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A b s t r a c t  We present an extension of the classical testing semantics for the 
case when nondeterminism is unbounded. We define the corresponding may 
and must preorders in the new framework. As in the bounded setting the may 
preorder can be characterized by using the set of finite traces of processes. 
On the contrary, in order to characterize the must preorder is necessary to 
record some additional information about the inRnite behavior of processes. 
This characterization will be an extension of acceptance sets, considering not 
only the finite traces a process can execute but  also its infinite traces. 
Keywords :  Process algebra, CSP, unbounded nondeterminism, operational 
semantics, testing semantics. 

1 Introduction 

Over the last  years process algebras  have been widely studied. Most models are 
res t r ic ted to consider bounded nonde te rmin ism.  This  leads to some restrictions on 
the language, which are necessary for some a lgebra ic  rules to be true. 

In [RB89,Bar91,Ros93,Mis95] extensions of the  failures model  coping with un- 
bounded nondeterminism have been presented .  The  main  problem, in order to give 
a denota t ional  semantics to a language  suppor t i ng  unbounded nondeterminism, is 
the  lack of continuity in the  model.  In  .fact, f ixpoints  may  be reached, in general, 
after more than  w i terations.  

We present a test ing semantics  for a l anguage  suppor t ing  unbounded nondeter-  
minism. Besides, we define an ope ra t iona l  charac te r iza t ion  of this test ing semantics 
which is based on an extension of accep tance  sets  [Hen88]. The lack of continu- 
i ty in the denota t ional  semantics of the  models  c i ted above is also reflected in our 
model. Actually, we need infinite tes ts  to  fully character ize  the semantics of pro- 
cesses, while, as it  is well known, only finite tes ts  are  necessary in classical test ing 
semantics.  

2 Syntax and Operational Semantics 

In this section we describe the syn tax  and  ope ra t iona l  semantics of our language. In 
order  to concentrate on the main  charac ter i s t ics  and  problems of unbounded non- 
determinism, we introduce a simple process  a lgebra  based on CSP [Hoa85] which, 
however, contains the main opera tors  charac te r iz ing  such an algebra. We consider 
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an infinite set of visible actions Act, an invisible action v ~ Act, and then we con- 
sider the set of actions Aet~ = Act  U {v}. As usual, the syntax of the language can 
be described by means of a BNF expression: 

P ::= x l S T O P t D I V l r e c x . P I P [ 3 Q I v  ~ P I P  [IA Q [ P  \ d l P [ ¢ ] l  
a : d--+ g(a) l ~ P~ 

where A C Act, g is a function from A to processes, I is a non empty set of indices, 
¢ is a renaming function (¢ : Act  ~ Act) ,  and x ranges over the set VAR of process 
variables. We denote by Term(VAR) the class of syntactic terms defined by this BNF 
expression, and by Proc the set of closed terms. 

When a syntax contains infinitary operators,  the idea of what is defined by this 
syntax is not obvious, thus, we will briefly discuss it here. BNF expressions are 
regarded as fixpoint equations defining the smallest class of terms closed under the 
various operations appearing at the right hand side of the equation. If the syntax 
does not contain infinitary operators, then this fixpoint is reached after (at most) 
w iterations (every term is born at a finite t ime).  But, for instance, in our language 
we have the term 

npo 
nEIN 

where each P,~ is born at time n, and so P is born at time a~+ 1. Now, let us consider 
the term 

n 
PETerm(VAR) 

Should we allow it as a valid term? The answer must be negative because if we 
would consider it as a valid term, then it is easy to prove that the set of terms 
is as big as its power set. So, to fully formalize the set of valid expressions, we 
begin by bounding the size of the possible sets of indices/ ,  and that of the set of 
actions Act by some infinite cardinal ~. The functional governing the right hand 
side of the equation is clearly monotone, but it is not so obvious whether it has 
any fixpoint. Fortunately it has. Besides, it is guaranteed that  it is reached after (at 
most) ~ iterations, where )~ is the smallest regular cardinal bigger than ~. Then, 
the principle of structural induction is valid and corresponds to the principle of 
transfinite induction. 

In order to simplify the notation we will use a ~ P as a shorthand of a : A ~ g(a) 
when A = {a} and g(a) = P. 

