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Abs t r ac t .  In this paper two recently proposed single-vector Lanczos 
methods based on a simple restarting strategy are analysed and their 
suitability for the computation of closely clustered eigenvalues is eval- 
uated. Both algorithms adopt an approach which yields a fixed k-step 
restarting scheme in which one eigenpair at a time is computed using a 
deflation technique in which each Lanczos vector generated is orthogonal- 
ized against all previously converged eigenvectors. In the first algorithm 
each newly generated Lanczos vector is also orthogonalised with respect 
to all of its predecessors; in the second, a selective orthogonalisation 
strategy permits re-orthogonalization between the Lanczos vectors to be 
almost completely eliminated. 'Reverse communication' implementations 
of the algorithms on an MPP Connection Machine CM~200 with 8K pro- 
cessors are discussed. Advantages of the algorithms include the ease with 
which they cope with genuinely multiple eigenvalues, their guaranteed 
convergence and their fixed storage requirements. 
K e y  words  : Lanczos, restart, deflation, orthogonalization, MPP. 

1 The  Lanczos Algor i thm 

Essentially, the Lanczos algorithm [2], [5] generates a sequence of tridiagonal 
matrices Tj, each with values ( a l , . . . ,  a j )  on its main main diagonal and val- 
ues ( ~ 1 , . . . , ~ j - 1 )  on its main sub- and super-diagonals, together with a se- 
quence of or thonormal  matrices of Lanczos vectors Qj = [q l , . . . ,q j ] ,  where 
j _< n, such that  Q~AQ = Tj. It  can be shown that  Qj is an or thonormal  
basis for tC(A, ql,j), the Krylov subspace of order j generated by A and ql. 
Let X T A X  = diag(A1, . . . ,An) where A1 _> A2 _> -.-  _> An, and where X = 
Ix1,..., xn] is orthonormal,  be the spectral decomposition of A. Similarly, let 
S f T j S j  .= diag(81(Tj ) , . . . , 8 j (T j ) )  where 81 > 82 > . . .  > 8j, and Sj = (spq), 
be the spectral decomposition of Tj. Then yi E ~n in QjSj = Yj = [y l , - . . ,  yj] 
is known as the i-th Ritz vector of A for the subspace range(Qj), and 8i(Tj) 
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is known as the corresponding Ritz value. It can be shown that, for surpris- 
ingly small j ,  the Ritz pair (Oi, Yi) closely approximates the i-th eigenpair of A, 
(;~i, xi), provided that the ratio I )~i I/ll A 112 is reasonably close to unity. 

1.1 Estimating the Largest Eigenvalue 

Let ql C ~n be such that II ql 112 = 1. Then the Lanczos algorithm for the 
computation of the largest eigenvalue only may be expressed as follows: 

Algorithm 1 function[(01, Yl)] -- Lanczos(A, ql, k) 
flo +- 1, q0 +-- 0 
for  j - -1 ,  2, . . . , k 

aj  +- qTAqj 
qj+l ~ (A - ~ j I ) q j  - Z j - l q j - 1  

+-II qj+1112 
if ~j = 0 then STOP (eigenvalues of Tj are the j largest eigenvalues 

of A) 
qj+l ~ qj+l/Z~ 

(A) orthonormalize qj+l against q l , . - . ,q j  
end_for 

compute (01, Yl). 

It follows that the Ritz pair (01, Yl) returned by Algorithm 1 is an approximation 
to the eigenpair (A1, Xl) of A. The accuracy of this approximation may be 
estimated before Yl is computed on the basis of the error bounds I ~j II Sjl I [2], 
since 

I ~J II Sjl I----II Ayl  - 0 1 y l  112 (1) 
Observe that the orthogonality of the Lanczos vectors has been guaranteed 
throughout by the inclusion of a complete re-orthogonalization of the Lanczos 
vectors in each iteration (Step A). 

A major problem associated with the above algorithm is that k must be 
chosen to be sufficiently large to guarantee the required accuracy in the solution. 
Moreover, the value of k required is not known in advance. However, two explicit 
restarting schemes for the computation of the p << n largest eigenvalues of a 
symmetric matrix A have been developed [8], each of which incorporates a fixed 
k-step variant of Algorithm 1 where k is assumed to be small. Brief outlines of 
these schemes are now given. 

