
On Synchronisation in Fault-Tolerant Data
and Compute Intensive Programs
over a Network of Workstations

J.Smith

Department of Computing Science, The University of Newcastle upon Tyne Newcastle upon
Tyne, NE1 7RU UK

jim.smith @ newcastle.ac.uk

Abstract. An application structured as a fault-tolerant bag of tasks adapts easily
to changing resources. To be represented by a single bag of tasks, a computation
must decompose into purely independent tasks. The work summarised here in-
vestigates performance of structuring approaches applicable where this ideal is
not possible, partly through analysis and partly through measurements of a real-
istic fault-tolerant computation.

1 Introduction

Where applicable, the well known "bag of tasks" organisation for parallel computa-
tions has proved popular particularly in networked environments due to its transparent
load balancing property. Examples include seismic computations [1] and materials sci-
ence [13]. Typically the computation is controlled by a single master process and the
data manipulated by the computation is located on a single disk with all I/O being per-
formed by the master. A fault-tolerant version of this structure [6, 2, 10] allows cheap
recovery since only the particular task affected by a machine failure needs to be re-
covered.

It is possible to increase capacity and bandwidth of storage at a single machine
using RAID techniques [5], but in some computations the data manipulated outstrips
the capacity of a single machine either in terms of volume or bandwidth requirements.
It is then necessary to distribute data over multiple machines and then valuable gains
may be made by taking advantage of computation structure to optimise I/O [7]. To
ensure application fault-tolerance however a further mechanism is required, such as
checkpointing.

It is possible however to avoid the single node bottleneck in a bag of tasks compu-
tation but it is necessary to take measures to ensure consistency of access to the distrib-
uted disk based state. An approach deriving from queued transaction processing [9] is
demonstrated in [12] where computation state is persistent and located in a shared dis-
tributed object store and a recoverable queue [4] serves as a fault-tolerant bag of tasks.
Writes to the shared state are enclosed in an atomic action (transaction), and abort of
that action leads to rollback of writes enclosed in the failed action.

One of the computations implemented in the earlier work is dense Cholesky factor-
isation which does not decompose into purely independent tasks. In the earlier work an
algorithm is employed directly from [8, §6.3.8.]. The matrix operands are partitioned

1026

into blocks and each task entails computation of a single block of the output. The order
of computation starting at the top left and proceeding down block columns and from
left to right is represented in the queue, but it is necessary to delay an accessing slave
until a block of the matrix becomes available. This is achieved through synchronisation
flags, employed within the operations of the distributed matrix object itself.

Employing an additional synchronisation mechanism together with a single queue
is one approach. An alternative requires no such synchronisation mechanism and in-
stead relies on global barrier type synchronisation points to ensure that data is ready
when required. A computation consists of a sequence of queues of which one is current
at any time. All slaves wait till the current queue is actually empty before attempting to
dequeue from the next in the sequence. The dequeue operation returns a status which
allows the caller to distinguish between the situation where the queue is empty and that
where entries remain but are all locked by other users. The resulting structure which
supports a parallel loop programming style is similar to that of CALYPSO [3], but oper-
ating on disk based state.

One issue in the choice between such possible structures is the ease of programming
at the application level, but important also is the achievable performance. This is clearly
specific to each application. The work here investigates the performance of alternative
realisations of Cholesky factorisation. The algorithm referred to above is used as the
basis of two alternative realisations.

Single queue Where all tasks are stored in a single queue, they are all enabled at the
start of the computation so it is necessary to employ a synchronisation mechanism
separate to the queue so that dependencies may be satisfied. Use of an array of
atomic flags is described in [12].

Homogeneous It is possible to avoid the need for synchronisation flags by loading
tasks into a number of separate queues. In the structure considered here blocks on
the diagonal are computed serially and all blocks in the same block column below
the diagonal are computed in parallel.

