
Behavioural Types for a Calculus of
Concurrent Objects*

Antdnio Ravara Vasco Vasconcelos

Departamento de Matem£tica Departamento de Inform£tica
Instituto Superior T@cnico Faculdade de Ci@ncias

Universidade T@cnica de Lisboa Universidade de Lisboa

Abstract . We present a new type system for TyCO, a name-passing
calculus of concurrent objects. The system captures dynamic aspects
of objects' behaviours, namely non-uniform service availability of active
objects. The notion of processes without errors is loosened, demanding
only weak fairness in the treatment of messages.

1 M o t i v a t i o n

This paper proposes a type system for TyCO (TYped Concurrent Objects)
[VT93], a name-passing calculus of concurrent objects. In a setting where (ac-
tive) concurrent objects are characterized by non-uniform service availability
[Nie95], a static "types-as-interfaces" approach is not suitable to capture dy-
namic aspects of objects' behaviours. We propose types as graphs (representing
objects as state-transition systems), and demand weak fairness in the treatment
of messages. The type system is able to type objects with a non-uniform service
availability, while preserving the subject-reduction property.

A typical process not typable by "traditional" type systems [VH93, VT93,
KY95, LW95] is a one-place buffer that only allows read operations when it is
full, and write operations when it is empty.

Empty(b) = b t> [write: (u) Full(b u)]
Full(b u) = b t> [read: (r) r <3 val: [u] I Empty(b)]

The type systems mentioned above assign interface-like types to names.
Therefore, name b should have a single interface, containing both methods' labels
write and read, and thus the example presented can not be typed. Nevertheless,
the behaviour of the process (alternating between write and read operations) is
very clear. Furthermore, a process containing the redex Empty(b) I b <~ read: [r]
should not be considered an error, for the presence of a message b <1 write:[u]
makes the reception of the read message possible.

The development of a type system able to type processes like the one above
is the main motivation of this work. This paper is a short version of [RV97].

* This work was partially supported by JNICT PRAXIS XXI projects
2/2.1/MAT/46/94 Escola, 2/2.1/MAT/262/94 SitCalc and 2/2.1/TIT/1658/95 Log-
Comp, and by the ESPRIT Working Groups 22704 ASPIRE and 23531 FIREworks.

555

2 The calculus of objects

TyCO is an object-oriented name-passing calculus with asynchronous commu-
nication between concurrent objects via labelled messages carrying names. The
calculus is developed along the trends of well-known models of concurrency, such
as the ~r-calculus [MPW92], the r-calculus [HT91], and the actor model [Agh86].

Consider names u, v, x, y car , labels a,b,c E £, and processes P, Q c P. Let ~5
stand for a sequence of names, and ~ for a sequence of pairwise distinct names.

De f in i t i on 1. The set P of processes is given by the following grammar.
P : : = x [> M I x<~m I P I Q I ~ x P I ! x [> M I 0

def where M def ~ i e I a~ : (~i) Pi for I a finite index set, and m = a : [~5].

The basic processes are objects x D M, located at some name x and composed
of a finite collection M of labelled methods (with pairwise distinct labels), and
asynchronous labelled messages x <3 a: [~], targeted at some object 's location x
and selecting its method a with actual parameters ~. Each method a : (2) P is
labelled by a distinct label a, has formal parameters 2 and body P. The other
constructors are the concurrent composition of processes, the restriction of the
scope of a name to a process, the replication of objects, and the terminated pro-
cess. We abbreviate a method a: 0 0 to a, and a process ~'xl""~'Xn P to ~ P .

We impose one important restriction on processes: the formal parameters
in a method are not allowed to be locations of objects in the body P.

An occurrence of a name x in a process P is bound if it is in a part of
P with the form a : (~x~) Q or px Q; otherwise the occurrence of x is free.
The set fn (P) of the free names in a process P is defined accordingly, and so is
alpha-conversion, denoted by ~_~. The process P[~/~] denotes the simultaneously
substitution of the free occurrences of ~ in P by ~, defined only when ~ and
have the same length.

D e f i n i t i o n 2. Structural congruence is the smallest congruence relation over
processes generated by the following rules.

P = Q i fP=_,~Q P] O - P P I Q - Q I P (P] Q)] R - P] (Q] R)
u x y P = _ ~ y x P ~ x O - O L, x P [Q = _ ~ , x (P I Q) i f x ~ f n (Q)

The result M • m of applying a communication m to a collection-of methods
M is the process P[~/Sc] if m is of the form a: [~], and a: (~)P is a method in M,
and the substitution is defined.