2 Lanczos wi th  Explic i t  Restart:  E X P R E S 1  

Let approximated quantities be decorated with the : symbol. Thus, at the j- th 
Lanczos step, the Ritz pair (Oi,yi) is synonymous with (ii,~i). Suppose that 
the approximated eigenpairs ( i l ,X l ) , - . . ,  ( i i ,xi) ,  where i < p, are given. Let 
2~ = span{21,. . . ,  2~} and l e t / ~  be its orthogonal complement in ~n. Observe 
that, if the Lanczos vectors ql , . . ,  qk are constrained to stay in the subspace A'~-, 
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the Lanczos algorithm will converge to the Ritz values of A in the subspace ?~/_L, 
viz, the desired approximations Ai+l, A/+2,... This observation provides the basis 
for the two fixed k-step restarting schemes described below. The first may be 
expressed as the following algorithm: 

Algor i thm 2 function[(A1, :~1), . . . ,  (,~p, Xp)] : EXPRESI(A,p, k, tol) 
20=0 

(1) f o r i = l : p  
(1) choose ql ¢ 2i--1 
(2) Yl +'- ql ; O1 +- y~Ayl 
(3) w h i l e  ~,(IIAya-OlYllI21011 ) tol) 

(1) (Ol,yl) < Lanczos(A, ql,k) 
(2) ql +- Yl" 

end_while 
(4) (£i,~ci) +- (01,Yl) 
(5) i f / < p  then  Xi +- Xi-1 @ span{Zi} 

end_for 

tol is the user supplied tolerance (normally set to u, the relative machine ac- 
curacy). It is assumed that Algorithm 1, as used in S tep  (1.3.1) above, is 
modified to include a mechanism for projecting each newly generated Lanczos 
vector (including ql) into X~ ¢ 0. This can obviously be achieved by the ex- 
plicit orthogonalization of each qj against 51,. •., ~i. Algorithm 2 as described 
above is henceforth referred to as EXPRES1. Observe that, since k is completely 
independent of p, it can always be chosen to be small. 

Clearly, since the i-th eigenvalue of A is sought in the subspace 2(~], Al- 
gorithm 2 is theoretically ideal for coping with closely clustered and genuinely 
multiple eigenvalues of A. This paper provides numerical evidence that this is 
indeed the case in practice. Further, it is demonstrated that, in many cases where 
closely clustered and genuinely multiple eigenvalues occur, Algorithm 2 is signif- 
icantly more efficient than Sorensen's state-of-the-art routine when implemented 
in a massively parallel SIMD environment. 

3 Lanczos wi th  Explicit  Restart:  E X P R E S 2  

A finely tuned version of Algorithm 1 has also been developed for use with 
Algorithm 2 in which the complete re-orthogonalization of the Lanczos vectors 
(Step A) is replaced by a selective re-orthogonalization strategy [5], [6]. Thus, 
as soon as the error bound associated with a Ritz vector satisfies 

I /3j I[ sii [<- ~ II A [Iz (2) 
the Lanczos process is immediately restarted with the current value of Yl, even 
when j < k. Further, if Yl triggered the restart, all subsequent qj+l computed are 
not only projected into X~ 7~ 0 but are also orthogonalized against the recently 
computed, 'converging' Ritz vector yl. This orthogonalization strategy purges all 
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unwanted, 'converging' Ritz vectors, yi : i # 1, from the system and consider- 
ably reduces the computational overhead associated with the orthogonalisation 
process. An outline of this version of Algorithm 1 is given below: 

Algor i thm 3 function[(01, Yl)] = Lanczos(A, ql, k, converging) 
/3o +-- 1, q0 +- 0 

