
Typechecking of PEI Expressions

Eric Violard

ICPS, Universit~ Louis Pasteur, Strasbourg
Boulevard S. Brant, F-67400 Illkirch

e-mail: violard@icps.u-strasbg.fr

Abs t rac t . PEI was introduced to express and transform parallel pro-
grams. In this paper, we recall its main features and focus on the notion
of data field in the language. We define the type of such objects and
present an algorithm to infer types.
Keywords . Parallel computation, Semantics of programming languages,
Type inference, Data Parallelism and automatic parallelization.

1 I n t r o d u c t i o n

PEI is a formal framework for reasoning on programs. It was introduced [14, 15]
to express and transform parallel programs [3]. It defines a language used to
express statements, called PEI programs, and a refinement calculus to transform
such programs.

PE] was clearly born of classical methods for the synthesis of systolic arrays
[12, 9]. In this approach, a s tatement was a set of recurrence equations which are
an abstract form for single assignment loop nests. Indices are the coordinates
of points over a geometrical space and scan the computation domain. In this
context, program transformations can be considered as pure geometrical trans-
formations: they mainly consist in remodeling the computat ion domain by using
isometrics or partitions, in order to define a computat ion ordering in preserving
the da ta dependencies within the computat ion domain. So, a parallel program
results of a change of basis from the geometrical space into a new space-time
domain: in this representation all dependencies are directed along the t ime axis,
and successive computat ion fronts can be defined [7, 6].

These methods and all developments on automat ic parallelization of DO
loops apply when drastic constraints, such as linear constraints, are satisfied. The
formal approach of PEI aims at overcoming these limitations and PEI proposes
program transformations in a more general point of view. However, geometry
and change of basis are features of main importance in PEI: objects expressed
in the language are founded on these concepts and their type depends on them.
This supposes to define a precise notion of type as definition domain of partial
functions on 7/'~.

522

2 T h e l a n g u a g e P E I

2.1 A n i n t r o d u c t i o n to PEI P r o g r a m m i n g

As a general point of view, let us consider that a problem can be specified as
a relation between multisets of value items, roughly speaking its inputs and
outputs. Of course, programming may imply to put these items in a convenient
organized directory, depending on the problem terms. In scientific computations
for example, items such as arrays are functions on indices: the index set, that
is the reference domain, is a part of some 77 n. In PEI such a multiset of value
items mapped on a discrete reference domain is called a data field.

For example the multiset of integral items { 1 , -2 , 3, 1} can be expressed as a
data field, say h, each element of h being recognized by an index in 7/ (e.g. from
0 to 3). Of course this multiset may be expressed as an other data field, say M,
which places the items on points (i, j) E 7/2 such that 0 _< i, j < 2. These two
data fields h and M are considered equivalent in PEI since they express the same
multiset. Formally, there exists a bijection from the first arrangement onto the
second one, e.g. cr(i) = (i mod 2, i div 2). This is denoted by the equation:

M= align::A

where a l i g n = A(i) I (0_<i_<3). (i rood 2, i div 2)

Any P~,I program is composed of such unoriented equations, each of them defin-
ing an expression of a data field. On the example, M and a l i g n : : h have the same
set of value items, placed in the same fashion in the same reference domain.

A set of p input and q output data fields and a set of equations define a
program in PEI if and only if the set of equations has at most one solution,
i.e. from any set of p input valued data fields there exists at most one set of q
resulting output valued data fields. Here is a classical example of prefix-sum of
n numbers in PEI:

Example 1. Prefix-Sum of n numbers (n> l)
PrefixSum : A ~ X

{
A = dom : : A

X---- add D (A /a/(X <~ pre))
}

dos=A(i) I (l ~ i S n , n > l) - (i)
p re = A(i) I (l<i_<n). (i--1)
add = id # A(a;b). (a+b)

- the first equation defines the mapping of the input data field h: its values
are placed onto a line segment [1..n] of 7/,

- fig. 1 intuitively shows that data field X is a solution of the second equation:
its value items are the prefix computations of the sums of the value items
in h. The first expression (X <a pre) defines a data field resulting from X by
shifting its values from left to right. They are then composed with the values
of h in the expression (A /&/(X <a pre)) and added one to another.