The operational semantics of a process P is given as a labeled transition system 
(Proc, "--L P) where ---.C_ Proc x Act~ x Proc. As usual, we write P --% Q instead 
of (P, e, Q) E-+ .  l 'ransitions are generated by using the usual "natural deduction" 
style presented in Table 1. A transition of the form P ~ ~ Q is called visible if 
a E Act, and invisible otherwise (i.e. if a = ~-). We will use the convention that 
p a~ stands f o r 3 P  ~: P ~ P ' .  

3 T e s t i n g  S e m a n t i c s  

In this section we define a testing semantics for our language. First, we define 
the convergence predicate, denoted by P ~, and its dual predicate, the divergence 
predicate, denoted by P I~. Intuitively, P 1~ if an infinite sequence of internal actions 
can be executed from P. In order to define these predicates we also need an auxiliary 
predicate called the weak convergence predicate. 
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DIV -/-+ DIV recx.P __z_+ P[rec x.P/z] 

b : A--+g(a) - -~  g(a), a E A v ~ P - - - ~ P  

~ P ~ - - ~ P j ,  j E I  
iEi 

p_z.+ p, 
P D Q  ">P 'OQ,  Q D P  ~ > Q D P '  

p - -~  p '  

P llA Q - -~  P' ]IA Q, Q [IA P -"Z'+ Q liA P ' '  

p - - .~  p'  
P D Q - - ~  P', QDP--~-+ P ' 

e ~ .4 
p - - ~ p ' ,  Q . . -~Q '  
P IIA Q " ) P' IIA Q "  

p - . ~  p'  

a E A  

p ---~p'  
P \ A - - ~ P ' \ A '  

p - - ~ p '  
p[¢] ~(a)> p,[¢] 

~ A  
P \ A - - ~ P ' \ A '  

a E A  

p - - ~  p'  
P[¢] - - ~  P'[¢] 

Table l .  Rules of the Operational Semantics. 

D e f i n i t i o n  1. We define the weak convergence predica te  over terms, denoted by 
P $, as the  least predicate  satisfying: 

- STOP $, a : B -+ g(a) $, and ~" -+ P $ . 
- I f P S a n d Q S t h e n P D Q $ , P [ I B Q $ , P \ B S a n d P [ ¢ ] $ .  
- If for all i E I Pi $ then [ ' ] iex P~ $ i 

- If P $ then rec x . P  $ . 

Finally,  we define the convergence pred ica te  as 
P ~ c : = v  P $  A ( V P ' :  P ~ P '  ~ P ' ~ )  

and we write P ~ if P ~ does not  hold.  

Tests are jus t  processes where the syn t ax  has been extended adding a new process, 
0K, which expresses tha t  the tes t  has been (successfully) passed. Thus: they are 
defined by the following BNF expression:  

T : :=STOPIOKIxIrecx .TIT1  DT21"r - -+TIb :  B--+g(b) l R T i I T I  H B T 2 ] T \ B  
iEI 

The same comments we did for the  syn t ax  of processes are valid here, and the set 
of tests  is tha t  of closed terms genera ted  by the  g r a mma r  above. The operat ional  
semantics of tests is defined in the  same way as for plain processes, but  including a 
new rule for the test ilK1: 

O K  o g  > STOP 

Finally~ we define the composi t ion of a t es t  and  a process as 
P I T  = (P  NAct T)  \ Ac t  

1 To be exact, we should extend the definition of the operational semantics of both pro- 
cesses and tests to mixed terms defining their compositions. Formally, these mixed terms 
are neither processes nor tests, but since this e.x'~ension is immediate we have preferred 
to avoid this formal definition. 
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D e f i n i t i o n  2. Let P be a process and T be a test. For any computation of P I T 
P I T = Pl  l T1 ~ > P2 t T,. " " Pk l Tk ~ > Pk+t l Tk+t " "  

we say that  it is complete  if it is finite and blocked (no more steps are allowed) or 
infinite, and we say that  it is success ful  if there e~s t s  some k such that  Tk 0K > and 
for any j < k Pj ~ holds. 

We say P may  pass the test T, denoted by P may T, iff there exists a successful 
computat ion of P I T. We say P m u s t  pass  the test T, denoted by P must T, iff any 
complete computation of P I T is successful. 

Now, we can define the usual test ing preorders relating processes. 