(1) for j = 1 ,2 , . . . , k  
(1) if i ¢ 0 then  orthogonalize qj against 21, . . .  2i 
(2) aj  +- qTdq3 
(3) qj+l +- (A - (~jX)qj - ~ j - lq j -1  
(4) 9j  -I1 qj+1112 
(5) if ~j = 0 then  STOP (eigenvalues of Tj are the j largest eigenvalues 

of A) 
(6) qj+l qj+i/Z¢ 
(7) if converging = fa l se  then  

(1) compute s j l , . . . , s j j  
(2) if min{I /3j {] Sjl I , . . . , ]  flJ II S j j  I} = I /3J II Sjr I ~- V ~ II A 112 

t hen  
(1) compute (01,yl) 
(2) if r = 1 then  converging +- true 
(3) exit  

else 
(3) orthogonalize qj+l against ql 

end_if 
end_for 

(2) compute (01,yl). 
The variant of Algorithm 2 which incorporates the finely tuned version of Algo- 
rithm 1 above is referred to as EXPRES2. Note also that this variant requires 
converging +-- fa l se  to be added to Step (1.2) in Algorithm 2 and Step  (1.3.1) 
to be replaced by (01, Yl) +--- Lanczos(A, ql, k, converging). Further, it can be 
established formally that each of the restart schemes, EXPRES1 and EXPRES2, 
guarantees convergence to the p required eigenvalues of A. 

4 I m p l e m e n t a t i o n  o n  t h e  C o n n e c t i o n  M a c h i n e  C M - 2 0 0  

The algorithms have been implemented using a Reverse Communication strategy 
[7], [3] in which the user is responsible for supplying the code for all matrix-vector 
products of the form Aqj. Such an approach enables the user to take advantage 
of the architecture of the target machine and of any available highly optimised 
code when implementing these computationally expensive operations. Thus, all 
vectors of length n are declared and stored as distributed CM arrays, whereas 
all other quantities are confined to the 'front-end' machine. It follows that all 
massive saxpy type operations involving the n-vectors are fine-grain parallel op- 
erations and, consequently, they are performed on the CM itself using the highly 
optimised matrix-vector product routines which are available in the Connection 
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Machine Scientific Support Library. These operations include, for example, the 
dense matrix-vector products in the reorthogonalization steps (1.1) and (1.7.3) 
of Algorithm 3 and they occur also in the computation of the Ritz vectors in 
steps (2) and (1.7.2.1) of this algorithm. In contrast, the remaining compu- 
tations, viz. those involving the matrices Tj, are computationally inexpensive 
and are performed on the 'front-end' machine, thereby enabling heavy use to be 
made of functions from the BLAS library. 

5 N u m e r i c a l  E x p e r i e n c e  

The performances of the restarting algorithms, EXPRES1 and EXPRES2, have 
been compared with the performance of the appropriate driver program calling 
the symmetric Arnoldi (Lanczos) routine 'SSAUPD' from the ARPACK library 
[4]. Single precision CM-200 versions of the three methods, SSAUPD, EXPRES1 
and EXPRES2, have been constructed and numerical experiments using a vari- 
ety of matrices with closely clustered and/or multiple eigenvalues taken from real 
world applications have been conducted. Test results for four sparse matrices 

4 
8 
16 

32 
64 
128 

I 

PLAT1919 It NOS7 n = 1,919 (n z=17159)  n = 729 (nz = 2,673) 
A1=2.9216371 A1 = 9.86403 x 108 
A64 = 1.3470327 Aa4=9.62953 x 102 

SSAUPD EXPRES1 
k = max(16, 2p) k = 32 

EXPRES2 I SSAUPD 
k = 32 k = max(16, 2p) 

1.5 (18%) 1.1 (63%) 0.4 (93%) 
3.3 (22%) 2.2 (62%) 0.9 (92%) 
3.9 (18%) 3.7 (59%) 2.2 (90%) 
8.9 (11%) 
28.1 (5%) 
123.3 (2%) 

8.1 (55%) 
21.9 (50%) 
53.2 (43%) 
162.4 (33%) 568.8 (< 1%) 

5.1 (88%) 
11.9 (81%)[ 
29.0 (71%) 
90.7 (62%) 

61u l lu  14u 

EXPRES1 EXPRES2 
k--32 k = 3 2  

0.7 (21%) 0.4 (41%) 0.4 (53%) 
1.4 (18%) 8.1 (42%) 2.5 (83%) 
4.2 (11%) 24.0 (33%) 3.2 (82%) 
5.1 (8%) 
8.5 (4%) 
18.9 (3%) 
192.8 (1%) 

