
538

Testing Semantics for Unbounded Nondeterminism*

Luis Fdo. L lana Dfaz and Manuel Nflfiez

Dpto. Sistemas Inform£ticos y Programaci6n
Universidad Complutense de Madrid.

Ciudad Universitaria. 28040 Madrid. Spain.
e-mail: {11ann ,manuelnu]-@eucmax. s im. ucm. e s

A b s t r a c t We present an extension of the classical testing semantics for the
case when nondeterminism is unbounded. We define the corresponding may
and must preorders in the new framework. As in the bounded setting the may
preorder can be characterized by using the set of finite traces of processes.
On the contrary, in order to characterize the must preorder is necessary to
record some additional information about the inRnite behavior of processes.
This characterization will be an extension of acceptance sets, considering not
only the finite traces a process can execute but also its infinite traces.
Keywords : Process algebra, CSP, unbounded nondeterminism, operational
semantics, testing semantics.

1 Introduction

Over the last years process algebras have been widely studied. Most models are
res t r ic ted to consider bounded nonde te rmin ism. This leads to some restrictions on
the language, which are necessary for some a lgebra ic rules to be true.

In [RB89,Bar91,Ros93,Mis95] extensions of the failures model coping with un-
bounded nondeterminism have been presented . The main problem, in order to give
a denota t ional semantics to a language suppor t i ng unbounded nondeterminism, is
the lack of continuity in the model. In .fact, f ixpoints may be reached, in general,
after more than w i terations.

We present a test ing semantics for a l anguage suppor t ing unbounded nondeter-
minism. Besides, we define an ope ra t iona l charac te r iza t ion of this test ing semantics
which is based on an extension of accep tance sets [Hen88]. The lack of continu-
i ty in the denota t ional semantics of the models c i ted above is also reflected in our
model. Actually, we need infinite tes ts to fully character ize the semantics of pro-
cesses, while, as it is well known, only finite tes ts are necessary in classical test ing
semantics.

2 Syntax and Operational Semantics

In this section we describe the syn tax and ope ra t iona l semantics of our language. In
order to concentrate on the main charac ter i s t ics and problems of unbounded non-
determinism, we introduce a simple process a lgebra based on CSP [Hoa85] which,
however, contains the main opera tors charac te r iz ing such an algebra. We consider

* Research partially support by the CYCIT project TIC 94-0851-C02-02.

539

an infinite set of visible actions Act, an invisible action v ~ Act, and then we con-
sider the set of actions Aet~ = Act U {v}. As usual, the syntax of the language can
be described by means of a BNF expression:

P ::= x l S T O P t D I V l r e c x . P I P [3 Q I v ~ P I P [IA Q [P \ d l P [¢] l
a : d--+ g(a) l ~ P~

where A C Act, g is a function from A to processes, I is a non empty set of indices,
¢ is a renaming function (¢ : Act ~ Act) , and x ranges over the set VAR of process
variables. We denote by Term(VAR) the class of syntactic terms defined by this BNF
expression, and by Proc the set of closed terms.

When a syntax contains infinitary operators, the idea of what is defined by this
syntax is not obvious, thus, we will briefly discuss it here. BNF expressions are
regarded as fixpoint equations defining the smallest class of terms closed under the
various operations appearing at the right hand side of the equation. If the syntax
does not contain infinitary operators, then this fixpoint is reached after (at most)
w iterations (every term is born at a finite t ime). But, for instance, in our language
we have the term

npo
nEIN

where each P,~ is born at time n, and so P is born at time a~+ 1. Now, let us consider
the term

n
PETerm(VAR)

Should we allow it as a valid term? The answer must be negative because if we
would consider it as a valid term, then it is easy to prove that the set of terms
is as big as its power set. So, to fully formalize the set of valid expressions, we
begin by bounding the size of the possible sets of indices/ , and that of the set of
actions Act by some infinite cardinal ~. The functional governing the right hand
side of the equation is clearly monotone, but it is not so obvious whether it has
any fixpoint. Fortunately it has. Besides, it is guaranteed that it is reached after (at
most) ~ iterations, where)~ is the smallest regular cardinal bigger than ~. Then,
the principle of structural induction is valid and corresponds to the principle of
transfinite induction.