D e f i n i t i o n  3. Let P and Q be processes. We write: 

- P ~ may Q iff for any test T, P may  T implies Q may T. 
- P E must Q iff for any test T, P must  T implies Q must T. 

4 A l t e r n a t i v e  C h a r a c t e r i z a t i o n  

Although we have given two relations between processes whose definitions are very 
simple, it is rather complicated to find out  whether  two processes are related by 
~,~ may o r  ~ must, SO it would be very desirable to  provide alternative characterizations 
of these testing preorders. In [I-Ien88] al ternative characterizations axe given in terms 
of (finite) traces and in terms of acceptances sets, respectively. We will show that,  
as in the bounded case, the m a y  preorder  can be characterized just by using finite 
traces, but in order to provide an alternative characterization for the mus t  preorder 
we need some additional information. The  ext ra  information we need will be the 
set of inf ini te traces of a process, where an infinite trace is just an element u = 
(a~[ k E IN) E Ac t  ~. 

First we extend the transition relation to deal with sequences of visible actions. 
As usual, ~ >* stands for the reflexive and transit ive closure of ~ >. 

D e f i n i t i o n  4, Let P and Q be processes, s E Ac t* ,  and u E Ac t  ~. 
We write P ~ Q if there exists a finite computa t ion  

such that  s = ata2 " "  a~ (if n = 0 the transi t ion is denoted by P ~ Q). 
We write P u :. if there exists an infinite computa t ion  

P = P 0  ,> .p~ -1>p1  ~'>*P; "=> " " P k - t  ~)*Pk-1 ~ " > P k " "  
such that  u = al a2 • " "  ak - - ". 

As in the bounded case, a s tate  represents the set of actions that  a process 
is ready to execute; more exactly, a s tate  A is a (possibly empty) set of visible 
actions or an element Y2 representing an undefined state (i.e. the state of a divergent 
process), that  is A E 7) (Ac t )  U {Y2}. We will denote the set of states by S T .  An 
acceptance will represent any reached state A of a process after the execution of a 
sequence of actions s; tha t  is, an element (s, A )  E Act* x ST ,  but we will write s A  
instead of (s, A). 
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D e f i n i t i o n  5. Let P be a process. 

- We define the finite traces of P as fins(P) = {s I ~P' : P ~ P' A s E Act*}, 
and the infinite traces of P as infs(P) = {u I P u :. A a E Act~}. 

- We define the state of P ,  denoted by S(P) ,  as 

S(p)  = ~ {a E Act[ P ==~} if P 
( $2 i f P ~  

- We define the acceptances set of P as 
A(P)  = {sA I 3P'  : P ~ P' A S(P')  = A} 

D e f i n i t i o n  6. We define the relation << between acceptances as the least relation 
satisfying: 

- If  A, A ~ E P(Act)  are such tha t  A C_ A' then eA << eW. 
- If  sA is an acceptance then e ~2 << sA. 
- If a E Act and s'A' << sA then (as')A' << (as)A. 

It could be helpful to mention that  sA << s 'A '  iff either s = s t and A C_ W C Act, or 
s is a prefix of s'  and A = $2. The previous relation can be extended to acceptances 
sets as follows 

A1 << A~. ¢=:¢, Vs2A2 E A2 ~slA1 E A1 : s iAl  << s2A2 

As in the bounded framework, the may  test ing preorder can be characterized by 
the set of finite traces of processes. 

T h e o r e m  7. Let P and Q be processes. Then, P ~ may Q ¢==~ fins(P) c_ fins(Q). 
Proof. Similar to that  in [Hen88]. 

So, infinite traces do not play any role in order to characterize the may preorder. 
We will show that this is not the case for the must  preorder. 

In [Hen88], where the nondeterminism is bounded, we have P ~ must Q iff 
A(P)  << A(Q), but this is no longer t rue in our setting, as the following exam- 
ple shows 

Example 8. Let us consider the family of processes { P ~ } , ~  defined as 
/°1 = STOP, Pn+l  = a --+ Pn 

and the processes P = R i e ~  Pi and Q = (rec x.a --+ x) n P. It  is easy to show that  
A(P)  = A(Q), but if we consider the test  T = recx.((a  --+ x) [] (7- --+ 0g)), we have 
P must T, while Q m~st T because of the infinite computat ion 
QIIActT  r~ (recx.a--+x)IIActT 

r ) (rec x.a -+ x) limit ((a --+ recx. ( (a  -+ x) [] (7- ~ OK))) [] ('I" -+ OK)) 
) (a  -~  (tee ~ . ~  -~  x ) )  lIAr, ( ( a  - ~  ~ec ~ . ( ( a  --~ ~) [] (7- -~  0K))) [] (7- -~ 0~)) 