De f in i t i on 3. One-step reduction
crated by the following rules.

COM x E> M I x <~ m =~ M ,, m
PAR P I R - ~ Q] R - i f P - + Q

STR pt__+ QI
Reduction ---- is the relation = U
of -*.

--* is the smallest relation over processes gen-

REP tx ~> M I x <~ m --~ !x ~>~.,]t/I I M . m
RES v x P - - ~ p x Q i f P - - + Q

i f P ' - P , P ~ Q , Q=_Q'
~ + , where 4 + denotes the transitive closure

556

The new notion of process with error requires two further notions. A context
C is the concurrent composition of messages and a constant [] (called the hole).
Filling the hole of a context C with a process P results in the process C[P]. A
process P has a (replicated) x-redex if P = , ~ (!x E> M I x <~ m I Q). A process
P has a bad x-redex if P has an x-redex and M • m is not defined.

D e f i n i t i o n 4. A process P is an error, notation P E ERR, if
1. 3 C C[P] ~ Q, and Q has a bad x-redex, for some x not in C, and
2. V C, C~[Q] --~ R, and R has a bad x-redex.

Errors are processes with bad redexes tha t persist throughout reduction. An
occasional bad redex is not enough to make the process an error. So, we give
messages a chance to find their target, and therefore, we say tha t this calculus
has weak fairness in the t rea tment of messages.

Example. 1. S ~ f Empty(x) Ix < read: [u] ¢ ERR since, although the process S is
a bad x-redex, we have C[S] ~ Full(x v) Ix <3 read: [u] for C def X <3 write: [v]I []
containing no bad x-redexes;
2. Pd--efyC> [b : x < 3 a] l !xE> [c] • ERR s inceC[P] ~ x <~ a I!xC> [c] w i t h

C @~ y <1 b I [] and no context can undo the bad x-redex.

3 The type assignment system

Processes are implicitly typed: although no type information is present in pro-
cesses, it can be inferred by a type system tha t assigns type to names and sets
of name-type pairs (called typings) to processes.

A type is a graph whose nodes (states) can be interpreted as an object 's
interface and the arcs (transitions) as the invoked methods. The type of an
object represents its possible life-cycles.

D e f i n i t i o n 5. The set T of types is inductively defined as follows.
1. :D C_ :r, for :D an initial algebra of some fixed data types;
2. (V, I , A) C_ T, where V is a nonempty set of nodes, I C__ V is a nonempty

set of initial nodes, and A C_ V x (/: x :Y*) x V is a set of arcs labelled
b y / : x 7"*. Graphs are directed and contain no isolated nodes. We further
require tha t a graph with more than one initial node is the disjoint union of
connected components, one for each initial node.

We use ~, # ~ to denote types. For a given graph c~, V~ denotes its set of
nodes, I~ denotes its set of initial nodes, and As denotes its set of arcs; the label
of an arc is denoted by t. Graphs are consider equal up to isomorphism on nodes.
The union of graphs is a sum of behaviours. A graph tha t is the disjoint union
of connected components represents a set of possible behaviours of an object,
each behaviour represented by a connected subgraph.

557

D e f i n i t i o n 6. The set Ts of terminal nodes of a graph c~ is the set
{v • Va \ Is] ~,EV~ (v, t, u) • A~, u ¢ v} U {v • Vs \ Is I ~uElc, (V, t, U) • As}.

Def in i t ion 7.
1. if c~, ~ are

,

3.

The union c~ ~/~ of types a and 3 is the type 7 such that
graphs, then

d e f { (V s U V ~ , I s U I ~ , A s U A ~) , if Vs N V~ = 0
V = (V~ U VZ, Is \ (Vz \ IZ) U IZ \ (Vs \ Is) , As U AZ), otherwise

d e f if a , l? E :D and c~ = ~, then 7 = a;
the union is undefined otherwise.

A graph that is the product of two graphs represents the joint behaviour
(parallel composition or interleaving) of two objects located at a same name.

D e f i n i t i o n 8. The interleaving a [[~ of graphs a and 3 is the graph V such that
1. Vv d el Vs × VZ, and I v d el I s × I~, and

2. A.~ d--e---f {(uv, t,u'v) [V(~,e,~,)eA~3vcy~} U {(uv, t, uv') i V(v,t,~,)cA~3~ey~}.

Types abstract from objects' concrete behaviour: two different objects with
equivalent behaviours have the same type. The equivalence relation is a pair of
binary relations over types, one over the nodes of the graph and the other over
the types labelling the graph's arcs.