523

01:: 01:: ,

. t

: i a 6 io i 5 : X <~ pr~

Fig. 1. X is a solution of the second equation

2.2 F o r m a l d e f i n i t i o n s

The previous example points out that da ta fields are the central concept in PEI.
A data field represents a multiset of values. It is characterized by a drawing of
the multiset: a drawing associates a geometrical point on 7/~ with each value of
a multiset. Formally, assuming the values of the multiset are in V, a drawing of
the multiset is a function v : Z n ~ V.

As it has been observed in section 2.1, many da ta fields can represent the
same multiset of values and a bijeetion links any two of them. It is the reason
why, besides its drawing, a bijection characterizes also a data field: it links the
da ta field with a virtual reference domain and can be changed by a change of
basis. In fact, the bijeetion of a da ta field is not explicit in PEI expressions and
it only expresses the conformity of objects in such a way that two objects can be
combined if and only if one of them conforms to the other. Formally, the bijection
is denoted as G, and it defines an other drawing (v o inv(c~)) if dora(v) C_ dora(G).

77 n v V

;r/p

D e f i n i t i o n 1. A data field is a pair, denoted as (v : rr), composed of a drawing
v and of a bijection ~ such that dora(v) C_ dora(G).

The superimposition combines the data fields in conformity. More precisely,
we say tha t a da ta field conforms with an other one if its bijeetion is a restriction
of the other 's bijection. The drawing of the result is the union of the drawings and
the operation builds sequences of values on the intersection. As a consequence,
we consider all values are sequences and we use two operators on sequences: an
associative constructor denoted as ";" and the function id which is the identity
on sequences of one element.

D e f i n i t i o n 2 . Let Xi and X2 be two data fields in conformity i.e. al = G2\dom(~).
The superimposition defines the da ta field Xl/~/X2 as (w : or2), where w(z) =
vl(z); v (z)

524

The other operations apply a function on a data field X = (v : or) and form a
new data field. The PEI notation for partial flmctions is derived from the lambda-
calculus: any function f of domain dom(f) = {x I P(x)} and whose image is
img(f) = {f(x) I P(x)} is denoted as Ax IP(x) . f (/) . Moreover, a function f
defined on disjunctive sub-domains is denoted as a partition f l ~ f2 of functions,
and the domain of a composed function f o g is {x E dora(g) I g(x) E dora(f)}.
Last, inv(h) denotes the inverse of a bijection h.

D e f i n i t i o n 3 . Let f be a partial function from V to W such that img(v) C_
dora(f). Let g be a partial function from dom(~r) to dora(v). Let h be a bijection
from dom(~) to 77 p such that dora(v) C_ dora(h).

- The functional operation defines the data field f t> X as (f o v : ~r).
- The geometrical operation defines the data field X <~ g as (v o g : ~).
- The change of basis defines the da ta field h : : X as (v o inv(h) : ~r o inv(h)).

PEI was originally defined to describe and reason on parallel programs and
their implementation. It includes a refinement calculus [14, 16] that makes pos-
sible to transform statements by associating algebraic laws and symbolic eval-
uation of functions with the classical geometrical foundations in parallel pro-
gramming or parallel compiling. In that context, typechecking is a particularly
relevant issue.

2.3 R e l e v a n c e o f t y p e c h e c k i n g in PEI

As seen in the previous section, PBI operations are not allowed on any da ta fields:
this means that some phrases are forbidden according to some constraints. In
other words, if the constraints do not hold, then we say that no semantics is
associated with such phrases. Note that this is not absolutely necessary and we
could decide to associate a specific meaning with such phrases. But this addresses
the following crucial question: is a given PEI specification, feasible or not ? I t is
impor tant to be able to check for feasibility at any step of the refinement process
[10]: in PEI, feasibility checking is just typecheeking.

Moreover, refinement rules are founded on algebraic properties of operations.
More precisely, a refined statement is obtained by replacing one occurrence of a
PEI expression by an other one in such a way that the conditions required for
the new expression to be well-formed are stronger than the ones required for the
old expression. In fact, refinement calculus in PEI is based on types: it preserves
feasibility. Let us explain this last point with an example.

