
Typechecking of PEI Expressions 

Eric Violard 

ICPS, Universit~ Louis Pasteur, Strasbourg 
Boulevard S. Brant, F-67400 Illkirch 

e-mail: violard@icps.u-strasbg.fr 

Abs t rac t .  PEI was introduced to express and transform parallel pro- 
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of data field in the language. We define the type of such objects and 
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1 I n t r o d u c t i o n  

PEI is a formal framework for reasoning on programs. It was introduced [14, 15] 
to express and transform parallel programs [3]. It defines a language used to 
express statements,  called PEI programs, and a refinement calculus to transform 
such programs. 

PE] was clearly born of classical methods for the synthesis of systolic arrays 
[12, 9]. In this approach, a s tatement  was a set of recurrence equations which are 
an abstract  form for single assignment loop nests. Indices are the coordinates 
of points over a geometrical space and scan the computation domain. In this 
context, program transformations can be considered as pure geometrical trans- 
formations: they mainly consist in remodeling the computat ion domain by using 
isometrics or partitions, in order to define a computat ion ordering in preserving 
the da ta  dependencies within the computat ion domain. So, a parallel program 
results of a change of basis from the geometrical space into a new space-time 
domain: in this representation all dependencies are directed along the t ime axis, 
and successive computat ion fronts can be defined [7, 6]. 

These methods and all developments on automat ic  parallelization of DO 
loops apply when drastic constraints, such as linear constraints, are satisfied. The 
formal approach of PEI aims at overcoming these limitations and PEI proposes 
program transformations in a more general point of view. However, geometry 
and change of basis are features of main importance in PEI: objects expressed 
in the language are founded on these concepts and their type depends on them. 
This supposes to define a precise notion of type as definition domain of partial  
functions on 7/'~. 



522 

2 T h e  l a n g u a g e  P E I  

2.1 A n  i n t r o d u c t i o n  to  PEI P r o g r a m m i n g  

As a general point of view, let us consider that a problem can be specified as 
a relation between multisets of value items, roughly speaking its inputs and 
outputs. Of course, programming may imply to put these items in a convenient 
organized directory, depending on the problem terms. In scientific computations 
for example, items such as arrays are functions on indices: the index set, that  
is the reference domain, is a part of some 77 n. In PEI such a multiset of value 
items mapped on a discrete reference domain is called a data field. 

For example the multiset of integral items { 1 , -2 ,  3, 1} can be expressed as a 
data  field, say h, each element of h being recognized by an index in 7/ (e.g. from 
0 to 3). Of course this multiset may be expressed as an other data  field, say M, 
which places the items on points (i, j )  E 7/2 such that  0 _< i, j < 2. These two 
data  fields h and M are considered equivalent in PEI since they express the same 
multiset. Formally, there exists a bijection from the first arrangement onto the 
second one, e.g. cr(i) = (i mod 2, i div 2). This is denoted by the equation: 

M= align::A 

where a l i g n  = A(i) I (0_<i_<3). (i rood 2, i div 2) 

Any P~,I program is composed of such unoriented equations, each of them defin- 
ing an expression of a data field. On the example, M and a l i g n  : : h have the same 
set of value items, placed in the same fashion in the same reference domain. 

A set of p input and q output data fields and a set of equations define a 
program in PEI if and only if the set of equations has at most one solution, 
i.e. from any set of p input valued data fields there exists at most one set of q 
resulting output  valued data fields. Here is a classical example of prefix-sum of 
n numbers in PEI: 

Example 1. Prefix-Sum of n numbers (n> l )  
PrefixSum : A ~ X 

{ 
A = dom : : A 

X---- add D (A /a/(X <~ pre)) 
} 

dos=A(i) I ( l ~ i S n ,  n > l ) - ( i )  
p re  = A(i) I (l<i_<n).  (i--1) 
add = id # A(a;b). (a+b) 

- the first equation defines the mapping of the input data field h: its values 
are placed onto a line segment [1..n] of 7/, 

- fig. 1 intuitively shows that  data field X is a solution of the second equation: 
its value items are the prefix computations of the sums of the value items 
in h. The first expression (X <a pre) defines a data field resulting from X by 
shifting its values from left to right. They are then composed with the values 
of h in the expression (A /&/(X <a pre))  and added one to another. 
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Fig. 1. X is a solution of the second equation 

2.2 F o r m a l  d e f i n i t i o n s  

The previous example points out that  da ta  fields are the central concept in PEI. 
A data  field represents a multiset of values. It  is characterized by a drawing of 
the multiset: a drawing associates a geometrical point on 7/~ with each value of 
a multiset.  Formally, assuming the values of the multiset are in V, a drawing of 
the multiset  is a function v : Z n ~ V. 