D e f i n i t i o n 9. Bisimilarity on types.
1. A symmetric binary relation ~ C_ Vs x V~ is a bisimulation on graphs (over a

binary relation C on types) if Vusv~ Vvev~ such that u~v, if (u, a : &, u ~) E As
then 3(~,a:~,~,)eA¢ with u ~ v ~ and c)C/~ 2.

2. Two nodes u E Vs, v E VZ are bisimilar over C, denoted by u ~c v, if there
is a bisimulation ~ over C such that uT~v.

Compatibility of types.
1. A symmetric binary relation C C_ T x T is a type compatibility, if aC~ implies

~ u E I ~ ~vEI~ U ~'° c V 3 when a, ~ are graphs, or a = fl otherwise;
2. Two types a and/~ are compatible, denoted by a ~/~, if there exists a type

compatibility relation C such that aCfl.

The compatibility relation ~ is the largest type compatibility; thus, two
graph types are compatible if all their nodes are bisimilar over the compatibility
relation. One can easily observe that T~ ~ specifies a class of process behaviours.

To characterize how graphs evolve with the reduction of processes we need
the notion of subgraphs.

D e f i n i t i o n 10. 1. A path #s in a graph c~ is a chain of arcs in c~ of the form
(u0, tl , u l) , . . . , (un-1, tn, Un), with n > 1. We write #~,v to denote the path
starting at node u and ending at node v.

2 Let OL1 ' ' " O ~ k C ~ l " ' ']~k c l e f O~iC~i A ' " A C~kC~k.
a This condition is enough to guaranty the bisimilarity of the graphs, since graphs do

not have unreachable nodes.

558

2. A pa th #u,v is complete if u c / ~ , and v E Ts or v C I s if 3~eT~ (w, t, v) C As.
3. For a pa th Ps , a sequence of some of its arcs preserving the original ordering

is called a projection, of Ps.
4. A graph a is a subgraph of a graph /3, denoted by a _< /3, if a = /3 or

3~ez ~ (u, t, v) c A n with v c I s and each pa th of /3 s tar t ing in v is also a
pa th of a.

Lemma11 . Ira,~3,7 are graphs anda <_/3, then (a [I 7) -< (/3 It 7).

Proof. Direct ly from the definitions of In and _<. []

Types for repl icated objects are obta ined from a finite graph by means of a
fix point operat ion.

P r o p / D e f i n i t i o n 12 . 1. a0 de_f (Vs \ Ts, I s , As•) , where
Aso ~ f {(u, t, v) I (u, t, w) e As, and v = w if w ¢ Ts or v = u otherwise }.

2. he(a•) = ~Jvev~o\i~ ° a o ~ ~ ao, and ~ ' (a i+ l) = ~Jvev~\v~_~ ao~rv ~ ai
with i _> 1, where cr~ is the subst i tu t ion

def r ISo ~ {V}
a~ = ~ Vs \ I s ~ {w I for each u E Vs \ I s , w is fresh}.

3. T h e replicat ion repl(a) of a finite graph a is the graph fix(2(ao)).
4. One can easily see tha t 5 ~ is a continuous function since it is increasing by def-

inition, and it is monotonous since i ra0 C_/3o then 9r(a0) C_ ~J~eV~oXZ~ ° a0avt~
/3o c_ 5c(/30) and, similarly, .T(a~) _C .T(/3~) for some i _> 1.

The name-usage-type tr iple x* : a, with , C {!, l , T}, is a formula denot ing
the assignment of type a to name x, location of an object (;) , locat ion of a
repl icated object (!), or dest inat ion of a message (T)- A typing F is a finite set
of name-usage- type triples tha t has at most two occurrences of the same name,
one as an object (replicated or not) and a second as a message.

Example. 1. T h e message x <1 a : [~] has a typing {x*: ({u0, Ul}, {u0}, {(u0, a:
®

~ , U l) }) , 5 : ~}. Graphical ly {x T : }~:a, 5 : ~}, where ® denotes an ini-

t ial node. The objects x t> [a : x t> [b]] and x t> [a + b] have respectively
®

typings { x t : o ' }, and { x i : az/ x.~ }.
b~ • •

2. For x D [a] , x > [b], for x D [a : x > [b]

®

!x D [a : x t:> [b]], types •

+ b : x > [a]] , and for
®

• , • • , and •
b~ # / b~ ~a b~ ~a are

• • • •

assigned to x ~, x ~, and x i, respectively.