1816.4 (~ 0%) 
11~/'~ 

30.3 (40%) 
78.9 (34%) 
107.5 (31%) 
208.2 (24%) 
585.9 (15%) 

4v~ 

4.8 (79%) 
24.1 (65%) 
48.3 (56%) 
85.0 (79%) 
274.5 (28%) 

17vrd 

Table 1. Time (in seconds) for matrices PLAT1919 and NOS7 from the PLATZ and 
LANPRO collections, respectively (figures in brackets show the percentage of total 
time taken for the computation of matrix-vector products). 

selected from the Harwell-Boeing Sparse Matrix Collection [1] where p ranges 
from 1 to 128 are presented in Tables 1 and 2. In Table 1 the matrix PLAT1919 
provides a well known difficult sparse symmetric eigenproblem whose eigenvalues 
occur in pairs (except for an isolated singleton at zero); the condition number of 
matrix NOS7 in the same table has the value 1.8 × 109. The matrix BCSSTK19 
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BCSSTK19 BCSSTK25 
n = 817 (nz ---- 3835) n = 15,439 (nz = 133840) 
),1 = 1.92216 x 10 l° A1 -- 1.06002 × 1016 

),64 = 6.12629 × 1014 ),32 -- 4.03627 × 1013 

P 

1 
2 
4 
8 
16 
32] 
64] 

SSAUPD 
k = max(16, 2p) 

EXPRES1 
k = 3 2  

EXPRES2 
k = 3 2  

1.8 (32) 0.4 (32) 0.2 (34) 
1.7 (32) 1.1 (96) 0.6 (100) 
4.1 (58) 2.2 (192) 1.2 (200) 
6.6 (73) 4.3 (352) 2.7 (432) 
15.6 (99) 10.0 (736) 6.4 (896) 

64.2 (148) 28.8 (1696) 21.2 (2,368) 
185.9 (192) 90.9 (3,968) 51.1 (4,480) 

14u 32u 

SSAUPD EXPRES1 
k -- 32 k = 32 

18.9 (32) 3.1 (32) 
18.8 (32) 6.2 (64) 
18.8 (32) 12.5 (128) 
42.8 (49) 28.3 (288) 
40.9 (40) 54.4 (544) 

12u 29u 

EXPRES2 
k = 3 2  

3.0 (34) 
11.6 (132) 
23.4 (264) 
38.2 (432) 
71.5 (800) 

121.5 (1,152) 163.0 (1,760) 

269u 1,205u 

T a b l e  2. Time (in seconds) for matrices BCSSTK19 and BCSSTK25 from the BC- 
SSTRUC3 collection (figures in brackets show the number of matrix-vector products). 

in Table  2 is very  poor ly  condi t ioned and its c o m p u t e d  eigenvalues occurred  in 
clusters.  T h e  c o m p u t e d  eigenvalues of the  ma t r i x  B C S S T K 2 5  also occur  in clus- 
ters.  Fur ther ,  s to rage  res t r ic t ions p reven ted  the  SSAUPD rout ine  f rom obta in ing  
par t ia l  e igensolut ions for this ma t r i x  for those cases where  p = 32 and 64. Ta-  
ble 3 presents  the  resul ts  for a t r id iagonal  ma t r i x  A, all of  whose diagonal  and 
off-diagonal  e lements  are set to  2 and  1, respectively.  This  ma t r i x  (hencefor th  
referred to  as the  (1,2,1) mat r ix )  arises in a var ie ty  of  discret izat ion p rob lems  in 
numer ica l  m a t h e m a t i c s  and is known to be fairly pathological  and  slow to  con- 
verge. In  the  header  of  each Table  nz denotes  the  n u m b e r  of nonzero e lements  
in the  uppe r  t r iangle  of the  mat r ix .  Also in the  case of the  SSAUPD rout ine  k 

(1,2,1) Matrix 
n = 10,000 (nz = 19,999) 

),1 = 0.39999959 x 101, ) ,16  = 0.39999380 x 1011 
p SSAUPD 

k = 3 2  
1 32.8 (64) 
2 427.9 (1310) 
4 474.8 (1,242) 
8 1114 (2,094) 
16 2735 (2,763) 