As it has been observed in section 2.1, many  da ta  fields can represent the 
same multiset  of values and a bijeetion links any two of them. It is the reason 
why, besides its drawing, a bijection characterizes also a data  field: it links the 
da ta  field with a virtual reference domain and can be changed by a change of 
basis. In fact, the bijeetion of a da ta  field is not explicit in PEI expressions and 
it only expresses the conformity of objects in such a way that  two objects can be 
combined if and only if one of them conforms to the other. Formally, the bijection 
is denoted as G, and it defines an other drawing (v o inv(c~)) if dora(v) C_ dora(G). 

77 n v V 

;r/p 

D e f i n i t i o n  1. A data  field is a pair, denoted as (v : rr), composed of a drawing 
v and of a bijection ~ such that  dora(v) C_ dora(G). 

The  superimposition combines the data fields in conformity. More precisely, 
we say tha t  a da ta  field conforms with an other one if its bijeetion is a restriction 
of the other 's  bijection. The drawing of the result is the union of the drawings and 
the operation builds sequences of values on the intersection. As a consequence, 
we consider all values are sequences and we use two operators on sequences: an 
associative constructor denoted as ";" and the function id  which is the identity 
on sequences of one element. 

D e f i n i t i o n 2 .  Let Xi and X2 be two data  fields in conformity i.e. al = G2\dom(~). 
The superimposition defines the da ta  field Xl/~/X2 as (w : or2), where w(z) = 
vl(z); v (z) 
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The other operations apply a function on a data  field X = (v : or) and form a 
new data  field. The PEI notation for partial flmctions is derived from the lambda-  
calculus: any function f of domain dom(f) = {x I P(x)}  and whose image is 
img(f) = {f(x) I P(x)}  is denoted as Ax IP(x) . f ( / ) .  Moreover, a function f 
defined on disjunctive sub-domains is denoted as a partition f l  ~ f2 of functions, 
and the domain of a composed function f o g is {x E dora(g) I g(x) E dora(f)}. 
Last, inv(h) denotes the inverse of a bijection h. 

D e f i n i t i o n 3 .  Let f be a partial function from V to W such that  img(v) C_ 
dora(f). Let g be a partial  function from dom(~r) to dora(v). Let h be a bijection 
from dom(~) to 77 p such that  dora(v) C_ dora(h). 

- The functional operation defines the data  field f t> X as (f o v : ~r). 
- The geometrical operation defines the data  field X <~ g as (v o g : ~). 
- The change of basis defines the da ta  field h : :  X as (v o inv(h) : ~r o inv(h)). 

PEI was originally defined to describe and reason on parallel programs and 
their implementation.  It  includes a refinement calculus [14, 16] that  makes pos- 
sible to transform statements by associating algebraic laws and symbolic eval- 
uation of functions with the classical geometrical foundations in parallel pro- 
gramming or parallel compiling. In that  context, typechecking is a particularly 
relevant issue. 

2.3 R e l e v a n c e  o f  t y p e c h e c k i n g  in  PEI 

As seen in the previous section, PBI operations are not allowed on any da ta  fields: 
this means that  some phrases are forbidden according to some constraints. In 
other words, if the constraints do not hold, then we say that  no semantics is 
associated with such phrases. Note that  this is not absolutely necessary and we 
could decide to associate a specific meaning with such phrases. But this addresses 
the following crucial question: is a given PEI specification, feasible or not ? I t  is 
impor tant  to be able to check for feasibility at any step of the refinement process 
[10]: in PEI, feasibility checking is just typecheeking. 

Moreover, refinement rules are founded on algebraic properties of operations. 
More precisely, a refined statement is obtained by replacing one occurrence of a 
PEI expression by an other one in such a way that  the conditions required for 
the new expression to be well-formed are stronger than the ones required for the 
old expression. In fact, refinement calculus in PEI is based on types: it preserves 
feasibility. Let us explain this last point with an example. 

Example 2. Routing composition law 

X<~ fl o f2 > (X <~ fl) <I f2 

This is a classical law of refinement in PEI which says that  the expression on 
the left can be replaced by the expression on the right without condition. Proof  
of this law directly lies on types: it shows that  if the expression on the right is 
well-formed, then the expression on the left will be well-formed and equal. 

This shows that  typing objects in PEI is an important  issue for reasoning on PEI 
s tatements  in a practical manner.  
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3 Typing objects in PEI 

As seen before, we are particularly interested in checking the type of the domains 
of a da ta  field, but not the type of values in the data  field. For sake of simplicity, 
the following definition does not take the type of values into account. 

D e f i n i t i o n 4 .  Let (v : c~) be a data  field, the pair (dora(v), dom(~)) is called 
the type of this data  field. Domains dom(v) and dom(c~) are called respectively 
the value domain and the reference domain of the data  field. 