Example 2. Routing composition law

X<~ fl o f2 > (X <~ fl) <I f2

This is a classical law of refinement in PEI which says that the expression on
the left can be replaced by the expression on the right without condition. Proof
of this law directly lies on types: it shows that if the expression on the right is
well-formed, then the expression on the left will be well-formed and equal.

This shows that typing objects in PEI is an important issue for reasoning on PEI
s tatements in a practical manner.

525

3 Typing objects in PEI

As seen before, we are particularly interested in checking the type of the domains
of a da ta field, but not the type of values in the data field. For sake of simplicity,
the following definition does not take the type of values into account.

D e f i n i t i o n 4 . Let (v : c~) be a data field, the pair (dora(v), dom(~)) is called
the type of this data field. Domains dom(v) and dom(c~) are called respectively
the value domain and the reference domain of the data field.

3.1 S t r u c t u r a l d e f i n i t i o n o f types

Writing inference rules is an elegant way to define the type of expressions in a
language [1]. Classically, formulae have the form F E : r where E is an expression
and ~- its type. We use this notation to define types in PEI. Let D, D1 and D2
be value domains and A A 1 and A2 be reference domains.

t- g 1 : D 1 x A 1 F- E2 : D2 x A2 if A 1 C /~l 2 Superimposit ion F El/e/E2 :(D1 U D2) x A2

I- E : 7- F u n c t i o n a l o p e r a t i o n ~- f t> E : r

F E : D x A if I i m g (g) C-D Geometrical operation F g <a g : dora(g) x A . dora(g) C A

F- E: D x A ~ D C dora(h)
C h a n g e o f ba s i s t- h : : E : h(D) x ling(h) if [dora(h) C A

Equation F E I : r F E 2 : r
F g] = E2

where F E1 ---- E2 means that the equation E1 = E2 is well-formed.

These rules express the conditions we have associated with the definition of PEI
operations and define well-formed phrases in PEI. As said in 2.1, PEI equations
are unoriented: they cannot be considered as definitions as a general rule. For
that reason, the inference system associated with these rules cannot be carried
out: these rules only enable to formally define the type of a da ta field and to
build a "type system" associated with a PEI statement.

3.2 Type system

Typechecking consists in solving a type system. The system contains all con-
ditions on domains which ensure that every operation on data fields occurring
in the program can be applied. Unknowns of the system denote either a value
domain, or a reference domain of a data field X. We write them v a l X and r e f X
respectively. A type system is a set of equalities and inclusions. Each of them
connects two domain expressions. A domain expression is either a variable, or
the union of two domains, or the image of a domain by a bijection, or a constant
domain. Moreover, note that for any data field X, the assertion v a l X C r e f X,
deduced from data field definition, is implicitly added to this system.

526

Example 3. Data replication

Broadcast : B ~+ h

project :: T = B
A = T <3 column
}

p r o j e c t ---- £(i,j) I (i=1, l < j < n) . (j)
c o l u m n = I

The associated type system is:
val A C ref A
val B C ref B
val T C ref T
val T C_ dora(project)
dora(project) C_ ref T
img(column) C_ val T
dora(column) C_ ref T
project(val T) = val ~]
project(ref T) ----- ref] val A -- dora(column)
ref A = ref T

conditions
to define
data fields

equations

4 Solving the type system: a type algorithm

The correctness of this algorithm lies on the equivalence of successive type sys-
tems obtained step by step from the initial one.

Example 4. Data replication (continued)
From the previous type system, the algorithm results in the following definition:

va l A -- {(i,j) I l<_i,j~_n}
ref h = ref T
va l B = {j] l<j<n}
r e f B = {j I l ~ j~n}
v a l T = {(1,j) I l_<j _< n}
{(1,j) I l~_j~_n} C_ r e f T

The typechecking algorithm works in two steps: it first normalizes the system
and then removes its unknowns one after the others.

4.1 S y s t e m n o r m a l i z a t i o n

A normalized system is a set of inclusion: <L> C_ <R> where <L> is a variable
or a constant domain and <R> is a domain expression in which any variable
occurs only once and is different from <L>.

