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Abstract .  We present a new type system for TyCO, a name-passing 
calculus of concurrent objects. The system captures dynamic aspects 
of objects' behaviours, namely non-uniform service availability of active 
objects. The notion of processes without errors is loosened, demanding 
only weak fairness in the treatment of messages. 

1 M o t i v a t i o n  

This paper proposes a type system for TyCO (TYped Concurrent Objects) 
[VT93], a name-passing calculus of concurrent objects. In a setting where (ac- 
tive) concurrent objects are characterized by non-uniform service availability 
[Nie95], a static "types-as-interfaces" approach is not suitable to capture dy- 
namic aspects of objects' behaviours. We propose types as graphs (representing 
objects as state-transition systems), and demand weak fairness in the treatment 
of messages. The type system is able to type objects with a non-uniform service 
availability, while preserving the subject-reduction property. 

A typical process not typable by "traditional" type systems [VH93, VT93, 
KY95, LW95] is a one-place buffer that  only allows read operations when it is 
full, and write operations when it is empty. 

Empty(b) = b t> [write: (u) Full(b u)] 
Full(b u) = b t> [read: (r) r <3 val: [u] I Empty(b) ] 

The type systems mentioned above assign interface-like types to names. 
Therefore, name b should have a single interface, containing both methods' labels 
write and read, and thus the example presented can not be typed. Nevertheless, 
the behaviour of the process (alternating between write and read operations) is 
very clear. Furthermore, a process containing the redex Empty(b) I b <~ read: [r] 
should not be considered an error, for the presence of a message b <1 write:[u] 
makes the reception of the read message possible. 

The development of a type system able to type processes like the one above 
is the main motivation of this work. This paper is a short version of [RV97]. 

* This work was partially supported by JNICT PRAXIS XXI projects 
2/2.1/MAT/46/94 Escola, 2/2.1/MAT/262/94 SitCalc and 2/2.1/TIT/1658/95 Log- 
Comp, and by the ESPRIT Working Groups 22704 ASPIRE and 23531 FIREworks. 
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2 The calculus of objects 

TyCO is an object-oriented name-passing calculus with asynchronous commu- 
nication between concurrent objects via labelled messages carrying names. The 
calculus is developed along the trends of well-known models of concurrency, such 
as the ~r-calculus [MPW92], the r-calculus [HT91], and the actor model [Agh86]. 

Consider names u, v, x, y car ,  labels a,b,c E £, and processes P, Q c P. Let ~5 
stand for a sequence of names, and ~ for a sequence of pairwise distinct names. 

De f in i t i on  1. The set P of processes is given by the following grammar. 
P : : =  x [ > M  I x<~m I P I Q  I ~ x P  I ! x [ > M  I 0 

def  where M def ~ i e I  a~ : (~i) Pi for I a finite index set, and m = a : [~5]. 

The basic processes are objects x D M, located at some name x and composed 
of a finite collection M of labelled methods (with pairwise distinct labels), and 
asynchronous labelled messages x <3 a:  [~], targeted at some object 's location x 
and selecting its method a with actual parameters ~. Each method a : (2) P is 
labelled by a distinct label a, has formal parameters 2 and body P. The other 
constructors are the concurrent composition of processes, the restriction of the 
scope of a name to a process, the replication of objects, and the terminated pro- 
cess. We abbreviate a method a: 0 0 to a, and a process ~'xl""~'Xn P to ~ P .  

We impose one important restriction on processes: the formal parameters 
in a method are not allowed to be locations of objects in the body P. 

An occurrence of a name x in a process P is bound if it is in a part of 
P with the form a : (~x~) Q or px Q; otherwise the occurrence of x is free. 
The set fn (P)  of the free names in a process P is defined accordingly, and so is 
alpha-conversion, denoted by ~_~. The process P[~/~] denotes the simultaneously 
substitution of the free occurrences of ~ in P by ~, defined only when ~ and 
have the same length. 

D e f i n i t i o n  2. Structural congruence is the smallest congruence relation over 
processes generated by the following rules. 

