
Embodying Parallel Functional Skeletons: 
An Experimental Implementation on Top of MPI 

Jocelyn S@rot 

LASMEA URA-1793 CNRS, Campus des C~zeaux, F-63177 Aubi~re Cedex, France, 
e-mail: Jocelyn.Serot @lasmea.univ-bpclermont.fr 

Abs t rac t .  This paper aims at presenting an experimental but practical 
implementation of a skeleton-based parallel programming methodology 
based upon the integration of the MPI message-passing interface and 
a state-of-the-art ML compiler. The combination of a small number of 
higher-level communication abstractions and a SPMD style of program- 
ming has proven to provide a safe and fast way of designing parallel 
programs without loosing efficiency. The usefulness of the approach has 
been demonstrated by parallelising a complete image processing appli- 
cation. 

1 Introduct ion  

The concept of algorithmic skeleton was introduced by Cole [1] and Skillicorn 
[3] on the basis that  many explicit parallel programs may actually be viewed as 
instances of a small number of generic patterns of parallel computation. Since 
then, they have been advocated as a pragmatical but efficient way of exploiting 
parallelism, especially in functional programs, within which they can be ex- 
pressed in a very natural way as higher-order functions (HOFs). Yet, despite all 
the above arguments, it appears that  very few practical implementations have 
effectively been built to support the initial claim. This fact may be at tr ibuted to 
a maybe under-estimated weakness of skeletons, already pointed out by Kesseler 
in [2]: up to now, they had to be re-implemented from scratch for every target 
architecture. The work described in this paper aims at tackling this problem by 
using a portable message-passing specification like MPI as an intermediate level 
of abstraction between skeletons definition and implementation. 

2 The  M L / M P I  interface 

Our goal is to coordinate the activity of ML programs running in SPMD mode 
using MPI communication routines wrapped into higher-level communication 
functions (the skeletons). Restricting our approach to SPMD mode pragmat- 
ically provides the easiest path for building and running distributed ML pro- 
grams, since the replicated copies of the code can be generated using any existing 
sequential ML compiler. All that  is required is a (foreign) interface allowing ML 
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functions to make calls to a few MPI  communication routines. We give here the 
specification of such a minimal interface, in Caml 1 : 

- t y p e  p id  = i n t  is the type for process ids 
- t y p e  t a g  = i n t  is the type for message tags 
- type status = { src: pid; tag: tag } 

is the type for received message status 
- val comm_size : unit -> int 

returns the number  of processes currently running 
- val comm_rank : unit -> p i d  

returns the current process id 
- v a l  s s e n d  : ' a  -> p i d  -> t a g  -> u n i t  

s send  msg d s t  t a g  makes a synchronous, blocking send of message msg to 
process with id ds t ,  with tag t a g  

- val recv : pid option -> t a g  option -> ' a  * status 

r e c v  (Some s r c )  (Some t a g )  waits (blocking) for a message with tag t a g  
coming from process having pid s rc .  

- v a l  run : ( u n i t  -> u n i t )  -> u n i t  
run f initialise MPI context, evaluates function f within this context and 
terminates MPI. 

All these functions were implemented using only seven MPI calls and a few 
lines of of "stub-code" for exchanging arguments and results between the MPI 
C functions and their ML counterparts.  

3 T h e  s k e l e t o n s  

In the light of our existing knowledge of recurrent parallelisation schemes for 
image processing, three skeletons were specified and implemented: scm (split, 
compute  and merge), f a rm (data farming) and l i l t  (data filtering). Each skele- 
ton is actually given two equivalent definitions: a purely applicative one, and 
an operational one. The applicative definition, written once in the functional 
base language using sequential HOFs, allows skeletal programs to be prototyped 
rapidly on sequential platforms. The operational definition uses the MPI  calls 
described in the previous section and is intented to run as a coordinated set of 
processes on the actual parallel target platform. 

S C M  The scm skeleton encompasses most of data-parallel  decomposition strate- 
gies. Its signature and applicative definition are: 

val scm : ('a->'b list) -> ('b->'c) -> ('c list->'d) -> 'a-> 'd 
let scm split f merge x = merge (map f (split x)) 

Its operational definition using MPI ssend  and r e c v  calls follows: 

1 Caml is a strict, polymorphic, higher-order, publicly available ML dialect. 



631 

let scm split f merge x = 
let np= Mpi.comm_size () and id = Mpi.comm_rank () in 

i f  i d  = 0 t h e n  (******* R00T *************************************** 
let zs = split x in (* Split data *) 
let n = List.length zs in (* Check if enough procs *) 

if np< n then failwith "scm: not enough procs" else 

let x,xs = List.hd zs, List.tl zs in 
let _ = List.iter_index (* Send n-I data chunks to workers *) 

(fun i x -> Mpi.ssend x (i+l) O) xs in 

let y = f x in (* Having kept one for home work .. *) 

let ys = List.map_index (* Now, wait for workers *) 

(fun i x -> let y,_ = Mpi.recv (Some (i+l)) (Some I) in y) xs 

in merge (y::ys) (* Merge partial results and return *) 

else (*************** WORKERS ************************************** 

let x, _ = Mpi.recv (Some O) (Some O) in (* Wait for data *) 

let y = f x in (* Do my own work *) 

let _ = Mpi.ssend y 0 I in (* Send result back *) 

merge  [] (* L o c a l  r e s u l t  *) 

F A R M  a n d  F I L T  From the operational point of view, the main characteristic 
of the previous scm skeleton is its very "static" behaviour. In particular, no 
provision is made for ensuring an even load-balancing between workers. This 
aspect is addressed by the farm skeleton, the goal of which is to apply a given 
function to a list a data  using a "pool" of workers of any size, dynamically taking 
care of work-load distribution. From a functional point of view, farm is simply 
a map. Its parallel implementation involves some kind of dynamic control of the 
worker processes by the farmer, implemented using MPI tagged messages. 

