which (f 
cannot act, the machine stops with failure. If a node reaches an accepting state 
it will remain in it. If all the nodes of the frontier are in an accepting state the 
machine accepts the input. 

r 

Throughout  this paper, we make the following assumptions: 
A s s u m p t i o n  1: An unlimited number of processors is available. Of course there 
is a real-life limit to the number of processors, but we can assume that  this 
is transparent to the user (just as physical limitations on the size of memory 
are ignored by the deterministic Turing machine model). If the depth of the 
tree is O(logn),  where n is the input size, then the number of processors will 
be polynomial in n (hence problems that can be solved on such a machine in 
polylogarithmic time and space of logarithmic depth are in NC). 
A s s u m p t i o n  2: The input should be given in a form suitable for parallel pro- 
cessing, that is, lists have to be replaced by balanced trees. If the depth of the 
input is not logarithmic in its size, just looking at it will take too much time. 
A s s u m p t i o n  3: The memory on which the processors work is organized as a 
tree and not as a directed acyclic graph (dag). Clearly this simplifies matters.  
Though it may seem that a dag is more economical, because it avoids having 
the same computation performed several times, on the average not that  much is 
saved. Under a variety of probabilistic models, a tree of size n has a maximally 
compacted form as a dag (where all common subtrees are represented only once) 
of expected size (asymptotically) cn/~]-O--~, where c is a constant depending on 
the type of trees compacted and the statistical model. Though this represents a 
drastic savings in storage, what is important  in our case is the logarithm of the 
size, for which the savings is only marginal (log log n). 
A s s u m p t i o n  4: On each branch of the memory tree there is at most one node 
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on which a processor works at any given time. Again this simplifies matters,  
since it will never happen that two processors will a t tempt  to work on the same 
node, and is enough for good performance. 

P a r a l l e l  R e w r i t i n g  M a c h i n e s .  We would like to have a parallel machine 
that  is easy to program yet stronger than the and-parallel machine, for instance 
one that  can sort in polylogarithmic time. Assume that  the input to the machine 
is given as a tree and that  its behavior is determined by "fiat" conditional rewrite 
rules of the form C I L ~ R where L is a tree "pattern" containing 
variables representing subtrees, R is a replacement pattern for L, and C is some 
simple property of the tree that  can be checked locally at the location in the 
tree where L appears. The computational paradigm associated with rewriting 
has the full power of Turing machines, while lending itself naturally to parallel 
execution, since different subtrees can be rewritten in parallel. The advantage 
of this formalism is that machine operations are very straightforward (almost as 
simple as for a Turing machine), and the machine gets the problem in a form that  
preserves its "meaning". A tree to which no rewrite rule can be applied is said 
to be in normal form, and computation essentially amounts to bringing a tree to 
its normal form. Of course there is no guarantee that the rewriting process will 
terminate,  and even if it does, that the normal form will be unique. Different 
strategies for rewriting may be used (under certain well-defined conditions, the 
order does not affect the final result) and in a parallel environment several steps 
of rewriting may be performed simultaneously. 

The parallel rewriting machine implements a top-down strategy by first trying 
to rewrite a tree by a rule that applies at its root, and only if this is not possible 
it tries to rewrite the children of tile root, and so on. After the children of a 
node have been rewritten to normal form, rewriting continues at the parent 
node. The machine has an unbounded tree-tape available. In the beginning this 
tree consists of the input. At each stage there is a frontier of nodes at which 
processing is taking place. These nodes can be in any of five states: up, down, 
going-up, going-down, stopped. In the beginning the frontier consists of the root 
node in the state going-down. As long as there is a rule which can be applied 
at the root this rule is applied, possibly causing some local change in the form 
of the tree. If no rule can be applied the node goes into state down. A node in 
state down is replaced in the frontier by its children, each in state going-down. 
Now the machine tries to apply rules at the nodes corresponding to the children. 
Thus the processing continues until it arrives at nodes that cannot be rewritten 
and have no children. Such nodes go into state up. If all the children of a node 
are in state up, they are replaced in the frontier by their parent node in state 
going-up. If a rule can be applied to the node in state going-up it is applied and 
the node goes into state going-down. Otherwise the node goes into state up. If the 
root node is in state up it goes into state stopped. In this case the computat ion 
terminates and the tree holds the normal form of the original input. 

The essential advantage of this machine over the previous one is its local 
pointer capability: it can graft new nodes within the tree and can replace the 
children of a node by a subset of them in any order and possibly with repeti- 
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tions. (The last property bears similarity with top-down tree transducers, which 
traverse a tree from top to bottom, rewriting it.) 

When the rewrite rules are linear (that is, no variable appears more than once 
in either L or R) each transition takes constant time, since applying a rewrite 
rule consists of checking a simple condition and performing a local change in the 
tree. Otherwise: 

T h e o r e m .  In the case of nonlinear rules the time is bounded by the number 
of machine transitions multiplied by a constant times the depth of the tree. 