P = Q  i fP=_,~Q P ] O - P  P I Q - Q I P  ( P ] Q ) ] R - P ] ( Q ] R )  
u x y P = _ ~ y x P  ~ x O - O  L, x P [ Q = _ ~ , x ( P I Q )  i f x ~ f n ( Q )  

The result M • m of applying a communication m to a collection-of methods 
M is the process P[~/Sc] if m is of the form a: [~], and a: (~)P is a method in M, 
and the substitution is defined. 

De f in i t i on  3. One-step reduction 
crated by the following rules. 

COM x E> M I x <~ m =~ M ,, m 
PAR P I R - ~ Q ] R - i f P - + Q  

STR pt__+ QI 
Reduction ---- is the relation = U 
of -*. 

--* is the smallest relation over processes gen- 

REP tx ~> M I x <~ m --~ !x ~>~.,]t/I I M . m 
RES v x P - - ~ p x Q  i f P - - + Q  

i f P ' - P ,  P ~ Q ,  Q=_Q' 
~ + ,  where 4 + denotes the transitive closure 
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The new notion of process with error requires two further notions. A context 
C is the concurrent composition of messages and a constant [] (called the hole). 
Filling the hole of a context C with a process P results in the process C[P]. A 
process P has a (replicated) x-redex if P = , ~  (!x E> M I x <~ m I Q). A process 
P has a bad x-redex if P has an x-redex and M • m is not defined. 

D e f i n i t i o n  4. A process P is an error, notation P E ERR, if 
1. 3 C C[P] ~ Q, and Q has a bad x-redex, for some x not in C, and 
2. V C, C~[Q] --~ R, and R has a bad x-redex. 

Errors are processes with bad redexes tha t  persist throughout reduction. An 
occasional bad redex is not enough to make the process an error. So, we give 
messages a chance to find their target,  and therefore, we say tha t  this calculus 
has weak fairness in the t rea tment  of messages. 

Example. 1. S ~ f  Empty(x)  Ix < read: [u] ¢ ERR since, although the process S is 
a bad x-redex, we have C[S] ~ Full(x v) Ix <3 read: [u] for C def X <3 write: [v]I [] 
containing no bad x-redexes; 
2. Pd--efyC> [ b : x < 3  a] l !xE> [c] • ERR s inceC[P]  ~ x <~ a I!xC> [ c ] w i t h  

C @~ y <1 b I [] and no context can undo the bad x-redex. 

3 The type assignment system 

Processes are implicitly typed: although no type information is present in pro- 
cesses, it can be inferred by a type system tha t  assigns type to names and sets 
of name-type pairs (called typings) to processes. 

A type is a graph whose nodes (states) can be interpreted as an object 's  
interface and the arcs (transitions) as the invoked methods. The type of an 
object  represents its possible life-cycles. 

D e f i n i t i o n  5. The set T of types is inductively defined as follows. 
1. :D C_ :r,  for :D an initial algebra of some fixed data  types; 
2. (V, I ,  A) C_ T,  where V is a nonempty set of nodes, I C__ V is a nonempty  

set of initial nodes, and A C_ V x (/: x :Y*) x V is a set of arcs labelled 
b y / :  x 7"*. Graphs are directed and contain no isolated nodes. We further 
require tha t  a graph with more than one initial node is the disjoint union of 
connected components,  one for each initial node. 

We use ~, # ~  to denote types. For a given graph c~, V~ denotes its set of 
nodes, I~ denotes its set of initial nodes, and As denotes its set of arcs; the label 
of an arc is denoted by t. Graphs are consider equal up to isomorphism on nodes. 
The  union of graphs is a sum of behaviours. A graph tha t  is the disjoint union 
of connected components represents a set of possible behaviours of an object,  
each behaviour represented by a connected subgraph. 
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D e f i n i t i o n  6. The set Ts of terminal nodes of a graph c~ is the set 
{v • Va \ Is ] ~,EV~ (v, t, u) • A~, u ¢ v} U {v • Vs \ Is I ~uElc, (V, t, U) • As}. 

Def in i t ion  7. 
1. if c~, ~ are 

, 

3. 

The union c~ ~/~ of types a and 3 is the type 7 such that  
graphs, then 

d e f { ( V s U V ~ , I s U I ~ , A s U A ~ ) ,  if Vs N V~ = 0 
V = (V~ U VZ, Is \ (Vz \ IZ) U IZ \ (Vs \ Is) ,  As U AZ), otherwise 

d e f  if a ,  l? E :D and c~ = ~, then 7 = a; 
the union is undefined otherwise. 