Example 5. Data replication (continued)
By definition, only the equational part has to be normalized. The last two
equations are easy to normalize, by replacing each of them with two inclu-
sions. For example, va l h = dom(column) leads to va l h C_ dora(column) and
dora(column) C va l A. The same idea applied to the former two equations leads
to two new inclusions which must be normalized: p r o j e c t (v a l T) C va l B (1)
and p r o j e c t (r e f T) __. re:{ B (2).

- Since va l T is a value domain and by definition of the change of basis op-
eration, va l T C dora(project) is already checked. So the inclusion (1) is
equivalent to va l T C_ inv(project)(val B) which has a normal form.

527

- Since r e f T is a reference domain and by definition of the change of basis
operation, dorn(project) C_ r e f T. So the inclusion (2) is equivalent to
img(project) C ref B.

The normal form of a type system can be obtained by applying rules R1 to RT:

R1 <D>,I = <D>.2 --+
R2 <D>.I U <D>.2 C_ < D > --+

R3 h(<D>.l U <D>.B) --+
R 4 h.1 (h.2(<D>))
R 5 h (v a l X) C < D > --+
R 6 h l (v a l X) U . . . u h n (v a l X)
R7 val X C_ <D> U h(val X) -+

<D>. I C_ <D>.2, <D>.B C_ <D>. I
< D > z C_ <D>, <D>.2 C <D>
h(<D>.l) U h(<D>.2)
(h.1 o h2)(<D>)
v a l X C inv(h)(<D>)
max{h.1.., h.,~}(val X)
true

(n>l)

where the relation "is a restriction off' is the order between bijections.

P r o p e r t y 5. The rule system R1 to R 7 forms a terminating system.

4.2 Unknown removing

Assuming a type system is under normal form, any unknown X is removed by
applying this algorithm: let S x be the set of inclusions where X occurs. The
system can be reduced to two inclusions which bound X: e C X C E where e and
E are set expressions which do not use X and a set of inclusions in the normal
form which do not contain X. The details of this algorithm follows:

- Let us consider the inclusions of S x of the form X C_ <D>.i . Since S x has
a normal form, <D>.i does not contain X. These inclusions can be grouped
into a single one of the form X C E with E = N~ <D>~.

- Let us consider the other inclusions of S x. Since S x has a normal form,
the unknown X occurs in the right side. We obtain an inclusion of the form
<D>.i C X by isolating X. The new inclusions can be grouped into a single
one of the form e C X with e = Ui <D>.i .

To show how to isolate X on the right side of an inclusion of SX, let us consider
the most general form: <L> C < D > U h(X). This inclusion is equivalent to:
inv(h)(<L>)-inv(h)(<D>) C X (3) and <L> C <D>LJ img(h) (4) where (3)
has the required form and (4) does not use X. Moreover, we note that (4) has a
normal form. So, we obtain bounds for X and a system in the normal form where
X does not appear anymore and from which another unknown can be removed.

4.3 A l g o r i t h m t e r m i n a t i o n

The unknowns of the type system are removed one after the other. At the end
the resulting system does not contain any unknown: the inclusions can then
be evaluated by computing constant domain expressions. If all inclusions are

528

evaluated to true, then PEI expression is well-typed. In this case, the algorithm
returns a type range for all data fields in the program. In the other case, there
exists a data field without a type. Some informations about the type error source
can be obtained, but this point is out of the scope of the paper.

Since the algorithm uses a structural scanning of the abstract syntax tree, its
complexity depends on the number of operations. But hopefully, rules of normal-
ization can be applied while building the type system. Moreover, the complexity
also depends on the number of identifiers in the statement: the unknowns re-
moving is clearly linear relatively to their number.

5 I m p l e m e n t a t i o n

Based on this algorithm, a typechecker for PEI programs has been written in
CAML [17]. It uses the OMEGA library [5, 11] for evaluating set expressions: the
OMEGA library allows to handle subsets of 7/~ × 7/"~. If rn¢0, the subsets define
relations which connect n-tuples to m-tuples. If m=0, they define subsets of 7/~.
Tuples relations and sets are described by using Presburger formulae a class of
logical formulas built from affine constraints over integer variables, the logical
connectives -,, A and V, and the quantifiers V and 3.

To link these tools, we developed a syntactic analyzer of PEI in CAML and we
extended an interface for using the functions of the OMEGA library in CAML. A
representation function translates a PEI function into an OMEGA relation. Note
that this representation is not always possible because PEI expressions are not
necessary limited to Presburger formulae.

