
Simulation of a Routing Algorithm
Using Distributed Simulation Techniques

C.D. Pham J. Essmeyer* S. Fdida

Laboratoire LIP6
Universit~ Pierre et Marie Curie

4 place Jussieu 75252 Paris Cedex 05
e-mail: {pham,essmeyer,fdida} @masi.ibp.fr

A b s t r a c t . This paper describes our experiment in simulation of a rout-
ing algorithm in ATM networks using distributed simulation techniques.
These techniques are a promising tool for performance evaluation of large
and complex systems that can not be handled sequentially. The simu-
lations are performed on a CM-5 and the results show that interest-
ing speedups can be achieved when compared to a sequential execution.
However, they also raise the problem of optimal partitioning and load
balancing in communication network models where communication costs
represent the main overhead.

1 I n t r o d u c t i o n

Discrete event simulation often represents the only way to study the behavior of a
system. This is because analytical methods may be unsuitable when the size and
the complexity of the system require simplifications that reduce the usefulness
of the study. Simulation is more likely to allow a complete study since the level
of detail is not theoretically limited. However, the flexibility of simulation is paid
by a large amount of computat ion t ime and a model can turn out very quickly
to be very complicated as soon as it is a little realistic. Therefore, there has been
a growing interest over the last decade in bringing the available power of parallel
machines to the simulation task.

In this work, we report the speedup obtained by distributing the simula-
tion of a complex ATM network model on a Connection Machine (CM-5) of the
Centre National de Calcul ParaU~le en Science de la Terre (CNCPST). Perfor-
mance evaluation of large communication networks is a challenge because such
evaluation requires the execution of millions of events. Distributed simulation of
these models is also difficult because the overhead per event must be kept small
enough in order to obtain significant acceleration over a sequential simulation.
Previous works by Earnshaw and Hind [2], Mouftah and Sturgeon [8] have also
investigated the communication network simulation problem but they are limited
to the simulation of simple transfer of packet/cell between nodes with uniform

* This work was conducted while the author visited the LIP6 (previously MASI) lab-
oratory for a 6 months period as part of his Master degree.

1002

routing. The speedup reported in [2] is almost linear for the most favorable case
when compared to an optimized version of the parallel simulator. Our work in-
cludes the routing algorithm described in [6] and connection management. The
simulation of a routing algorithm implies to simulate (i) the mechanism that
consists in constructing and updating (on cost change such as a link failure) the
routing table and (ii) the flow of cells transported by the network.

This paper is organized as follows: the next section presents some back-
grounds in distributed simulation. Section 3 presents the ATM network model
and the routing algorithm. Section 4 details our conservative simulation ker-
nel. The preliminary speedup measures are presented in Sect. 5. Conclusion and
future works are then given in Sect. 6.

2 D i s t r i b u t e d s i m u l a t i o n b a c k g r o u n d

The distributed approach usually assumes that the system to be simulated can
be spatially partitioned into disjoint sub-systems. Each sub-system is simulated
by an associated Logical Process (LP) on a dedicated processor. To model the
interactions that may exist in the real system messages are exchanged and times-
tamped by the sending LP according to its Local Virtual Time (LVT). At the
receiving side, they are put in a local Future Event List (FEL) to be processed.
Other methods to parallelize a simulation exist (see [3, 4]) but their applications
are limited.

The distribution of virtual clocks and event lists requires special care to en-
sure that the distributed simulation is correct and produce the same output
when compared to a sequential one. In fact, correctness is achieved if causality
constraints are maintained. Now, since the different LPs may advance at dif-
ferent rates synchronization problems are likely to occur. For instance, we are
confronted to a causality error when a message arrives at a receiving LP and
is outdated, or old, according to the LVT. These problems arise the need of
an explicit synchronization mechanism that are traditionally classified in two
categories: conservative and optimistic.

The conservative approach [1] only processes events that can definitely be
considered safe, i.e. that processing an event would not result in further causal-
ity violations. Safety is guaranteed by forcing the LP to block when bad decisions
can be taken. The advantage is to obtain a correct simulation at any time but
this scheme introduces deadlocks that must be avoided by sending null-messages
relying on lookahead ability in the purpose of artificially propagating and advanc-
ing the simulation time. An alternative that consists of detecting the deadlock
and breaking it also exists. On the other side, optimistic approaches [7] do not
search for safety but provisions are made to roll back to an earlier coherent
state when they occur. Periodic check-pointing and anti-messages to cancel bad
computations are then needed as a counterpart of more freedom. In addition, a
Global Virtual Time (GVT) is required to monitor the simulation progress and
to reclaim memory used by obsolete information.