A graph that  is the product of two graphs represents the joint behaviour 
(parallel composition or interleaving) of two objects located at a same name. 

D e f i n i t i o n  8. The interleaving a [[ ~ of graphs a and 3 is the graph V such that  
1. Vv d el Vs × VZ, and I v d el I s  × I~, and 

2. A.~ d--e---f {(uv, t,u'v) [ V(~,e,~,)eA~3vcy~} U {(uv, t, uv') i V(v,t,~,)cA~3~ey~}. 

Types abstract from objects' concrete behaviour: two different objects with 
equivalent behaviours have the same type. The equivalence relation is a pair of 
binary relations over types, one over the nodes of the graph and the other over 
the types labelling the graph's arcs. 

D e f i n i t i o n  9. Bisimilarity on types. 
1. A symmetric binary relation ~ C_ Vs x V~ is a bisimulation on graphs (over a 

binary relation C on types) if Vusv~ Vvev~ such that  u~v,  if (u, a : &, u ~) E As 
then 3(~,a:~,~,)eA¢ with u ~ v  ~ and c)C/~ 2. 

2. Two nodes u E Vs, v E VZ are bisimilar over C, denoted by u ~c  v, if there 
is a bisimulation ~ over C such that  uT~v. 

Compatibility of types. 
1. A symmetric binary relation C C_ T x T is a type compatibility, if aC~ implies 

~ u E I ~  ~vEI~ U ~'° c V 3 when a, ~ are graphs, or a = fl otherwise; 
2. Two types a and/~ are compatible, denoted by a ~/~, if there exists a type 

compatibility relation C such that  aCfl. 

The compatibility relation ~ is the largest type compatibility; thus, two 
graph types are compatible if all their nodes are bisimilar over the compatibility 
relation. One can easily observe that  T~ ~ specifies a class of process behaviours. 

To characterize how graphs evolve with the reduction of processes we need 
the notion of subgraphs. 

D e f i n i t i o n  10. 1. A path #s in a graph c~ is a chain of arcs in c~ of the form 
(u0, tl ,  u l ) , . . . ,  (un-1, tn, Un), with n > 1. We write #~,v to denote the path 
starting at node u and ending at node v. 

2 Let OL1 ' ' "  O ~ k C ~ l  " ' ' ]~k  c l e f  O~iC~i A ' "  A C~kC~k. 
a This condition is enough to guaranty the bisimilarity of the graphs, since graphs do 

not have unreachable nodes. 
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2. A pa th  #u,v is complete if u c / ~ ,  and v E Ts or v C I s  if 3~eT~ (w, t, v) C As.  
3. For a pa th  Ps ,  a sequence of some of its arcs preserving the  original ordering 

is called a projection, of  Ps.  
4. A graph a is a subgraph of a graph /3, denoted by a _< /3, if a = /3 or 

3~ez ~ (u, t, v) c A n with v c I s  and each pa th  of /3  s tar t ing in v is also a 
pa th  of a.  

Lemma11 .  Ira,~3,7 are graphs anda <_/3, then (a [I 7) -< (/3 It 7). 

Proof. Direct ly from the  definitions of In and _<. [] 

Types  for repl icated objects  are obta ined from a finite graph by means of a 
fix point  operat ion.  

P r o p / D e f i n i t i o n  12 . 1. a0 de_f (Vs \ Ts,  I s ,  As•) ,  where 
Aso ~ f  {(u, t, v) I (u, t, w) e As,  and v = w if w ¢ Ts or v = u otherwise }. 

2. he(a•)  = ~Jvev~o\i~ ° a o ~  ~ ao, and ~ ' ( a i+ l )  = ~Jvev~\v~_~ ao~rv ~ ai 
with  i _> 1, where cr~ is the  subst i tu t ion 

def r ISo ~ {V} 
a~ = ~ Vs \ I s  ~ {w I for each u E Vs \ I s ,  w is fresh}. 

