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Abstract. An application structured as a fault-tolerant bag of tasks adapts easily 
to changing resources. To be represented by a single bag of tasks, a computation 
must decompose into purely independent tasks. The work summarised here in- 
vestigates performance of structuring approaches applicable where this ideal is 
not possible, partly through analysis and partly through measurements of a real- 
istic fault-tolerant computation. 

1 Introduction 

Where applicable, the well known "bag of tasks" organisation for parallel computa- 
tions has proved popular particularly in networked environments due to its transparent 
load balancing property. Examples include seismic computations [1] and materials sci- 
ence [13]. Typically the computation is controlled by a single master process and the 
data manipulated by the computation is located on a single disk with all I/O being per- 
formed by the master. A fault-tolerant version of this structure [6, 2, 10] allows cheap 
recovery since only the particular task affected by a machine failure needs to be re- 
covered. 

It is possible to increase capacity and bandwidth of storage at a single machine 
using RAID techniques [5], but in some computations the data manipulated outstrips 
the capacity of a single machine either in terms of volume or bandwidth requirements. 
It is then necessary to distribute data over multiple machines and then valuable gains 
may be made by taking advantage of computation structure to optimise I/O [7]. To 
ensure application fault-tolerance however a further mechanism is required, such as 
checkpointing. 

It is possible however to avoid the single node bottleneck in a bag of tasks compu- 
tation but it is necessary to take measures to ensure consistency of access to the distrib- 
uted disk based state. An approach deriving from queued transaction processing [9] is 
demonstrated in [12] where computation state is persistent and located in a shared dis- 
tributed object store and a recoverable queue [4] serves as a fault-tolerant bag of tasks. 
Writes to the shared state are enclosed in an atomic action (transaction), and abort of 
that action leads to rollback of writes enclosed in the failed action. 

One of the computations implemented in the earlier work is dense Cholesky factor- 
isation which does not decompose into purely independent tasks. In the earlier work an 
algorithm is employed directly from [8, §6.3.8.]. The matrix operands are partitioned 
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into blocks and each task entails computation of a single block of the output. The order 
of computation starting at the top left and proceeding down block columns and from 
left to right is represented in the queue, but it is necessary to delay an accessing slave 
until a block of the matrix becomes available. This is achieved through synchronisation 
flags, employed within the operations of the distributed matrix object itself. 

Employing an additional synchronisation mechanism together with a single queue 
is one approach. An alternative requires no such synchronisation mechanism and in- 
stead relies on global barrier type synchronisation points to ensure that data is ready 
when required. A computation consists of a sequence of queues of which one is current 
at any time. All slaves wait till the current queue is actually empty before attempting to 
dequeue from the next in the sequence. The dequeue operation returns a status which 
allows the caller to distinguish between the situation where the queue is empty and that 
where entries remain but are all locked by other users. The resulting structure which 
supports a parallel loop programming style is similar to that of CALYPSO [3], but oper- 
ating on disk based state. 

One issue in the choice between such possible structures is the ease of programming 
at the application level, but important also is the achievable performance. This is clearly 
specific to each application. The work here investigates the performance of alternative 
realisations of Cholesky factorisation. The algorithm referred to above is used as the 
basis of two alternative realisations. 

Single queue Where all tasks are stored in a single queue, they are all enabled at the 
start of the computation so it is necessary to employ a synchronisation mechanism 
separate to the queue so that dependencies may be satisfied. Use of an array of 
atomic flags is described in [12]. 

Homogeneous It is possible to avoid the need for synchronisation flags by loading 
tasks into a number of separate queues. In the structure considered here blocks on 
the diagonal are computed serially and all blocks in the same block column below 
the diagonal are computed in parallel. 

Because of the dynamic nature of the computation structure it is not simple to pre- 
dict parallel performance precisely. However where I/O is invariant with the number of 
slaves it is possible to characterise a computation by its single slave time and bounds 
on the minimum parallel time. Queue and synchronisation flag access cost is assumed 
negligible. If tasks are independent, a lower bound is the sum of all communications 
with the shared store and an upper bound the same plus the longest of all the task com- 
putation components. An alternate lower bound is reached when each task is computed 
by a separate slave. If there are inter-task dependencies then the computation may be 
modelled as if there are barriers to allow an upper bound to be obtained. Algebraic 
expressions for these bounds are derived in [12] for the single queue based realisation 
of Cholesky factorisation to allow extrapolation of the predicted performance to allow 
for upgraded hardware. Similar analysis for the alternate structure described here is 
detailed in [11]. Space restrictions here accommodate only the results. 