Because of the dynamic nature of the computation structure it is not simple to pre-
dict parallel performance precisely. However where I/O is invariant with the number of
slaves it is possible to characterise a computation by its single slave time and bounds
on the minimum parallel time. Queue and synchronisation flag access cost is assumed
negligible. If tasks are independent, a lower bound is the sum of all communications
with the shared store and an upper bound the same plus the longest of all the task com-
putation components. An alternate lower bound is reached when each task is computed
by a separate slave. If there are inter-task dependencies then the computation may be
modelled as if there are barriers to allow an upper bound to be obtained. Algebraic
expressions for these bounds are derived in [12] for the single queue based realisation
of Cholesky factorisation to allow extrapolation of the predicted performance to allow
for upgraded hardware. Similar analysis for the alternate structure described here is
detailed in [11]. Space restrictions here accommodate only the results.

The implementation of the single queue structure on a network of HP9000 based
machines was described in [12]. For this work the application was ported to a network
of 133 MHz Pentium machines, and the alternative application structure implemented
in the same environment.

1027

The Pentium machines have 32 Mbytes main memory and 256 Kbytes secondary
cache. Hard disks are connected via fast SCSI 2 controllers. Most of the machines have
1 Gbyte IBM Pegasus disks, though the available scratch space on these disks is limited.
Two of the machines have also a pair each of MAXTOR 540SL disks, providing an
aggregate 2 Gbytes of storage. All the machines are running Linux version 2.0.23. The
machines are connected by both a LinkBuilder FMS 100 Stackable Fast Ethernet Hub
from 3Com and a ForeRunner ASX-200WG ATM switch with 155Mbit/s links. The
following configurations are used.

Fast The object store is located on the IBM disk connected to a single machine and
communications between slaves and store is via fast ethernet.

ATM The object store is distributed between the four MAXTOR disks. On each of the
two machines hosting these disks, the two local MAXTOR disks are managed as
a RAID-0 pair through the md [14] software. Communications between slaves and
store is via ATM.

In each case the slaves are located on separate machines from those hosting the shared
object store.

For block sizes above 250, the low level transfer rates for local memory to remote
memory and to and from disk are found to be roughly constant. While the read and
write cost for the IBM disk have nearly equal cost, the cost of writes to the RAID
configuration is rather higher than the cost of reads. Clearly in the ATM configuration
the limiting I/O rate should be double that offered by a single node, but a single slave
can only use the bandwidth of a single node.

The computation rates vary for the different matrix primitives. In the overall com-
putations however, matrix multiplication dominates and as tuned this primitive runs at
about 27 Mflop/s for a block size above about 30. The experimental configuration is
summarised below.

Configuration Fast ATM

Computation (Mflop/s) 27
Network (Mbyte/s) 4.6 9.0
Disk (Mbyte/s) read 2.8 5.5

write 2.8 2.4

2 Comparison

Figure I compares the maximum performance for the two computation structures for a
matrix size of 48002 in the fast configuration. Upper and lower bounds on maximum
performance calculated from the data in the table above are shown and so are a num-
ber of experimental measurements. The computation rate assumes an overall operation

~3
count of -y . The performance is greatest for the single queue configuration and it can
be shown analytically that this is generally true [11].

Figure. 2 shows the performance for the larger example of a 150002 matrix in the
ATM configuration. Again both derived and measured performance are plotted. Here

1028

(a) Single queue
125

.~,

~" 100

Q - /5

g 5o

W

0
0 400 800

Block width (elements)

(b) Homogeneous
i i

/
/

0 400 800
Block width (elements)

Measured experimentally •
Calculated from analysis

Fig. 1. Maximum performance of parallel Parallel Cholesky factorisation of a 48002 matrix for
different synchronisation structures in the fast configuration.

though, five slaves do not exhaust the available bandwidth, so rather than the bounds
on limiting performance, a lower bound on expected performance using just five slaves
is plotted in each case. For the single queue this is obtained by dividing the single
slave time by five. The approach is similar where multiple queues are used, but each
phase of the computation is treated separately. It is seen that even the fault-tolerant

120

100

80

60

(a) 5 slaves
i i .