559

Let dora(F) be the set of the name-usage pairs in each triple of F; then
F . x* : a denotes the union of /" and {x* : (~}, provided x* ~ dom(F). For
x* :a E F let F(x*) de=f a; let g \ x * denote the typing F without the occurrences
of formulas with 5". Let F [P denote the restriction of F to the free names in
P, and let F[z/x] denote the result of replacing in F occurrences of x by the
fresh name z.

De f in i t i on 13. Two typings F and A are compatible, denoted by F ~ A, if
F(x !) has a projection equal to some complete path of A(xT).

De f in i t i on 14. The union F ~J A of two compatible typings is the typing:
1. F U A, if dora(F) N dom(A) = 9;

gel ~ a, if a ~/3
2. (1". x* :7)W(A \x*), if F(x*) = a, A(x*) = fl, ands/ --- t aW/3, otherwise;

3. {a:*:a, x t : f l }u ((r \ x*) t~ (A \x r)) , if F(x*) = a, A(x i") =/3, and • e {!,,~};
4. {.~ :~} u ((r \ x ~) ~ (~ \ ~+)), if r(~') = ~, ~(.~) =/3, ~nd ~ = r~pl(V), for

some "y such that "y ~/3;
5. {z ~ :~, z+ :/3} u ((v \ ~:) • (A \ .~)) , it V(z ~) = ~ and A(~+) =/~.

Def in i t i on 15. The interleaving F II A of two compatible typings is the typing:

1. F U A, if dom(F) N dora(A) = ~;
2. (F-x*:',/)(I (A \ x *) , i f F (x *) = a , A (x *) = 3 , a n d " / d a { : l l a ' i f a , , ~ .

= , I1/3, otherwise; '
3. {x* :a ,x I : /3}U((F\x*) II (A \ x t)) , i f F (x *) = a, A(x T) = fl, and* e {!,~};
4. { x ! : a } U ((F \ x !) II (A \ x t)) , if F(x!) = a, A(xi) =/3, and a = repl(^/), for

some "r such that 7 .o/3;
5. {x ' :~ ,x~: /3}v((v \~ ~) II (z~ \ ~)) , i fv(~ ~) = ~ and zX(z~) =/3.

In the two definitions above, the rules should always be tried in the order
presented.

Def in i t i on 16. Let A _< r if dora(A) C_ dorn(F) and A(x*) <_ F(x*) for all
x* E dora(A) N dom(F).

Lemma l T. I rA <1-" and F ~ A, then (A l] A) < (1"1I A) .

Proof, Follows from the definitions of II and _<, and from lemma 11. []

De f in i t i on 18 B e h a v i o u r a l t y p e s y s t e m . The type assignment system is in-
ductively defined by the following axioms and rules.

MsG {e* : & / : ({ v 0 , v l } , {vo}, {(v0,
Om F~. ~ : &i t- Pi

iEI iEI

F. xt:c~kxt> M
REP 1". x ! repl(ee) F !x : t > M

~,Vl)}) } ~ X <(] a" [7~] (V 0 ~ Vl)

~ P RES F\FF ux P

560

PAR F ~ - P A ~ Q (F × A)
r l i n e P , Q

WEAK /" ~- P
F . {x T:a} ~- P

where, in rule OBJ,

(1) (~icz Fi) ~ {x $: a}, and a is such that Ia def {u} for u a fresh node, and

As = Uiei{(u, ai:&i,w) l x* ¢ dom(Fi) and w is fresh} U
Uici{(u, ai:&i,v) lx* • dom(Fi) and for each v • Iv~(~.)} U Uici Av~(~.),

f o r , • {!, 1}.

We say a process P is well typed if 3 r F F- P. Important properties of the
above system include typability of subterms, the substitution lemma (if F ~- P
then F[z/x] ~- P[z/x]) and the congruence lemma (if F ~- P and P - Q, then
r Q)

Theorem19 Subject-reduction. If F ~- P and P --~ Q, then 3n A ~ Q and
A<_F.

Proof. By induction on --~. The non-trivial cases are when reduction ends with
the PAR-rule and the COM-axiom (REP is similar to COM).