3.1 S t r u c t u r a l  d e f i n i t i o n  o f  types 

Writing inference rules is an elegant way to define the type of expressions in a 
language [1]. Classically, formulae have the form F E : r where E is an expression 
and ~- its type. We use this notation to define types in PEI. Let D, D1 and D2 
be value domains and A A 1 and A2 be reference domains. 

t- g 1 : D 1 x A 1 F- E2 : D2 x A2 if A 1 C /~l 2 Superimposit ion F El/e/E2 :(D1 U D2) x A2 

I- E : 7- F u n c t i o n a l  o p e r a t i o n  ~- f t> E : r 

F E : D x A  if I i m g ( g )  C-D Geometrical  operation F g <a g : dora(g) x A . dora(g) C A 

F- E: D x A ~ D C dora(h) 
C h a n g e  o f  ba s i s  t- h : :  E : h(D) x ling(h) if [ dora(h) C A 

Equation F E I : r  F E 2 : r  
F g] = E2 

where F E1 ---- E2 means that  the equation E1 = E2 is well-formed. 

These rules express the conditions we have associated with the definition of PEI 
operations and define well-formed phrases in PEI. As said in 2.1, PEI equations 
are unoriented: they cannot be considered as definitions as a general rule. For 
that  reason, the inference system associated with these rules cannot be carried 
out: these rules only enable to formally define the type of a da ta  field and to 
build a "type system" associated with a PEI statement.  

3.2 Type system 

Typechecking consists in solving a type system. The system contains all con- 
ditions on domains which ensure that  every operation on data  fields occurring 
in the program can be applied. Unknowns of the system denote either a value 
domain,  or a reference domain of a data  field X. We write them v a l  X and r e f  X 
respectively. A type system is a set of equalities and inclusions. Each of them 
connects two domain expressions. A domain expression is either a variable, or 
the union of two domains, or the image of a domain by a bijection, or a constant 
domain.  Moreover, note that  for any data  field X, the assertion v a l  X C r e f  X, 
deduced from data  field definition, is implicitly added to this system. 
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Example 3. Data replication 

Broadcast : B ~+ h 

project :: T = B 
A = T <3 column 
} 

p r o j e c t  ---- £(i,j) I (i=1, l < j < n ) .  (j) 
c o l u m n  = I 

The associated type system is: 
val A C ref A 
val B C ref B 
val T C ref T 
val T C_ dora(project) 
dora(project) C_ ref T 
img(column) C_ val T 
dora(column) C_ ref T 
project(val T) = val ~] 
project(ref T) ----- ref ] val A -- dora(column) 
ref A = ref T 

conditions 
to define 
data  fields 

equations 

4 Solving the type system: a type algorithm 

The correctness of this algorithm lies on the equivalence of successive type sys- 
tems obtained step by step from the initial one. 

Example 4. Data replication (continued) 
From the previous type system, the algorithm results in the following definition: 

va l  A -- {(i,j) I l<_i,j~_n} 
ref h = ref T 
va l  B = {j ] l<j<n} 
r e f  B = {j I l ~ j~n}  
v a l T  = {(1,j)  I l_<j _< n} 
{(1,j)  I l~_j~_n} C_ r e f  T 

The typechecking algorithm works in two steps: it first normalizes the system 
and then removes its unknowns one after the others. 

4.1 S y s t e m  n o r m a l i z a t i o n  

A normalized system is a set of inclusion: <L> C_ <R> where <L> is a variable 
or a constant domain and <R> is a domain expression in which any variable 
occurs only once and is different from <L>. 

Example 5. Data replication (continued) 
By definition, only the equational part has to be normalized. The last two 
equations are easy to normalize, by replacing each of them with two inclu- 
sions. For example, va l  h = dom(column) leads to va l  h C_ dora(column) and 
dora(column) C va l  A. The same idea applied to the former two equations leads 
to two new inclusions which must be normalized: p r o j e c t ( v a l  T) C va l  B (1) 
and p r o j e c t ( r e f  T) __. re:{ B (2). 

- Since va l  T is a value domain and by definition of the change of basis op- 
eration, va l  T C dora(project) is already checked. So the inclusion (1) is 
equivalent to va l  T C_ inv(project)(val B) which has a normal form. 
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- Since r e f  T is a reference domain and by definition of the change of basis 
operation, dorn(project) C_ r e f  T. So the inclusion (2) is equivalent to 
img(project) C ref B. 

The normal  form of a type system can be obtained by applying rules R1  to RT: 

R1 <D>,I  = <D>.2 --+ 
R2 <D>.I  U <D>.2 C_ < D >  --+ 

R3 h(<D>.l U <D>.B) --+ 
R 4  h.1 (h.2(<D>)) 
R 5  h ( v a l  X) C < D >  --+ 
R 6  h l ( v a l X )  U . . . u h n ( v a l  X) 
R7 val X C_ <D> U h(val X) -+ 

<D>. I  C_ <D>.2, <D>.B C_ <D>. I  
< D > z  C_ <D>,  <D>.2 C <D> 
h( <D>.l ) U h( <D>.2) 
(h.1 o h2)(<D>) 
v a l  X C inv(h)(<D>) 
max{h.1.., h.,~}(val X) 
true 

(n>l) 

where the relation "is a restriction off' is the order between bijections. 