~ ~ (recx.a-+ x) ]lAst T 

Thus~ the above characterization does not  hold. [] 

The rest of this section is devoted to ~ v e  the desired characterization of the 
must testing preorder. Looking at the previous example, we observe that the only 
difference between P and Q is tha t  Q has the infinite trace of a's, while P has not 
this infinite trace. When nondeterminism is bounded,  infinite traces are determined 
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by their finite prefixes; tha t  is, a process has an infinite trace iff it has all its finite 
prefixes. As the previous example shows this does not hold any more when dealing 
with unbounded nondeterminism: P has as traces all the finite prefixes of the infinite 
trace u = aaaaa..., but u is not  an infinite t race of P .  So, infinite traces seem to 
be the key in order to define the adequate  al ternative characterization. 

D e f i n i t i o n  9. Let P and Q be processes. We write P <<~nb Q iff the following 
conditions hold: 

- A(P) << A(Q), and 
- For all u E infs(Q) either u 6 infs(P) or there exists a finite prefix s of u such 

that  s$2 E A(P). 

T h e o r e m  10. Let P and Q be processes. Then, P <<~nb Q ~ P a must Q. 
Proof. Let us consider a test T such tha t  P must  T. We have to prove that  any 
complete computation of Q [ T is successful. Any computat ion of Q I T of the form 

Q I T  =QI  lT1 ~ > Q2 I ~ . - . Q ~ - t  ITk-1 ~'~ Qk ITk""  
may be unzipped into a computa t ion of Q and a computat ion of T: 

Q :=~ Q~ A T s'., T~ 
If this computat ion is finite, then there exists a last process Qk in it, i.e. Q ~ Qa. 
We can suppose that  Qi ~ for all i < k; because if there exists i < k such that Qi ~, 
then we could take Q{ as the last process. So, we get an acceptance sA 6 A(Q) 
such that  Q ==~ Qk and A = S(Qk)- Given tha t  P <<~,b Q, there must exist an 
acceptance s'A' E A(P) such that  s'A' << sA. So, there exists a process P '  such that  

~'. P' A' P ~ and = S(P') .  By the definition of <<~,,b we have that  s' is a prefix of 
s, and so the computation of P can be joined with the corresponding computation 
of T,  and, since P must T, we have tha t  the computa t ion  of P I T is successful, and 
then so is the one of Q ] T. 

Now let us suppose that  the computa t ion  is not finite. If there exists a process 
Qk such that  Qk if, we could take the computa t ion  as finite. Otherwise, we have 
two possibilities: 

- 3 k  6 IN Yl >_ k : Ql r ~ Ql+t- Then,  there exists a t r a c e  s such that Q ~ Qk 
and Qk 1~, and we can construct  the successful computat ion as in the previous 
case. 

- V k E IN 3 le > k : Ql~ ~ ) Ql~+t A ak E Act. If  we consider the infinite trace 
u = <a~ ] k E IN), then we obtain u E infs(Q). By the definition of <<~nb we have 
either u E infs(P) or there exists a finite prefix s of u such that sf2 E A(P).  
If u E infs(P) then we have P ~:.; in the second case there e.xists some P '  
such that  P ~ P ' .  In both cases, the computa t ion  of P can be joined with 
the corresponding computat ion of T, and, since P must T, we have that  the 
computat ion of P I T is successful, and then so is the one of Q I T. 

Before proving the converse of the previous theorem, we will define the so called 
family of basic tests: 

D e f i n i t i o n  11. 

- Let s be a finite trace and A C Act. We inductively define the tests T(s, A) as 
• T(~,O) = STOP. 
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T(s ,A)  s = ala.2...a~ 

' OK 

o,\ 
D OK 

aEA 

OK 

T(u) u = ala2a3a4... 

~ OK 

a, ~K 
OK 

Table2.  Graphical representation of basic tests. 

® If  A # O then T(e, A) = a : A --+ g(a),  where g(a) = OK for all a E A. 
• T ( a .  s', A) = (7 ~ OK) [] (a -+ T ( s ' ,  A)).  

