
Distributed Self-Stabilizing Algorithm for
Minimum Spanning Tree Construction

Gheorghe Antonoiu 1 and Pradip K. Srimani 1

Department of Computer Science, Colorado State University, Ft. Collins, CO 80523

Abst rac t . Minimal Spanning Tree (MST) problem in an arbitrary undi-
rected graph is an important problem in graph theory and has extensive
applications. Numerous algorithms are available to compute an MST.
Our purpose here is to propose a self-stabilizing distributed algorithm
for the MST problem and to prove its correctness. The algorithm uti-
lizes an interesting result of IMP88]. We show the correctness of the
proposed algorithm by using a new technique involving induction.

1 I n t r o d u c t i o n

Self-stabilization is a relatively new way of looking at system fault tolerance, es-
pecially it provides a "built-in-safeguard" against "transient failures" that might
corrupt the data in a distributed system. The concept of self-stabilization was
first introduced in [Dij74] and the possibility of using this concept for designing
fault tolerant algorithms was first explored in [Lam84].

Recently there has been a spurt of research in designing self-stabilizing dis-
tributed graph algorithms for many applications [SS92,BGW89,FD92,ADG92];
a good survey of self-stabilizing algorithms can be found in [Sch93]. One of the
most fundamental structures that is very essential in many distributed applica-
tions is the minimum spanning tree (MST) of a given undirected connected edge-
weighted graph. Most of the communication issues in any distributed system
including broadcasting, packet routing, resource allocation, deadlock resolution
etc. involve maintaining a minimal spanning tree of the underlying symmetric
graph of the system. Although there exist a number of self-stabilizing algorithms
for the spanning tree problem [CYH91,HC92,SS92,AS95,Agg94], none of those
algorithms deals with constructing a MST. Our purpose in this paper is to pro-
pose a self-stabilizing distributed algorithm for the MST problem in a symmetric
graph and to prove its correctness using induction in an interesting way.

2 M i n i m a l S p a n n i n g T r e e (M S T) o f a G r a p h

Remark 1. If the weights {w~j} of a graph are unique (distinct), the graph has
a unique MST [HS84].

To design a self-stabilizing algorithm for the MST of a graph, we introduce
a new characterization of any path in a given graph.

481

D e f i n i t i o n 2. a-cost of any path from node i to j is defined to be the maxi-
mum of the weights of the edges belonging to the path. ~ij is defined to be the
minimum among the a-cost of all possible paths between the nodes i and j .

Remark 3. We call the path, along which ~ij is defined, to be the minimum-a
path between nodes i and j ; this should not be confused with the traditional
shortest path between nodes i and j . The shortest path is defined to be the path
of minimum length where the length of a path is the sum of the weights of the
edges on the path. Most significant difference between the two metrics, a-cost
and length, of a path, assuming nonzero positive edge weights, is that when a
path is augmented by an additional edge, length must increase while a-cost may
remain constant.

T h e o r e m 4. Consider a graph G with unique edge weights. An edge eij is in
the unique MST if and only if ~ij = w~j [MP88].

Proof. The proof is by contradiction; for details, see [MP88].

We use Remark 1 and Theorem 4 to develop our algorithm for MST con-
struction. For convenience of description and understanding we first develop a
self-stabilizing algorithm for minimum a-cost path to a given reference node r
in the graph and then generalize the result to solve the MST problem.

2 .1 M i n i m u m s - c o s t p a t h t o a G i v e n N o d e r

Each node at tempts to compute the a-cost of the shortest path (minimum a-cost
path) to a given reference node. Call this special node r. ~ir denotes the s-cost
of the shortest path from node i to node r. Note that for all i, ~,ir is determined
by the topology of the graph and the weights assigned to the edges. Note that
q ~ = 0 (no self-loops). We use the following notations:

- C: An integer constant such that C >_ n.
- A/'(x): The set of neighbors of node x.
- L(i): The level of node i, the current estimate of the number of edges on the

minimum a-cost path.
- D(i): The current estimate of q~ir as known at node i.

Thus each node i maintains two data structures L(i) and D(i) and they de-
termine the local state of node i. We assume that 0 ~ L(i) < C; we do not
need to consider level values beyond that (even after perturbation), as we can
always assume each processor is capable of doing a modulo (C + 1) operation
and always keeps the remainder as its level value. The variable D(i) assume an
an arbitrary value between 0 and some large positive number which we shall call
MAX (determined by the length of the registers holding these variables).

D e f i n i t i o n 5. For any arbi t rary node x, the ordered pair, S(x) = (D(x), L(x))
d@fines the local state of the node x at any given point of time. The vector of all
the node states define the global state of the system.