The implementation of the single queue structure on a network of HP9000 based 
machines was described in [12]. For this work the application was ported to a network 
of 133 MHz Pentium machines, and the alternative application structure implemented 
in the same environment. 
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The Pentium machines have 32 Mbytes main memory and 256 Kbytes secondary 
cache. Hard disks are connected via fast SCSI 2 controllers. Most of the machines have 
1 Gbyte IBM Pegasus disks, though the available scratch space on these disks is limited. 
Two of the machines have also a pair each of MAXTOR 540SL disks, providing an 
aggregate 2 Gbytes of storage. All the machines are running Linux version 2.0.23. The 
machines are connected by both a LinkBuilder FMS 100 Stackable Fast Ethernet Hub 
from 3Com and a ForeRunner ASX-200WG ATM switch with 155Mbit/s links. The 
following configurations are used. 

Fast The object store is located on the IBM disk connected to a single machine and 
communications between slaves and store is via fast ethernet. 

ATM The object store is distributed between the four MAXTOR disks. On each of the 
two machines hosting these disks, the two local MAXTOR disks are managed as 
a RAID-0 pair through the md [14] software. Communications between slaves and 
store is via ATM. 

In each case the slaves are located on separate machines from those hosting the shared 
object store. 

For block sizes above 250, the low level transfer rates for local memory to remote 
memory and to and from disk are found to be roughly constant. While the read and 
write cost for the IBM disk have nearly equal cost, the cost of writes to the RAID 
configuration is rather higher than the cost of reads. Clearly in the ATM configuration 
the limiting I/O rate should be double that offered by a single node, but a single slave 
can only use the bandwidth of a single node. 

The computation rates vary for the different matrix primitives. In the overall com- 
putations however, matrix multiplication dominates and as tuned this primitive runs at 
about 27 Mflop/s for a block size above about 30. The experimental configuration is 
summarised below. 

Configuration Fast ATM 

Computation (Mflop/s) 27 
Network (Mbyte/s) 4.6 9.0 
Disk (Mbyte/s) read 2.8 5.5 

write 2.8 2.4 

2 Comparison 

Figure I compares the maximum performance for the two computation structures for a 
matrix size of 48002 in the fast  configuration. Upper and lower bounds on maximum 
performance calculated from the data in the table above are shown and so are a num- 
ber of experimental measurements. The computation rate assumes an overall operation 

~3 
count of -y .  The performance is greatest for the single queue configuration and it can 
be shown analytically that this is generally true [11]. 

Figure. 2 shows the performance for the larger example of a 150002 matrix in the 
ATM configuration. Again both derived and measured performance are plotted. Here 
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Fig. 1. Maximum performance of parallel Parallel Cholesky factorisation of a 48002 matrix for 
different synchronisation structures in the fast configuration. 

though, five slaves do not exhaust the available bandwidth, so rather than the bounds 
on limiting performance, a lower bound on expected performance using just five slaves 
is plotted in each case. For the single queue this is obtained by dividing the single 
slave time by five. The approach is similar where multiple queues are used, but each 
phase of the computation is treated separately. It is seen that even the fault-tolerant 
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Fig. 2. Performance of parallel Cholesky factorisation of a 150002 matrix for different synchron- 
isation structures in the ATM configuration. 

implementations achieve performance which is close to that predicted, so that even 
with the assumptions made, the modelling process is not unrealistic. 

Significantly better performance can be obtained using the single queue configura- 
tion particularly when the number of slaves is high. A simple modification to the homo- 
geneous structure is to include computation of a block on the diagonal in the same task 
with the block immediately to the left. The new structure is found to perform better than 
the homogeneous structure, but only approaches the performance of the single queue 
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structure for small block size, of  about 250, and for a small number of  slaves [11]. In- 
tuitively the single queue structure offers least restriction to parallelism so long as the 
cost of  synchronisation is small. 

Overall the evidence suggests that the single queue approach cannot be abandoned 
for performance reasons. 
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