3. T h e  replicat ion repl(a) of a finite graph a is the graph fix(2(ao)). 
4. One can easily see tha t  5 ~ is a continuous function since it is increasing by def- 

inition, and it is monotonous  since i ra0  C_/3o then  9r(a0) C_ ~J~eV~oXZ~ ° a0avt~ 
/3o c_ 5c(/30) and, similarly, .T(a~) _C .T(/3~) for some i _> 1. 

The  name-usage-type tr iple x* : a,  with , C {!, l ,  T}, is a formula denot ing 
the  assignment of type  a to  name x, location of an object  ( ; ) ,  locat ion of a 
repl icated object  (!), or dest inat ion of a message (T)- A typing F is a finite set 
of name-usage- type  triples tha t  has at most  two occurrences of the  same name,  
one as an object  (replicated or not) and a second as a message. 

Example. 1. T h e  message x <1 a :  [~] has a typing {x*: ({u0, Ul}, {u0}, {(u0, a: 
® 

~ , U l ) } ) , 5  : ~}. Graphical ly  {x T : }~:a,  5 :  ~}, where ® denotes an ini- 

t ial node. The  objects  x t> [ a :  x t> [b]]  and x t> [a + b] have respectively 
® 

typings { x t :  o '  }, and { x i :  az/ x.~ }. 
b~ • • 

2. For x D [ a ] , x  > [b],  for x D [a : x > [b] 

® 

!x D [a : x t:> [b]],  types  • 

+ b : x > [a]] ,  and for 
® 

• , • • , and • 
b~  # /  b~ ~a b~ ~a are 

• • • • 

assigned to  x ~, x ~, and x i, respectively. 
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Let dora(F) be the set of the name-usage pairs in each triple of F; then 
F .  x* : a denotes the union of /" and {x* : (~}, provided x* ~ dom(F). For 
x* :a  E F let F(x*) de=f a; let g \ x *  denote the typing F without the occurrences 
of formulas with 5". Let F [ P denote the restriction of F to the free names in 
P, and let F[z/x] denote the result of replacing in F occurrences of x by the 
fresh name z. 

De f in i t i on  13. Two typings F and A are compatible, denoted by F ~ A, if 
F(x !) has a projection equal to some complete path of A(xT). 

De f in i t i on  14. The union F ~J A of two compatible typings is the typing: 
1. F U A, if dora(F) N dom( A ) = 9; 

gel ~ a, if a ~/3  
2. (1". x* :7)W( A \x*), if F(x*) = a, A(x*) = fl, ands/ --- t aW/3, otherwise; 

3. {a:*:a, x t : f l }u ( ( r \ x* ) t~ (A \x r ) ) ,  if F(x*) = a,  A(x i") =/3, and • e {!,,~}; 
4. {.~ :~} u ( ( r  \ x ~) ~ ( ~  \ ~+)), if r(~')  = ~, ~(.~) =/3,  ~nd ~ = r~pl(V), for 

some "y such that  "y ~/3; 
5. {z ~ :~, z+ :/3} u ( (v  \ ~:) • (A \ .~)) ,  it V(z ~) = ~ and A(~+) =/~.  

Def in i t i on  15. The interleaving F II A of two compatible typings is the typing: 

1. F U A, if dom(F) N dora(A) = ~; 
2. (F-x*:',/)(I ( A \ x * ) , i f F ( x * ) = a , A ( x * ) = 3 ,  a n d " / d a { : l l a '  i f a , , ~  . 

= , I1/3, otherwise; '  
3. {x* :a ,x  I : /3}U((F\x*) II ( A \ x t ) ) , i f F ( x * )  = a,  A(x T) = fl, and*  e {!,~}; 
4. { x ! : a } U ( ( F \ x  !) II ( A \ x t ) ) ,  if F(x!) = a, A(xi)  =/3, and a = repl(^/), for 

some "r such that  7 .o/3; 
5. {x ' :~ ,x~: /3}v( (v \~  ~) II (z~ \ ~ ) ) ,  i fv(~  ~) = ~ and zX(z~) =/3. 

In the two definitions above, the rules should always be tried in the order 
presented. 

Def in i t i on  16. Let A _< r if dora(A) C_ dorn(F) and A(x*) <_ F(x*) for all 
x* E dora(A) N dom(F). 