When there are rewrite rules in which the same variable appears more than 
once in L, we must replace them by rules where this does not happen and 
instead check for equality. With our rewriting machine, it is not difficult to see 
that checking equality of subtrees can be done in time which is of the order of 
magnitude of the depth of the trees. 

When the same variable appears more than once on the right hand side this 
means that the tree it represents has to be copied. One can use the rewriting 
machine to copy trees in time that is of the order of magnitude of their depth. 
Without  loss of generality assume that the tree is binary with inner nodes of 
the form t(Symbol, Left, Right) and its leaves are constant symbols. The normal 
form of makecopy(T) is copied(T', T") where T'  and T"  are copies of T. The 
rules are 

makecopy(T) ----+ top(double(T)) 
double( t( S, Left, Right)) ----+ dt( S, S, double(Left), double(Right)) 
leaf(A) ] double(A) ---+ build(A,A) 
dt( S', S', build(X, X'), build(Y, Y') ) ---+ build( t( S', X, Y ), t( S", X', Y') ) 
top( build(T', T") ) ---+ eopied(T', T") 

(Notice that while S and A appear twice in the second and third rules they stand 
for function and constant symbols, so the rules can be thought of as schemas for 
linear rules.) Basically there is one movement down where things are doubled, 
and then one movement up where things are appropriately shuffled. The time 
needed to copy a term is proportional to its depth. 

The class # P  comprises those functions that can be computed by counting 
Turing machines of polynomial time complexity. Computing the permanent is 
an ~P-comple te  problem, yet the parallel rewriting machine can compute the 
permanent in polynomial time. Of course using our machine in this case is not 
realistic. However, if the depth of the space used is logarithmic, only a polynomial 
number of processors will be required. All the following examples are of this kind: 

1. P a r a l l e l  B i t s  A l g o r i t h m :  adding two numbers in time logarithmic in their 
length. 

2. P a r a l l e l  M e r g i n g  a n d  Sor t ing :  in time polylogarithmic in length of list. 
3. E v a l u a t i n g  A l g e b r a i c  Exp re s s ions :  in average time O(v/-ff) for size n. 
4. Sca la r  P r o d u c t :  in time logarithmic in length of vectors. 
5. M a t r i x  M u l t i p l i c a t i o n :  matrices of size n × n in time O(log 2 n). 
6. R e a c h a b i l i t y :  for a graph of n vertices in time O(log 3 n). 
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In each, the machine, given a straightforward recursive description of the problem 
in the form of rewrite rules, works out an efficient implementation of the rewrite 
algorithm. 

P a r a l l e l  M a c h i n e s  w i t h  I n t e r r u p t .  Once a node in the tree representing 
the memory of either the and-parallel machine or the rewriting machine has 
launched its children, it must wait for their answers--it must wait for both 
its children to become frontier nodes in a suitable state before it can become a 
frontier node again. There may, however, be cases when an answer from one child 
is enough (for example, when evaluating a Boolean expression of the form E V F,  
we know that  if E evaluates to true so does the whole expression, irrespective 
of the value of F) .  It even may happen that the answer of one child is sufficient 
while the other child embarks on an infinite computation. We therefore consider 
more powerful machines, in which the frontier may move to the parent even 
if only one child is in a suitable state. This means that instead of having all 
processors work according to a uniform program, there may be cases in which 
one informed processor can cause other processors to terminate. Suppose that  
we are evaluating E V F where E is small and F is large. In that  case the more 
powerful machine may be faster, because if it discovers that  E evaluates to true it 
can abandon evaluation of F.  It is clear that an and-parallel machine evaluating 
a Boolean expression will take time proportional to the depth of the expression, 
because the frontier moves once from the root to the leaves of the input and 
once back to the root. If we consider all different Boolean expressions of the 
same length n to have the same probability, we can show that the and-parallel 
machine can evaluate them in ~(v/-n) time, and, for the interrupt machine, in 
asymptotically constant time. 

T h e o r e m .  The nondeterministic (and alternating) Turing machine can be 
simulated by an interrupt parallel machine. If a problem can be solved in time 
polynomial in the size of the input with the nondeterministic (alternating) Turing 
machine, the same is true for the interrupt parallel machine. 

T h e o r e m .  Nondeterministic versions of our interrupt machines are not 
stronger than the deterministic ones. 

The machines described here are very powerful. However, if we restrict our- 
selves to polylogarithmic time and space of logarithmic depth, as in all our 
examples, they can be seen as models of realistic machines. It is also interest- 
ing to observe that the and-parallel machine gained much power by adding a 
pointer capability and an interrupt possibility--two things that can be easily 
implemented. Because of the tree structure of the memory and the way the com- 
putat ion proceeds it can never happen that two processors try to write to the 
same node (a problem that arises in the PRAM). Using rewrite rules makes the 
machine very easy to program--rules simply cannot be applied as long as their 
arguments have not reached the right form. 