1003

Experimental studies have shown that neither conservative nor optimistic
approaches can be used for a large variety of applications. Instead, a lot of vari-
ations on the original scheme are defined to take into account specific problems
because the performances of a distributed simulator are tightly linked to the
application. In some cases, a distributed simulation may perform worse than a
sequential one. In this work, we choose a conservative approach as the underly-
ing synchronization method for our kernel. This choice is dictated by two main
reasons. First, some thoughts suggest that communication network models are
not well-suited for optimistic scheduling since they have a very low computation
granularity that would propagate bad computations very quickly. And second, a
conservative method is much more simple than an optimistic one and therefore
is more likely to be efficiently implemented by a small team.

3 T h e A T M n e t w o r k m o d e l

We propose to study the topology illustrated by Fig. 1. Cells are generated
by 7 traffic sources and are sent to the corresponding sinks by intermediate
ATM switches. Connection mode is also modeled so traffic sources send a setup
message to their connected switch indicating the address of the destination before
sending any data cell.

Fig. 1. Routing network topology.

All along the path, a new entry is added in the connection table of each inter-
mediate ATM switches for this new connection. In particular, this table stores
the VCI/VPI (Virtual Channel Identifer/Virtual Path Identifer) translation for
the connection. Upon reception of the setup message, the destination can either
send back a connect message or a r e j e c t message. For sake of simplicity, we
will assume that the destination never refuses a call demand and that the source
can always send cells to its associated sink.

The routing function consists in calculating the best path for the packets/cells
from a source to a sink [10]. This calculation is done by considering either implicit
criterion such as the number of hops or explicit one given by the user (Quality Of
Service). The routing function works in two phases: (i) constructs new routing

1004

tables (done at initialization) and (ii) updates these tables to reflect the network
changes (link failures or dynamic routing).

In this paper, we are interested in the routing algorithm proposed in [6].
This algorithm belongs to the vector-distance category and is said by the au-
thors to have a quick recovery from failure property. In Fig. 1, the additional
bold links represent the tree constructed for a given destination D3 (the tree
is noted G(D3)). The distributed routing algorithm works by exchanging cost
information between switches to construct local routing tables. At the end of
the first phase, each switch is supposed to have a complete routing table that
indicates for each possible destination the best output link. Finally, for each
possible destination Di, a different tree G(Di) rooted by Di can be constructed
with the edges representing the best link an intermediate node should take to
reach Di. When the first phase is completed, the switches can begin to send cells
from sources to sinks according to their routing table. The second phase con-
sists in experimenting link failures to study the recovery behavior of the routing
algorithm.

4 T h e c o n s e r v a t i v e s i m u l a t o r

The conservative simulator is written in C++ using an object oriented design.
The PVM (Parallel Virtual Machine) package [9], and especially the CM-5 im-
plementation that uses the underlying low-level CMAML message passing li-
brary instead of the high-level CMMD [5], provides the communication facilities
between processors. All simulations are performed on a 32 nodes partition.

4.1 The kernel s t ruc tu re

The simulation kernel we developed is a unified object-oriented framework for
both sequential and parallel conservative simulation. Therefore, the same source
code can either be run sequentially or in a distributed manner. This method has
the advantage to allow fair speedup measures, easy debugging and automatic
modification of the two versions. An abstract base class CSimulated0bject is
defined for the purpose of deriving child classes for each simulated object such as
switch, source and link. In particular, the routing functionality is implemented in
the CRoutingSwitch class derived from the CSwitchtTM class that only provides
basic switching functionalities. The main part of the simulator is defined in the
CSimulation class that contains all the simulated objects, the Future Event List
(FEL) and the Local Virtual Time (LVT) for an LP. At this point, there is no
difference yet between the sequential and the distributed simulation. For con-
servative distributed simulation, Input Channels (IC) are introduced in order to
handle messages from the outside. For this purpose the CConservativeLP class
is derived from CSimulation, and therefore inherits the simulated objects, the
FEL and the LVT, and implements the management of the ICs. This means that
a sequential simulation only needs the CSimulation class while the distributed
one uses CConservativeLP instead. In both cases, the simulated objects remain

1005

the same and they do not know whether they are working sequentially or in a
distr ibuted environment.