In order to simplify the notation we will use a ~ P as a shorthand of a : A ~ g(a)
when A = {a} and g(a) = P.

The operational semantics of a process P is given as a labeled transition system
(Proc, "--L P) where ---.C_ Proc x Act~ x Proc. As usual, we write P --% Q instead
of (P, e, Q) E-+ . l 'ransitions are generated by using the usual "natural deduction"
style presented in Table 1. A transition of the form P ~ ~ Q is called visible if
a E Act, and invisible otherwise (i.e. if a = ~-). We will use the convention that
p a~ stands f o r 3 P ~: P ~ P ' .

3 T e s t i n g S e m a n t i c s

In this section we define a testing semantics for our language. First, we define
the convergence predicate, denoted by P ~, and its dual predicate, the divergence
predicate, denoted by P I~. Intuitively, P 1~ if an infinite sequence of internal actions
can be executed from P. In order to define these predicates we also need an auxiliary
predicate called the weak convergence predicate.

540

DIV -/-+ DIV recx.P __z_+ P[rec x.P/z]

b : A--+g(a) - -~ g(a), a E A v ~ P - - - ~ P

~ P ~ - - ~ P j , j E I
iEi

p_z.+ p,
P D Q ">P 'OQ, Q D P ~ > Q D P '

p - -~ p '

P llA Q - -~ P']IA Q, Q [IA P -"Z'+ Q liA P ' '

p - - .~ p'
P D Q - - ~ P', QDP--~-+ P '

e ~ .4
p - - ~ p ' , Q . . -~Q '
P IIA Q ") P' IIA Q "

p - . ~ p'

a E A

p ---~p'
P \ A - - ~ P ' \ A '

p - - ~ p '
p[¢] ~(a)> p,[¢]

~ A
P \ A - - ~ P ' \ A '

a E A

p - - ~ p'
P[¢] - - ~ P'[¢]

Table l . Rules of the Operational Semantics.

D e f i n i t i o n 1. We define the weak convergence predica te over terms, denoted by
P $, as the least predicate satisfying:

- STOP $, a : B -+ g(a) $, and ~" -+ P $.
- I f P S a n d Q S t h e n P D Q $, P [I B Q $, P \ B S a n d P [¢] $.
- If for all i E I Pi $ then ['] iex P~ $ i

- If P $ then rec x . P $.

Finally, we define the convergence pred ica te as
P ~ c : = v P $ A (V P ' : P ~ P ' ~ P ' ~)

and we write P ~ if P ~ does not hold.

Tests are jus t processes where the syn t ax has been extended adding a new process,
0K, which expresses tha t the tes t has been (successfully) passed. Thus: they are
defined by the following BNF expression:

T : :=STOPIOKIxIrecx .TIT1 DT21"r - -+TIb : B--+g(b) l R T i I T I H B T 2] T \ B
iEI

The same comments we did for the syn t ax of processes are valid here, and the set
of tests is tha t of closed terms genera ted by the g r a mma r above. The operat ional
semantics of tests is defined in the same way as for plain processes, but including a
new rule for the test ilK1:

O K o g > STOP

Finally~ we define the composi t ion of a t es t and a process as
P I T = (P NAct T) \ Ac t

1 To be exact, we should extend the definition of the operational semantics of both pro-
cesses and tests to mixed terms defining their compositions. Formally, these mixed terms
are neither processes nor tests, but since this e.x'~ension is immediate we have preferred
to avoid this formal definition.

541

D e f i n i t i o n 2. Let P be a process and T be a test. For any computation of P I T
P I T = Pl l T1 ~ > P2 t T,. " " Pk l Tk ~ > Pk+t l Tk+t " "

we say that it is complete if it is finite and blocked (no more steps are allowed) or
infinite, and we say that it is success ful if there e~s t s some k such that Tk 0K > and
for any j < k Pj ~ holds.

We say P may pass the test T, denoted by P may T, iff there exists a successful
computat ion of P I T. We say P m u s t pass the test T, denoted by P must T, iff any
complete computation of P I T is successful.

Now, we can define the usual test ing preorders relating processes.

D e f i n i t i o n 3. Let P and Q be processes. We write:

- P ~ may Q iff for any test T, P may T implies Q may T.
- P E must Q iff for any test T, P must T implies Q must T.