- Let u = (ak[ k E ]N) be an infini te t race .  Let  B = {b~ ! i E IN} C_ Act be a 
numerable  infinite set of act ions  (note  t ha t  we can get such a set since Act is 
infinite). Let us consider the r enaming  funct ions ¢~  and ¢3  defined as 

¢~(c) = { b~+l if c = bi E B ~ { ai if c = b~ E B 
c i f c ~ t B  ¢ ~ ( c ) =  c i f c ~ B  

Then,  we define the test  T(u)  t ak ing  

T(u)  = ( r e c x . ( c  -+ OK) [] (bl -~ x[¢~] ) ) [¢~]  

In Table 2 we show a graphical  r ep re sen t a t i on  of the  tests defined before 2. While 
the  meaning of finite tests is clear, i t  is not  so evident  why we have defined the tests 
T(u)  in such a way. The idea is t ha t  we want  a syntac t ica l ly  finite test  offering the 
infinite sequence a l ,a2 , . . .  , a n , . . .  T h e  first a t t e m p t  to get such a test  would be 
to consider a renaming function such t h a t  ¢(a{) = a i+ l .  But this does not work 
because it could exist i # j with ai = aj b u t  ai+l # aj+l. Then, it is necessary to 
consider an infinite set of act ions p la)dng the  same role. Firs t ,  we define a renaming 

" b = function such tha t  ¢~(b{) = b{+l. Then ,  a r enaming  function such tha t  ¢ ~ ( i )  as 
works as desired. Finally, note tha t  infs(T(u))  : {u}. 

The  next result follows easily from the  previous  definition. 

L e m m a  12. Let P be a process, s be a trace, A C Act,  and u be an infinite trace. 
Then, the following conditions hold: 

s' = s A A I A A  ¢ O A A  I ~ ~ 
- P m u s t T ( s , A )  ¢==~ V s ' A ' E A ( P )  : s ' A ' V  

~< s~ 

2 Formally, these are not exactly our tests because after the action r is performed the cor- 
responding action a~ should be available (composed in external choice with the process 
0K). But if the test executes any r ,  then the test is successfully passed, so we can omit 
this detail in the graphical representation. 
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- PmustT(u)  ¢==~ u¢infs(P) A~s ' ,u ' :  u = s ' u ' A s ' [ 2 E A ( P )  

T h e o r e m  13. Let P and Q be processes such that P ~<~b Q. Then, there exists a 
test T such that P must T but Q must T. 
Proof. (Sketch) If P ~ b  Q then there are two possible cases: 

- There exists some sA E A(Q) such tha t  there is no s~A t E A(P) with s'A' << sA. 
Then we consider the set of actions 

A"= U 
sA'EA(P) 

Note that,  because of the previous assumptions,  if sA' E A(P) then A' ¢ ~2. 
From this set of actions we can consider the associated test T(s, A"), and we 
obtain P must T(s, A") while Q n ~ s t  T(s, A"). 

- There exists some u E infs(Q) such tha t  neither u E infs(P) nor there exists 
any finite prefix s of u with s~2 E A(P).  Then,  by the previous lemma we have 
P must T(u) and Q m~st T(u). 
As an immediate corollary of this theorem we have that  the family of tests given 

by Definition 11 constitutes a set of essential tests. By essential we mean that  in 
order to show that  two processes are not  equivalent, it is enough to find a test from 
this family that  distinguishes the processes; tha t  is, a test such that  one of the 
processes must pass it while the other  one does not.  

5 Conc lus ions  and fu ture  W o r k  

We have extended the classical testing semantics developed in [Hen88] to a frame- 
work where internal choice is not  restr icted to a finite number of arguments. First, 
we extended CSP with an internal choice opera tor  having an arbitrary number of 
arguments (in particular, an infinite number  of  arguments).  We have defined the 
corresponding may and must test ing semantics for the new framework. Then, we 
have given alternative characterizations of  these preorders: in the may case, every- 
thing remains the same as in the case of  bounded  nondeterminism, but in order to 
characterize the must preorder we need to extend the usual acceptances of processes 
with infinite traces. 

As future work we plan to define hilly abst ract  denotational semantics of the 
must testing preorders by using appropr ia te  extensions of acceptance trees [Hen85]. 
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