The management of the ICs and the FEL are the core of the simulator. Since
messages arrive on several ICs, one has to scan all the ICs to determine the
messages tha t are safe for processing. Instead of scanning on a per event basis,
all messages tha t are considered safe are transfered to the FEL and t ransformed
into events in one step. Each IC i handles a virtual clock hi that ticks according
to the t imes tamp of the last received message. In this way, it is possible to
determine the minimum of the hi, called the Sure Future T imes tamp (SFT), in
order to decide whether a message is safe, i.e. its t imestamp is less than the SFT,
or not safe, i.e. its t imes tamp is greater than the SFT. Events produced by an
LP are stored inside the FEL tha t determines whether the destination resides
in a different LP on a different processor or in the same LP. This last case can
happen when the mapping is not one switch to one processor as explained in the
next section.

Null-messages for deadlock avoidance are sent when all safe events have been
processed, i.e. the simulation virtual t ime has advanced to the value of SFT.
One null-message is sent on each output link relying on the lookahead provided
by the link propagat ion delay. This delay represents the minimum t imes tamp
increment between 2 successive messages.

4.2 I n i t i a l i z a t i o n o f t h e s i m u l a t i o n

The programming model for the CM-5 is the master-slave model. At initializa-
tion, a master program spawns (with the pyre_spawn function) all the LPs on
the nodes of the parti t ion and checks for the end of the simulation. The call to
pyre_spawn must be unique so that all the slaves reside in one CM-5 process in
order to achieve fast communication.

A manda tory input file must be provided to the simulator which describe
the topology of the network to be simulated. Each slave reads this input file to
build the simulated objects. It is possible to specify an optional mapping file
tha t describes the mapping of the network components (switches) into LP. The
default mapping is to assign one LP per switch that is simulated on one physical
processor. With a mapping file, several network components can be grouped
in one LP. In this case, all objects in the LP are simulated sequentially and
conservative synchronization is only needed for external messages.

5 S p e e d u p m e a s u r e s

To measure the efficiency of our distributed simulator we compare the overall
execution t ime of a sequential version running on one node of the parallel ma-
chine to the execution t ime of a parallel version. In a first a t tempt , we assign one
physical processor to one switch of the network model. In a second step, several
switches are simulated on the same physical processor with a simple aggregation
method tha t groups several adjacent switches together. Finally a sequential-like

1006

simulation is realized for all the switches in the same physical processor whereas
the conservative synchronization mechanism is used between switches on differ-
ent processor. In this way~ we want to reduce the communication cost between
adjacent LPs since switches in the same LP do not need to exchange remote
message nor null-messages. Figure 2 illustrates the 10 processor mapping. In all
cases, traffic sources and sinks are encapsulated in the same LP of the switch
they are connected into.

......... :,

Fig. 2.10 processor mapping.

Figure 3 shows these execution times for the simulation of 100000 time slots.
This represents more than 6 millions events simulated (approximately 2 millions
cells exchanged between the switches). For the one to one mapping, the resulting
speedup is 4.52. This speedup results in only 0.17 for the efficiency (defined as
the ratio between the speedup and the number of processors used). This modest
speedup, when compared to those obtained by previous works, is linked to the
complexity of the model. In particular, the routing algorithm, instead of being
uniform, creates load imbalances that result in a high null-message ratio between
LPs that do not exchange real messages. Also, the general network topology of
our tests contributes to lower the degree of parallelism. Figure 3 also shows that
unfortunately no better speedup can be obtained with less processors. Therefore
it appears that the aggregation method fails to reduce the communication cost
between LPs but the reason for these poor performances now becomes clear in
the'light of the results. Let us take the LP that aggregates switches 0, 1 and 2
to illustrate our explanation.

When aggregating adjacent switches on the same physical processor, the
number of external links in an LP often remains the same for the case where an
LP simulates one switch or for the case where the aggregated LP simulates sev-
eral switches (2 in the example). This has two consequences. First, the number
of null-messages sent by the LP does not change significantly so the overhead
for these extra messages is not reduced. Second, the number of external remote
messages remains the same since the number of:cells sent on a given link is not
affected by the logical mapping. The aggregation of switches has the consequence
of increasing the load of the processor, because it simulates several switches in-

1007

Real Time vs Virtual Time
400 ~ t ~

350 Sequential 1 node - - /
7 nodes /

10 nodes /
300 22 nodes /

150

100

50
. . . . :7.