4 A l t e r n a t i v e C h a r a c t e r i z a t i o n

Although we have given two relations between processes whose definitions are very
simple, it is rather complicated to find out whether two processes are related by
~,~ may o r ~ must, SO it would be very desirable to provide alternative characterizations
of these testing preorders. In [I-Ien88] al ternative characterizations axe given in terms
of (finite) traces and in terms of acceptances sets, respectively. We will show that,
as in the bounded case, the m a y preorder can be characterized just by using finite
traces, but in order to provide an alternative characterization for the mus t preorder
we need some additional information. The ext ra information we need will be the
set of inf ini te traces of a process, where an infinite trace is just an element u =
(a~[k E IN) E Ac t ~.

First we extend the transition relation to deal with sequences of visible actions.
As usual, ~ >* stands for the reflexive and transit ive closure of ~ >.

D e f i n i t i o n 4, Let P and Q be processes, s E Ac t* , and u E Ac t ~.
We write P ~ Q if there exists a finite computa t ion

such that s = ata2 " " a~ (if n = 0 the transi t ion is denoted by P ~ Q).
We write P u :. if there exists an infinite computa t ion

P = P 0 ,> .p~ -1>p1 ~'>*P; "=> " " P k - t ~)*Pk-1 ~ " > P k " "
such that u = al a2 • " " ak - - ".

As in the bounded case, a s tate represents the set of actions that a process
is ready to execute; more exactly, a s tate A is a (possibly empty) set of visible
actions or an element Y2 representing an undefined state (i.e. the state of a divergent
process), that is A E 7) (Ac t) U {Y2}. We will denote the set of states by S T . An
acceptance will represent any reached state A of a process after the execution of a
sequence of actions s; tha t is, an element (s, A) E Act* x ST , but we will write s A
instead of (s, A).

542

D e f i n i t i o n 5. Let P be a process.

- We define the finite traces of P as fins(P) = {s I ~P' : P ~ P' A s E Act*},
and the infinite traces of P as infs(P) = {u I P u :. A a E Act~}.

- We define the state of P , denoted by S(P) , as

S(p) = ~ {a E Act[P ==~} if P
($2 i f P ~

- We define the acceptances set of P as
A(P) = {sA I 3P' : P ~ P' A S(P') = A}

D e f i n i t i o n 6. We define the relation << between acceptances as the least relation
satisfying:

- If A, A ~ E P(Act) are such tha t A C_ A' then eA << eW.
- If sA is an acceptance then e ~2 << sA.
- If a E Act and s'A' << sA then (as')A' << (as)A.

It could be helpful to mention that sA << s 'A ' iff either s = s t and A C_ W C Act, or
s is a prefix of s' and A = $2. The previous relation can be extended to acceptances
sets as follows

A1 << A~. ¢=:¢, Vs2A2 E A2 ~slA1 E A1 : s iAl << s2A2

As in the bounded framework, the may test ing preorder can be characterized by
the set of finite traces of processes.

T h e o r e m 7. Let P and Q be processes. Then, P ~ may Q ¢==~ fins(P) c_ fins(Q).
Proof. Similar to that in [Hen88].

So, infinite traces do not play any role in order to characterize the may preorder.
We will show that this is not the case for the must preorder.

In [Hen88], where the nondeterminism is bounded, we have P ~ must Q iff
A(P) << A(Q), but this is no longer t rue in our setting, as the following exam-
ple shows

Example 8. Let us consider the family of processes { P ~ } , ~ defined as
/°1 = STOP, Pn+l = a --+ Pn

and the processes P = R i e ~ Pi and Q = (rec x.a --+ x) n P. It is easy to show that
A(P) = A(Q), but if we consider the test T = recx.((a --+ x) [] (7- --+ 0g)), we have
P must T, while Q m~st T because of the infinite computat ion
QIIActT r~ (recx.a--+x)IIActT

r) (rec x.a -+ x) limit ((a --+ recx. ((a -+ x) [] (7- ~ OK))) [] ('I" -+ OK))
) (a -~ (tee ~ . ~ -~ x)) lIAr, ((a - ~ ~ec ~ . ((a --~ ~) [] (7- -~ 0K))) [] (7- -~ 0~))

~ ~ (recx.a-+ x)]lAst T

Thus~ the above characterization does not hold. []