P r o p e r t y  5. The rule system R1 to R 7  forms a terminating system. 

4.2 Unknown removing 

Assuming a type system is under normal form, any unknown X is removed by 
applying this algorithm: let S x be the set of inclusions where X occurs. The 
system can be reduced to two inclusions which bound X: e C X C E where e and 
E are set expressions which do not use X and a set of inclusions in the normal  
form which do not contain X. The details of this algorithm follows: 

- Let us consider the inclusions of S x of the form X C_ <D>.i .  Since S x has 
a normal form, <D>.i  does not contain X. These inclusions can be grouped 
into a single one of the form X C E with E = N~ <D>~.  

- Let us consider the other inclusions of S x. Since S x has a normal form, 
the unknown X occurs in the right side. We obtain an inclusion of the form 
<D>.i  C X by isolating X. The new inclusions can be grouped into a single 
one of the form e C X with e = Ui <D>.i .  

To show how to isolate X on the right side of an inclusion of SX, let us consider 
the most  general form: <L>  C < D >  U h(X). This inclusion is equivalent to: 
inv(h)(<L>)-inv(h)(<D>) C X (3) and <L> C <D>LJ img(h) (4) where (3) 
has the required form and (4) does not use X. Moreover, we note that  (4) has a 
normal  form. So, we obtain bounds for X and a system in the normal form where 
X does not appear  anymore and from which another unknown can be removed. 

4.3 A l g o r i t h m  t e r m i n a t i o n  

The unknowns of the type system are removed one after the other. At the end 
the resulting system does not contain any unknown: the inclusions can then 
be evaluated by computing constant domain expressions. If all inclusions are 
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evaluated to true, then PEI expression is well-typed. In this case, the algorithm 
returns a type range for all data fields in the program. In the other case, there 
exists a data field without a type. Some informations about the type error source 
can be obtained, but this point is out of the scope of the paper. 

Since the algorithm uses a structural scanning of the abstract syntax tree, its 
complexity depends on the number of operations. But hopefully, rules of normal- 
ization can be applied while building the type system. Moreover, the complexity 
also depends on the number of identifiers in the statement: the unknowns re- 
moving is clearly linear relatively to their number. 

5 I m p l e m e n t a t i o n  

Based on this algorithm, a typechecker for PEI programs has been written in 
CAML [17]. It uses the OMEGA library [5, 11] for evaluating set expressions: the 
OMEGA library allows to handle subsets of 7/~ × 7/"~. If rn¢0, the subsets define 
relations which connect n-tuples to m-tuples. If m=0,  they define subsets of 7/~. 
Tuples relations and sets are described by using Presburger formulae a class of 
logical formulas built from affine constraints over integer variables, the logical 
connectives -,, A and V, and the quantifiers V and 3. 

To link these tools, we developed a syntactic analyzer of PEI in CAML and we 
extended an interface for using the functions of the OMEGA library in CAML. A 
representation function translates a PEI function into an  OMEGA relation. Note 
that this representation is not always possible because PEI expressions are not 
necessary limited to Presburger formulae. 

A PEI statement can be typed if the geometrical operations or change of 
basis inside can be coded into an OMEGA relation. 

6 C o n c l u s i o n  

This paper defined the notion of type associated with the objects used in the 
language PEI and presented an algorithm that can infer the type of PEI expres- 
sions. Our algorithm presents a weak limitation: all data fields resulting from 
a change of basis applied on the same data field must be in conformity inside 
an equation (cf. rule R6). In order to be eventually implemented, the algorithm 
also requires some basic operations on domains of 7/'~ to be available. 

Beyond this approach, this allows to determine well-formed phrases of the 
language [13] and further research may consist in associating classical semantics 
with programs. This notion of type is of great importance to prove correctness 
of parallel programs as well as to determine allowable program transformations. 

In other works in the area of program transformations, such as ALPHA [8] or 
CaYSTAL [2], types are not inferred: they are declared and defined as polyhedral 
domains in 7/~, in ALPHA for example. Typing variables consists in determining 
their exact domain and important  restrictions on domains are made to insure 
operations can be applied. PEI is an at tempt to overcome these limitations. 
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In the area of functional  languages and da ta  parallel p rogramming,  [4] defines 
data fields (not to be confused with da ta  fields defined here), which can be seen 
as the first par t  v of  da t a  fields in our sense. An extent analysis proposes to find, 
for a da t a  field f ,  an approximat ion  to the index set of  f in order to perform a 
"parallel evaluat ion".  
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