Lemma l T. I rA  <1-" and F ~ A, then ( A l] A) < (1"1I A ) . 

Proof, Follows from the definitions of II and _<, and from lemma 11. [] 

De f in i t i on  18 B e h a v i o u r a l  t y p e  s y s t e m .  The type assignment system is in- 
ductively defined by the following axioms and rules. 

MsG {e* : & / : ( { v 0 , v l } ,  {vo}, {(v0, 
Om F~. ~ : &i t- Pi 

iEI iEI 

F. xt:c~kxt> M 
REP 1". x ! repl(ee) F !x : t > M  

~,Vl)})  } ~ X <(] a"  [7~] (V 0 ~ Vl) 

~ P  RES F\FF ux P 
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PAR F ~ - P  A ~ Q  ( F × A )  
r l i n e P ,  Q 

WEAK /" ~- P 
F .  {x T:a} ~- P 

where, in rule OBJ, 

(1) (~icz Fi) ~ {x $ : a}, and a is such that  Ia def {u} for u a fresh node, and 

As = Uiei{(u, ai:&i,w) l x* ¢ dom(Fi) and w is fresh} U 
Uici{(u, ai:&i,v) lx* • dom(Fi) and for each v • Iv~(~.)} U Uici Av~(~.), 

f o r ,  • {!, 1}. 

We say a process P is well typed if 3 r  F F- P. Important  properties of the 
above system include typability of subterms, the substitution lemma (if F ~- P 
then F[z/x] ~- P[z/x]) and the congruence lemma (if F ~- P and P - Q, then 
r Q) 

Theorem19  Subject-reduction. If  F ~- P and P --~ Q, then 3n A ~ Q and 
A<_F. 

Proof. By induction on --~. The non-trivial cases are when reduction ends with 
the PAR-rule and the COM-axiom (REP is similar to COM). 

If reduction ends with the PAR-rule let P = P ' I R  and Q _= Q ' IR ;  by 
typability of subterms 3V',A F '  ~- P '  and A F- R with F = F '  II A, and by 
induction hypothesis 3n, A'  t- Q' and A'  _ F ' .  The result follows by lemma 17. 

If reduction ends with the COM-axiom let P = x ~> M i x  <~ m. By the PAR- 
rule and by typability of subterms F = F '  II A' with x I : c~ E F '  and x T :/~ C A'; 
if M • m is undefined then A = F else by the PAR-rule and by the substitution 
lemma 3n A ~- M . m ,  and i f x  I e dom(A) then A(x~) <_ ~, and i f x  T E dom(A) 
then A(x T) </5; it follows that  A _< F.  [] 

Corollary 20. If P is well-typed then P ~ ERR. 

Proof. Suppose P is well-typed and P E ERR. By definition of ERR, P has 
!x E> M and x <~ m as subterms, both typable by typability of subterms, with 
compatible types. Therefore, M • m is defined, and then it is not a persistent 
bad x-redex; we have reached an absurd, since, by hypothesis, P c ERR. [] 

The system enjoys the property of uniqueness of the types assigned to the 
free names in a process. 

Proposi t ion 21. If F F- P and A t- P then F [ P = A [ p. 

Proof. By a case analysis of the rules defining the type system, noting that  each 
rule defines one and only one typing for a process, up to renaming of nodes. [] 



561 

4 Discuss ion 

The present type  system types all processes the previous system [VT93] does, 
except for those tha t  do not conform to the restriction in section 2. The buffer-cell 
in section 1 constitutes an example of a process this system types the previous 
not. Nevertheless some "basic" mistakes (like typing q instead of w in process 
x ~> [w]]x <3 q), are no longer detected as error-processes. 

The  star t ing point for this work are the ideas of Nierstrasz on regular ' types  
for active objects. Punt igam also starts  from Nierstrasz work, and uses te rms of 
a process algebra (without name-passing) as types [Pun96]. His work is centered 
on subtyping, and not on type assignment systems. There  is now a lot of work 
on types for mobile processes but, up to our knowledge, the only work in the 
context of mobile processes where types are graph seems to be Yoshida's [Yos96]. 
Her graphs give information about  the deterministic behaviour of a process; our 
graphs are inspired on Milner's derivation trees [Mi189]. 
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