EXPRES1 
k = 3 2  

1.4 (96) 
23.2 (1,538) 
820 (5,248) 

227.2 (13,632) 
584.3 (31,360) 

EXPRES2 
k = 3 2  

0.7 (100) 
9.0 (1,190) 

30.3 (3,882) 
85.6 (10,226) 

220.8 (23,554) 
706u 1006u 1006u 

T a b l e  3. Time (in seconds) for the (1,2,1) matrix(figures in brackets show the number 
of matrix-vector products). 
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denotes the number of Lanczos steps after which an 'implicit' restart is made; 
the chosen mode is 'exact shifts' [4], [7]. The final row of each Table gives the 
accuracy of the computed solution as cu (or c v ~ ,  where c is a natural number. 
This accuracy has been computed 'independently' as 

max( ) ; i = l , . . . , m a x ( p )  

1 [1,1, . . . ,1]  and the In all cases the initial value of ql is chosen to be ~ x 
products Aqj are computed using the Connection Machine Scientific Support 
Library routine 'sparse~matvec~nult'. With the exception of the (1,2,1) matrix, 
the requested tolerance has been set in all cases to u. 

6 C onc lus ions  

The results presented in Tables 1 and 2 show clearly that  Sorensen's implicit 
Arnoldi routine and the two explicit restart routines discussed in this paper are 
capable of computing very accurate partial eigensolutions of real world large 
sparse symmetric matrices whose eigenvalue distribution contains closely clus- 
tered and/or  multiple eigenvalues. Thus, in particular, EXPRES1 and EXPRES2 
both computed partial eigensolutions of the matrix PLAT1919 of order up to 
64 with accuracy better than 14u. Observe that  SSAUPD computed the same 
solutions with accuracy better than 61u. However, in the case of the (1,2,1) ma- 
trix, it was not possible to obtain partial eigensolutions of similar accuracy using 
any of the algorithms as is indicated in Table 3. Nevertheless, considering the 
pathological nature of this matrix, the single precision solutions obtained were 
good. 

Table 3 shows that,  for the pathological (1,2,1) matrix, the explicit restart 
routines developed by Szularz et al [8] perform signicantly better than Sorensen's 
routine [4]. Further, it seems to be the case that,  in general, the explicit restart 
routine EXPRES2 is much more efficient than Sorensen's routine. 

It is clear from Tables 2 and 3 that,  for any given example, the restart strate- 
gies discussed in this paper require significantly more matrix vector products of 
the form Aqj than does the SSAUPD routine. Further, Table 1 suggests that  a 
greater proportion of EXPRES2 consists of these products than is the case for 
the other two algorithms. Considering the efficiency with which these products 
can be implemented in the highly parallel Connection Machine environment, it 
is this property of the algorithm which enables it consistently to outperform the 
others on the CM-200. 

The results show also that,  with the exception of the matrix BCSSTK25, 
EXPRES2 is considerably more efficient than EXPRES1. The reduction in the 
amount of re-orthogonalization required appears to be the significant factor al- 
though another important factor is that,  if reorthogonalization can be avoided, a 
'purer' Krylov subspace is constructed and, consequently, convergence is faster. 
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The reason why EXPRES1 is more efficient than EXPRES2 in the case of BC- 
SSTK25 is currently unknown. However, it is our opinion that, for those matrices 
where orthogonalization is an issue, the use of a solver which incorporates full 
re-orthogonalization of the Lanczos vectors is to be preferred to one which incor- 
porates only a selective re-orthogonalizaton. The matrix BCSSTK25 may belong 
to this category. 

tn conclusion, it has been shown that the two algorithms discussed in this 
paper (together with Sorensen's routine taken from the ARPACK library) are 
well suited to the computation of partial eigensolutions of large sparse symmetric 
matrices containing closely clustered or multiple eigenvalues. It has also been 
demonstrated that one of the algorithms (EXPRES2) is highly competitive with 
Sorensen's algorithm for problems of this kind when implemented in a highly 
parallel SIMD environment. 

The algorithms are currently being implemented on the Cray T3D and an 
analysis of their performances on this highly parallel shared distributed memory 
machine will form the basis of a future paper. 
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