20000 40000 60000 80000 100000

Virtual Time

Fig. 3. Overall execution time of parallel version when nproc is varied.

stead of one, while keeping the same overhead for sending external messages.
These results point out the difficult problem of optimal partitioning and load

ti l p d,,p
1 I 380 i 1 . 0 1 1.0
7 158 2.41 0.34
10 i 115 i 3"3°i 033
22 97 3.92 0.18
26 84 4.52 0.17

Table 1. Execution time, speedup and efficiency as nproc is varied

balancing in distributed simulation of communication networks. In this partic-
ular application where the ratio between real computation and communication
overhead (packing and unpacking messages) is very low, putting several switches
that are not adjacent is useless because the level of external synchronization will
remain the same. Little gain can only be achieved for small cycles such as the
one introduced by switches 5, 6 and 7 in Fig. 2 where we can see that the number
of external links is reduced from 4 (case when switch 6 is simulated alone) to 3
(case when switches 5, 6 and 7 are simulated together). In most cases, aggrega-
tion can improve the efficiency but not the overall speedup. Clearly, a difficult
trade-off should be done when aggregating switches between the communication
cost reduction and the load increase of the processor. If the computational power
of a single processor increases, it should be possible to find a partitioning that
maximizes the efficiency while keeping the speedup very close to the one to one
mapping speedup. On the CM-5, this phenomenon can not be observed because
the processing power of a single processor is quite low (SPARC at 32Mhz).

1008

6 C o n c l u s i o n a n d p e r s p e c t i v e s

In this paper we presented a distributed simulation of a real routing algorithm.
Given a realistic network topology that consists of 26 switches, a speedup of
4.52 can be achieved with a simple one switch to one processor mapping. Using
less processors provides no better speedup since the communication cost remains
roughly the same. A speedup of 4.52 is a lot and ... not enough! It is very good
because simulations that should take 4 days can be realized in less than a day.
Now it is not enough because using 26 processors for a speedup of 4.52 is only
0.17 for the efficiency. However this speedup can be improved: we believe that
bet ter speedup can be achieved for larger networks since the parallel version is
more scalable than the sequential one. We are currently porting the kernel on a
CRAY T3E in order to increase the system size. Nevertheless this work shows
that the use of a parallel computer can help to push the design of communication
networks because interesting problems can be simulated in a tolerable amount
of time.

A c k n o w l e d g m e n t

Part of this work is supported by the French defense research institute Direction
de la Recherche Et de la Technologie (DRET).

R e f e r e n c e s

1. Chandy, K. M., Misra, J. : Distribution Simulation: A Case Study in Design
and Verification of Distributed Programs. Trans. on Soft. Eng., 5(5) (May 1979)
440-452.

2. Earnshaw, R. W., Hind, A. : A Parallel Simulator for Performance Modeling of
Broadband Telecommunication Networks. Proc. of the WCS'92 1992, 1365-1373.

3. Ferscha, A., Tripathi, S. K. : Parallel and Distributed Simulation of Discrete
Event Systems. CR-TR-3366, Dept. of Comp. Science, Univ. of Maryland.

4. Fujimoto, R. M. : Parallel Discrete Event Simulation. Comm. of the ACM, 33(10)
(October 1990) 31-53.

5. Hoppe, H. C., Ossadnik, P., Stiittgen, W. : CM-PVM: An Efficient Implementa-
tion of PVM 3.3 for the CM-5. Proc. of The EuroPVM'95, 52-58.

6. Jaffe, J. M., Moss, F. H. : A Responsive Distributed Routing Algorithm for
Computer Networks. IEEE Trans. on Comm., 30(7) (July 1982) 1758-1762.

7. Jefi~erson, D. R. : Virtual Time. ACM Trans. on Prog. Lang. and Sys., 7(3) (July
1985) 405-425.

8. Mouftah, T., Sturgeon, R. T. : Distributed Discrete Event Simulation for Com-
munications Networks. IEEE JSAC, 8(9) (December 1990) 1723-1734.

9. Geist, A. and al. : PVM 3 User's Guide and Reference Manual. (May 1993).
10. Schwartz, M., Stern, T. : Routing Techniques used in computer communication

networks. IEEE Trans. on Comm., 28(4) (April 1980) 539-552.