The l i l t  skeleton is a variant of farm in which workers only return results 
satisfying a given predicate. 

A n o t e  on  p o l y m o r p h i s m  Because they actually hide (encapsulate) all atomic 
sends and rece ives ,  our definitions of skeletons also appeared to solve a "clas- 
sical" problem related to message-passing based programming in ML: as long as 
programs use polymorphie sends and recvs (like those defined in section 2) they 
cannot be statically type-checked 2 and it's the programmer's responsibility to 
ensure that  these atomic calls are used in a consistent manner. By contrast, the 
signature of each skeleton automatically enforces these type constraints. 

4 A c o m p l e t e  e x a m p l e  

The skeletons quoted in section 3 were used for the parallelisation of an im- 
age segmentation process that  aims at extracting polygonal approximations of 
significant contours from intensity images. The application, initially written in 

2 At the implementation level, polymorphism is handled using "flattening" and "de- 
flattening" primitives to transform non-functional ML values into streams of bytes. 
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sequential ML, comprises three main stages: edge detection, edge tracking and 
edge approximation. Edge detection is performed using Canny-Deriche algorithm 
(smoothing using row- and column-oriented gaussian IIR filtering, gradient com- 
putation and extraction of local edge maxima). Edge tracking merges potential 
edge points into lines that are subsequently filtered according to two criteria: 
minimum length and existence of at least one point with value above a given 
hysteresis threshold. Polygonal approximation finally converts these lines into 
lists of vertices. 

Figure 1 illustrates the sequencing of these stages along with the top level 
Caml program showing the instantiations of the skeletons that were used for 
their parallelisation. The first four stages are all instances of regular, local pro- 
cessing in which the value of one pixel in the result image depends only on pixels 
within a fixed neighbourhood and the work load is uniformly distributed across 
the image. Hence the use of the scm skeleton with geometric partitioning 3. De- 
spite the fact that it is intrinsically a non-local operation, edge tracking is also 
implemented using the scra skeleton: edges are tracked separately in every par- 
tition, the merge_edges function being responsible of merging those that have 
been artificially "broken" at partition boundaries. The last three stages (namely 
rain_length, h y s t e r e s i s  and polyg_approx), because they process data of un- 
predictable size, make ideal candidates for the farm and l i l t  skeletons. 

Getting a parallel version of the application actually boiled down to wrapping 
the eight calls sraooth_x ...  polyg_approx from the initial sequential Caml code 
into the corresponding skeleton HOFs and writing the raerge_edges function. 
The resulting program has been tested using the MPICH implementation on 
a network of Sun4 workstations and showed correct behaviour and reasonable 
speedups. 

5 Conclusion and further work 

This work deliberately concentrated on two goals: ease of development and porta- 
bility for functional skeletons. As a result many issues remain to be investigated. 
First, performance models for skeleton implementation are needed in order to 
help the programmer (or the compiler...) to select the most efficient skeleton for 
a given data profile and sequential function. Second, insofar as parallel appli- 
cations are rarely written from scratch (and especially in ML !..), we definitely 
need a way of using existing sequential C code as skeletons arguments 4. Finally, 
skeleton implementations could certainly be improved by using MPI collective 
routines, since parallel computers are likely to provide direct support for them 
in hardware and software. 

3 row_block (resp. coZ_bZock) and block_row (resp. block_col) are primitives of a~ 
img abstract data type (functor) handling the partitioning of images into sub-images 
(with various overlapping schemes) and their subsequent merging. 

4 Following in that the idea supported by Darlington et al in the SPP project [4]. 
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smooth_x 

I1 ~ :img 
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I2 ~ :img 

grad 

131 :img 

local_maxs 

edge_tracking 
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hysteresis 

approx polyg 
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l e t  main () = 
l e t  f ,  s ,  t l ,  t 2 ,  lm, dm = get_params () in 
l e t  np, id = Mpi.comm_size, Mpi.comm_rank () in 
l e t  i0 = I m g . r e a d _ f i l e  f in  
l e t  n r , n c  = nb_rows i0,  nb_cols  i0 in 
let il = scm 

(row_block np NoOverlap) 
(smooth_x s) 
(block_row NoOverlap) i0 in 

let i2 = scm 
(col_block np NoOverlap) 
(smooth_y s) 
(block_col NoOverlap) il in 

let i3 = 
scm (row_block np (Overlap I)) 
grad 
(block row (Overlap I)) i2 in 

let i4 = scm 
(row_block np (Overlap I)) 
(local_maxs thl) 
(block_row (Overlap I)) i3 in 

let ii = scm 
(row_block np NoOverlap) 
track_edges 
(merge_edges) i4 in 

let 12 = lilt (min_length im) ii in 
let 13 = lilt (hysteresis t2) 12 in 
let 14 = farm (approx_polyg d m) 13 in 
display_lines 14; 
let _ = Mpi.run main 

Fig.  i .  
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