If reduction ends with the PAR-rule let P = P ' I R and Q _= Q ' IR ; by
typability of subterms 3V',A F ' ~- P ' and A F- R with F = F ' II A, and by
induction hypothesis 3n, A' t- Q' and A' _ F ' . The result follows by lemma 17.

If reduction ends with the COM-axiom let P = x ~> M i x <~ m. By the PAR-
rule and by typability of subterms F = F ' II A' with x I : c~ E F ' and x T :/~ C A';
if M • m is undefined then A = F else by the PAR-rule and by the substitution
lemma 3n A ~- M . m , and i f x I e dom(A) then A(x~) <_ ~, and i f x T E dom(A)
then A(x T) </5; it follows that A _< F. []

Corollary 20. If P is well-typed then P ~ ERR.

Proof. Suppose P is well-typed and P E ERR. By definition of ERR, P has
!x E> M and x <~ m as subterms, both typable by typability of subterms, with
compatible types. Therefore, M • m is defined, and then it is not a persistent
bad x-redex; we have reached an absurd, since, by hypothesis, P c ERR. []

The system enjoys the property of uniqueness of the types assigned to the
free names in a process.

Proposi t ion 21. If F F- P and A t- P then F [P = A [p.

Proof. By a case analysis of the rules defining the type system, noting that each
rule defines one and only one typing for a process, up to renaming of nodes. []

561

4 Discuss ion

The present type system types all processes the previous system [VT93] does,
except for those tha t do not conform to the restriction in section 2. The buffer-cell
in section 1 constitutes an example of a process this system types the previous
not. Nevertheless some "basic" mistakes (like typing q instead of w in process
x ~> [w]]x <3 q), are no longer detected as error-processes.

The star t ing point for this work are the ideas of Nierstrasz on regular ' types
for active objects. Punt igam also starts from Nierstrasz work, and uses te rms of
a process algebra (without name-passing) as types [Pun96]. His work is centered
on subtyping, and not on type assignment systems. There is now a lot of work
on types for mobile processes but, up to our knowledge, the only work in the
context of mobile processes where types are graph seems to be Yoshida's [Yos96].
Her graphs give information about the deterministic behaviour of a process; our
graphs are inspired on Milner's derivation trees [Mi189].

References

[Agh861

[HT91]

[KY95]

[LW95]

[Mi189]

[MPW921

[Nie95]

[Pun96]

[av97]

[VH931

[VT93]

[Yos96]

G. Agha. Actors: A Model of Concurrent Computation in Distributed Sys-
tems. M.I.T. Press, 1986.
K. Honda and M. Tokoro. An object calculus for asynchronous communica-
tion. In ECOOP'91, pages 14t-162. Springer-Verlag LNCS 512, 1991.
N. Kobayashi and A. Yonezawa. Towards foundations of concurrent object-
oriented programming - types and language design. Theory and Practice of
Object Systems, 1(4), 1995.
X. Liu and D. Walker. A polymorphic type system for the polyadic ~r-
calculus. In Concur'95, pages 103-116. Springer-Verlag LNCS 962, 1995.
R. Milner. Communication and Concurrency. C. A. R. Hoare Series Editor

- Prentice-Hall Int., 1989.
R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, i e ii.
Information and Computation, 100:1-77, 1992.
O. Nierstrasz. Regular types for active objects. In O. Nierstrasz and
D. Tsichritzis, editors, Object-Oriented Software Composition, pages 99-121.
Prentice Hall, 1995.
F. Puntigam. Types for a active objects based on trace semantics. In
FMOODS'96, 1996.
A. Ravara and V. Vasconcelos. Behavioural types for a calculus of concur-
rent objects. Technical report DM-[ST 6/97, Department of Mathematics,
Instituto Superior T@cnico, 1096 Lisboa, Portugal, 1997. Available from
ftp://ftp.cs.math.ist.utl.pt/pub/RavaraA/97-R-BEVTYP.ps.gz.
V. Vasconcelos and K. Honda. Principal typing-schemes in a polyadic 7r-
calculus. In Concur'93, pages 524-538. Springer-Verlag LNCS 715, 1993.
V. Vasconcelos and M. Tokoro. A typing system for a calculus of objects. In
1st ISOTAS, pages 460-474. Springer-Verlag LNCS 742, 1993.
N. Yoshida. Graph types for monadic mobile processes. In 16th FST/TCS,
pages 371-386. Springer-Verlag LNCS 1180, 1996.