° ' " O ' - O

4O

2O

0 i i
200 400 600

Block size
Measured experimentally

Single queue -.-e---
Homogeneous -- -~ - -

(b) 14 slaves
350 , , .

.
300

250

200

150

100

50

0
800 200 400 600

Block size
Calculated from analysis

Single queue
Homogeneous - -

800

Fig. 2. Performance of parallel Cholesky factorisation of a 150002 matrix for different synchron-
isation structures in the ATM configuration.

implementations achieve performance which is close to that predicted, so that even
with the assumptions made, the modelling process is not unrealistic.

Significantly better performance can be obtained using the single queue configura-
tion particularly when the number of slaves is high. A simple modification to the homo-
geneous structure is to include computation of a block on the diagonal in the same task
with the block immediately to the left. The new structure is found to perform better than
the homogeneous structure, but only approaches the performance of the single queue

1029

structure for small block size, of about 250, and for a small number of slaves [11]. In-
tuitively the single queue structure offers least restriction to parallelism so long as the
cost of synchronisation is small.

Overall the evidence suggests that the single queue approach cannot be abandoned
for performance reasons.

Acknowledgements
The support of all the Arjuna team is gratefully acknowledged, and in particular col-
laboration with S. Shrivastava in earlier experiments which this work builds upon and
the assistance of M. Little, G. Parrington and S. Wheater with implementation issues
relevant to this work.

References
1. G. S. Almasi and A. Gottlieb. Highly Parallel Computing. Benjamin/Cummings, 2nd edi-

tion, 1994. ISBN 0-8053-0443-6.
2. D. E. Bakken. Supporting Fault-Tolerant Parallel Programming in Linda. PhD thesis, The

University of Arizona, Aug. 1994.
3. A. Baratloo, P. Dasgupta, and Z. M. Kedem. CALYPSO: A novel software system for fault-

tolerant parallel processing on distributed platforms. In 4th International Symposium on
High Performance Distributed Computing. IEEE, Aug. 1995.

4. P. A. Bernstein, M. Hsu, and B. Mann. Implementing recoverable requests using queues.
ACMSIGMOD, pages 112-122, 1990.

5. P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson. RAID: high-
performance, reliable secondary storage. ACM Computing Surveys, 26(2):145-185, June
1994.

6. T. Clark and K. P. Birman. Using the ISIS resource manager for distributed, fault-tolerant
computing. Technical Report 92-1289, Cornell University Computer Science Department,
June 1992.

7. J. M. del Rosario and A. Choudhary. High performance I/O for parallel computers: Prob-
lems and prospects.IEEE Computer, pages 59-68, Mar. 1994.

8. G. H. Golub and C. E V. Loan. Matrix Computations. John Hopkins University Press,
second edition, 1989. ISBN 0-8018-3772-3.

9. J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan Kauff-
man, 1993.

10. K. Jeong. Fault-Tolerant Parallel Processing Combining Linda, Checkpointing, and Trans-
actions. PhD thesis, New York University, Jan. 1996.

11. J. Smith. Fault Tolerant Parallel Applications Using a Network Of Workstations. PhD thesis,
University of Newcastle upon Tyne, 1996. Forthcoming.

12. J. A. Smith and S. Shrivastava. Performance of data and compute intensive programs over
a network of workstations. Theoretical Computer Science, 1997. To appear in special issue
for Euro-Par'96 papers.

13. V. S. Sunderam, G. A. Geist, J. J. Dongarra, and R. J. Manchek. The PVM concurrent com-
puting system: Evolution, experiences, and t rends. Parallel Computing Vol. 20(4), pages
531-546, 1993.

14. M. Zyngier. md. ftp://sweet-smoke.ufr-info-p7.ibp.fr/pub/Linurd, Apr. 1996. version 0.35.