A PEI statement can be typed if the geometrical operations or change of
basis inside can be coded into an OMEGA relation.

6 C o n c l u s i o n

This paper defined the notion of type associated with the objects used in the
language PEI and presented an algorithm that can infer the type of PEI expres-
sions. Our algorithm presents a weak limitation: all data fields resulting from
a change of basis applied on the same data field must be in conformity inside
an equation (cf. rule R6). In order to be eventually implemented, the algorithm
also requires some basic operations on domains of 7/'~ to be available.

Beyond this approach, this allows to determine well-formed phrases of the
language [13] and further research may consist in associating classical semantics
with programs. This notion of type is of great importance to prove correctness
of parallel programs as well as to determine allowable program transformations.

In other works in the area of program transformations, such as ALPHA [8] or
CaYSTAL [2], types are not inferred: they are declared and defined as polyhedral
domains in 7/~, in ALPHA for example. Typing variables consists in determining
their exact domain and important restrictions on domains are made to insure
operations can be applied. PEI is an at tempt to overcome these limitations.

529

In the area of functional languages and da ta parallel p rogramming, [4] defines
data fields (not to be confused with da ta fields defined here), which can be seen
as the first par t v of da t a fields in our sense. An extent analysis proposes to find,
for a da t a field f , an approximat ion to the index set of f in order to perform a
"parallel evaluat ion".

References

1. Luca Cardelli. Basic polymorphic typechecking. Science of Computer Program-
ming, 8:2, April 1987. AT&T Bell Laboratories.

2. M. Chen, Y. Choo, and J. Li. Parallel Functional Languages and Compilers. Fron-
tier Series. ACM Press, 1991. Chapter 7.

3. Stfiphane Genaud, Eric Violard, and Guy-Renfi Perrin. Transformations techniques
in PEI. EUROPAR'95, LNCS, 966:131-142, August 1995.

4. P. Hammarlund and B. Lisper. On the relation between functional and data par-
allel programming languages. FPCA93, A CM Press, pages 210 222, 1993.

5. Wayne Kelly, Vadim Maslov, William Pugh, Evan Rosser, Tatiana Shpeisman, and
David Wonnacott. The Omega Library - Version 1.00, April 1996. Interface Guide.

6. L. Lamport. The parallel execution of DO loops. Communications of the ACM,
17(2):83-93, February 1974.

7. C. Lengauer. Loop parallelization in the polytope model. Parallel Processing Let-
ters, 4(3), 1994.

8. C. Mauras. ALPHA : un langage gquationnel pour la conception et la programma-
tion d'arehitectures parall~les synchrones. PhD thesis, U. Rennes, 1989.

9. C. Mongenet, P. Clauss, and G.-R. Perrin. Geometrical tools to map systems of
affine recurrence equations on regular arrays. Acta Informatica, 31:137-160, 1994.

10. C. Morgan. Programming from specifications. C.A.R. Hoare. Prentice Hall Ed.,
Endlewood Cliffs, N.J., 1990.

11. William Pugh. The omega test: a fast and practical integer programming algorithm
for dependence analysis. Communications of the ACM, August 1992.

12. P. Quinton and V. Van Dongen. The mapping of linear recurrence equations on
regular arrays. Journal of VLSI Signal Processing, 1, 1989.

13. R.D. Tennent. Semantics of Programming Languages. C.A.R. Hoare. Prentice Hall
Ed., Endlewood Cliffs, N.J., 1991.

14. E. Violard and G.-R. Perrin. PEI : a language and its refinement calculus for
parallel programming. Parallel Computing, 18:1167-1184, 1992.

15. E. Violard and G.-R. Perrin. PEI : a single unifying model to design parallel
programs. PARLE'93, LNCS, 694:500-516, June 1993.

16. Eric Violard, St~phane Genaud, and Guy-Ren~ Perrin. Refinement of data parallel
programs in PgI. IFIP TC2 Workshop on Algorithmic Languages and Calculi,
Chapman 8J Hall, February 1997.

17. Pierre Weis and Xavier Leroy. Le langage CAML. Interfiditions - iia, 1993.