The rest of this section is devoted to ~ v e the desired characterization of the
must testing preorder. Looking at the previous example, we observe that the only
difference between P and Q is tha t Q has the infinite trace of a's, while P has not
this infinite trace. When nondeterminism is bounded, infinite traces are determined

543

by their finite prefixes; tha t is, a process has an infinite trace iff it has all its finite
prefixes. As the previous example shows this does not hold any more when dealing
with unbounded nondeterminism: P has as traces all the finite prefixes of the infinite
trace u = aaaaa..., but u is not an infinite t race of P . So, infinite traces seem to
be the key in order to define the adequate al ternative characterization.

D e f i n i t i o n 9. Let P and Q be processes. We write P <<~nb Q iff the following
conditions hold:

- A(P) << A(Q), and
- For all u E infs(Q) either u 6 infs(P) or there exists a finite prefix s of u such

that s$2 E A(P).

T h e o r e m 10. Let P and Q be processes. Then, P <<~nb Q ~ P a must Q.
Proof. Let us consider a test T such tha t P must T. We have to prove that any
complete computation of Q [T is successful. Any computat ion of Q I T of the form

Q I T =QI lT1 ~ > Q2 I ~ . - . Q ~ - t ITk-1 ~'~ Qk ITk""
may be unzipped into a computa t ion of Q and a computat ion of T:

Q :=~ Q~ A T s'., T~
If this computat ion is finite, then there exists a last process Qk in it, i.e. Q ~ Qa.
We can suppose that Qi ~ for all i < k; because if there exists i < k such that Qi ~,
then we could take Q{ as the last process. So, we get an acceptance sA 6 A(Q)
such that Q ==~ Qk and A = S(Qk)- Given tha t P <<~,b Q, there must exist an
acceptance s'A' E A(P) such that s'A' << sA. So, there exists a process P ' such that

~'. P' A' P ~ and = S(P') . By the definition of <<~,,b we have that s' is a prefix of
s, and so the computation of P can be joined with the corresponding computation
of T, and, since P must T, we have tha t the computa t ion of P I T is successful, and
then so is the one of Q] T.

Now let us suppose that the computa t ion is not finite. If there exists a process
Qk such that Qk if, we could take the computa t ion as finite. Otherwise, we have
two possibilities:

- 3 k 6 IN Yl >_ k : Ql r ~ Ql+t- Then, there exists a t r a c e s such that Q ~ Qk
and Qk 1~, and we can construct the successful computat ion as in the previous
case.

- V k E IN 3 le > k : Ql~ ~) Ql~+t A ak E Act. If we consider the infinite trace
u = <a~] k E IN), then we obtain u E infs(Q). By the definition of <<~nb we have
either u E infs(P) or there exists a finite prefix s of u such that sf2 E A(P).
If u E infs(P) then we have P ~:.; in the second case there e.xists some P '
such that P ~ P ' . In both cases, the computa t ion of P can be joined with
the corresponding computat ion of T, and, since P must T, we have that the
computat ion of P I T is successful, and then so is the one of Q I T.

Before proving the converse of the previous theorem, we will define the so called
family of basic tests:

D e f i n i t i o n 11.

- Let s be a finite trace and A C Act. We inductively define the tests T(s, A) as
• T(~,O) = STOP.

544

T(s ,A) s = ala.2...a~

' OK

o,\
D OK

aEA

OK

T(u) u = ala2a3a4...

~ OK

a, ~K
OK

Table2. Graphical representation of basic tests.

® If A # O then T(e, A) = a : A --+ g(a), where g(a) = OK for all a E A.
• T (a . s', A) = (7 ~ OK) [] (a -+ T (s ' , A)).

- Let u = (ak[k E]N) be an infini te t race . Let B = {b~ ! i E IN} C_ Act be a
numerable infinite set of act ions (note t ha t we can get such a set since Act is
infinite). Let us consider the r enaming funct ions ¢~ and ¢3 defined as

¢~(c) = { b~+l if c = bi E B ~ { ai if c = b~ E B
c i f c ~ t B ¢ ~ (c) = c i f c ~ B

Then, we define the test T(u) t ak ing

T(u) = (r e c x . (c -+ OK) [] (bl -~ x[¢~])) [¢~]

In Table 2 we show a graphical r ep re sen t a t i on of the tests defined before 2. While
the meaning of finite tests is clear, i t is not so evident why we have defined the tests
T(u) in such a way. The idea is t ha t we want a syntac t ica l ly finite test offering the
infinite sequence a l ,a2 , . . . , a n , . . . T h e first a t t e m p t to get such a test would be
to consider a renaming function such t h a t ¢(a{) = a i+ l . But this does not work
because it could exist i # j with ai = aj b u t ai+l # aj+l. Then, it is necessary to
consider an infinite set of act ions p la)dng the same role. Firs t , we define a renaming

" b = function such tha t ¢~(b{) = b{+l. Then , a r enaming function such tha t ¢ ~ (i) as
works as desired. Finally, note tha t infs(T(u)) : {u}.

The next result follows easily from the previous definition.

L e m m a 12. Let P be a process, s be a trace, A C Act, and u be an infinite trace.
Then, the following conditions hold:

s' = s A A I A A ¢ O A A I ~ ~
- P m u s t T (s , A) ¢==~ V s ' A ' E A (P) : s ' A ' V

~< s~

2 Formally, these are not exactly our tests because after the action r is performed the cor-
responding action a~ should be available (composed in external choice with the process
0K). But if the test executes any r , then the test is successfully passed, so we can omit
this detail in the graphical representation.

545

- PmustT(u) ¢==~ u¢infs(P) A~s ' ,u ' : u = s ' u ' A s ' [2 E A (P)

T h e o r e m 13. Let P and Q be processes such that P ~<~b Q. Then, there exists a
test T such that P must T but Q must T.
Proof. (Sketch) If P ~ b Q then there are two possible cases:

- There exists some sA E A(Q) such tha t there is no s~A t E A(P) with s'A' << sA.
Then we consider the set of actions

A"= U
sA'EA(P)

Note that, because of the previous assumptions, if sA' E A(P) then A' ¢ ~2.
From this set of actions we can consider the associated test T(s, A"), and we
obtain P must T(s, A") while Q n ~ s t T(s, A").

- There exists some u E infs(Q) such tha t neither u E infs(P) nor there exists
any finite prefix s of u with s~2 E A(P). Then, by the previous lemma we have
P must T(u) and Q m~st T(u).
As an immediate corollary of this theorem we have that the family of tests given

by Definition 11 constitutes a set of essential tests. By essential we mean that in
order to show that two processes are not equivalent, it is enough to find a test from
this family that distinguishes the processes; tha t is, a test such that one of the
processes must pass it while the other one does not.

5 Conc lus ions and fu ture W o r k

We have extended the classical testing semantics developed in [Hen88] to a frame-
work where internal choice is not restr icted to a finite number of arguments. First,
we extended CSP with an internal choice opera tor having an arbitrary number of
arguments (in particular, an infinite number of arguments). We have defined the
corresponding may and must test ing semantics for the new framework. Then, we
have given alternative characterizations of these preorders: in the may case, every-
thing remains the same as in the case of bounded nondeterminism, but in order to
characterize the must preorder we need to extend the usual acceptances of processes
with infinite traces.

As future work we plan to define hilly abst ract denotational semantics of the
must testing preorders by using appropr ia te extensions of acceptance trees [Hen85].

References
[Bar91]

[Hen85]
[Hen88]
[Hoa85]
[Mis95]

[~ B 8 9]

[Ros93]

G. Barret. The fixed point theory of unbounded non-determinism. Formal Aspects
of Computing, 3:110-128, 1991.
M. Hennessy. Acceptance trees. Journal of the ACM, 32(4):896-928, 1985.
M. Hennessy. Algebraic Theory of Processes. MIT Press, 1988.
C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
M.W. Mislove. Denotational models for unbounded nondeterminism. In Pro-
ceedings of 11th Mathematical Foundations of Programming Semantics. Electronic
Notes in Theoretical Computer Science 1, 1995.
A. W. Roscoe and G. Barret. Unbounded non-determinism in CSP. In Mathe-
matical Foundations of Programming Semantics, LCNS ~2, 1989.
A.W. Roscoe. Unbounded non-determinism in CSP. Journal of Logic and Com-
putation, 3(2):131-172, 1993.