We introduce a total ordering relation between any two arbitrary local states.

482

D e f i n i t i o n 6. Given two local states S = (D, L) and S' = (D', L'), S is less
than S' or S < S', iff (D < D') V ((D = D') A (L < L')), i.e., state tuples are
lexicographically ordered.

D e f i n i t i o n 7. In any system state, for any arbi t rary node x, we define H e (x) =
{y[y • Af(x), L(y) < C}, to be the set of its neighbors with level value < C.

D e f i n i t i o n 8. In any system state, for any arbitrary node x, He(x) ~ ~, we de-
fine the following: (1) 5rain(X) = minueNc(x) {max{wxy, D(y)}}; (2) Amin(X) =
{y[(y • A/'c(x)) A (max{w~y,D(y)} = ~min(X)); (3) Lmin(x) -- min{L(y)[y •
nm n(x)}.

We make the following immediate observations:

(a) If the set He(x) for any node x is empty, all neighbors of node x has a level
equal to C. The parameters 5min(X), Amin(X) and Lmin(X) a r e undefined
indicating that the estimates at each neighbor of node x is wrong.

(b) 5min(X) of any node x is a refined estimate of ~Pxr based on the estimates at
the neighbors of node x. 5min(X) is defined when Arc(x) ¢ O.

(c) The set Amin(iE) denotes the neighbors y of node x such that max{wxu, D(y)} =
5min(x). The set Amin(x) is defined and nonempty when .Arc(x) ~ {0.

(d) Lmin(x) indicates the minimum of the level values of the nodes in the set
Amin(X). The parameter Lmir~(x) is defined when .h/'e(x) ~ q}.

Our objective is to design an algorithm to compute the minimum a-cost of
each node to the reference node r, i.e., when the algorithm stabilizes, we will
have D(x) = ¢xr at each node x. Each node x looks at its own state S(x) (the
pair (D(x), L(x))) and the states of its neighbors and takes action by changing
its own level and cost estimate. Our algorithm has a single rule for all the nodes
in the graph (actually, the reference node take different action than all other
nodes). The rule at node x is as follows:

(4)

i f (x : r) A (L (x) ¢ 0 V D (x) ¢ 0) t h e n L (x) = 0 ~= D(x)--O;
else i f (Arc(x) = 0) A (D(x) ¢ M A X V L(x) ¢ C)

t h e n D (x) = M A X & L(x) = C
else i f (n(x) ~ Lmin(x) + 1) V (D(x) ¢ 5min(X))

t h e n L(x) = Lmin(x) ÷ 1, ~ D(x) = ~min(X);

Remark 9. The reference node r is p r i v i l e g e d if D(r) ~ 0 or L(r) ~ O. The
reference node may be privileged in an illegitimate state, but once it takes an
action, it becomes un privileged and can never be privileged again.

Remark 10. Any other node x, with A/'c(x) = ~ is p r i v i l e g e d if (D(x) ~ MAXV
L(x) ¢ C); any node x, with A/'c(x) ¢ 0 is p r i v i l e g e d if n(x) ¢ nmin(x) ÷ 1 V
D(x) ~ 5min(X). Note that any node x, x ¢ r, is privileged and takes action, it
becomes un privileged, but can be privileged again later (only after at least one
move by one of its neighbors).

483

Remark 11. Given any arbi t rary initial system state, the number of all possible
distinct local states that any node can have subsequently is finite (L values can
range over 0 . . . C - 1 and the D values can range over the edge weights and the
initial D values at the nodes). Thus, the number of all possible global system
states is also finite.

D e f i n i t i o n 12. Any global system state, when no node is privileged, is called
a legit imate state; any other s tate is illegitimate.

Remark 13. In a legitimate state, L(r) = D(r) = O.

L e m m a 14. In a legitimate state, any node x, x ~ r, with L(x) < C has
N c (x) ~£ 0 and has at least one neighbor y such that L(y) = L(x) - 1.

Proof. For any un privileged node x, with L(x) < C, we have L(x) = L ,~ in (x)+ l
and since L(x) < C, we get Lmin(x) < C ~ Arc(x) ¢ O. We also have that
Lmin(x) = L(x) - 1 and since L(x) < C, there exists at least one neighbor y of
node x such that L(y) = L(x) - 1.

L a m i n a 15. In a legitimate state, when no node is privileged, for any arbitrary
node x, L(x) < C.

Proof. In a legitimate state, the reference node r has L(r) = 0. Assume that a
node x has L(x) = C; since x is un privileged, H e (x) = 0. Consider the subset
of nodes in graph G with level C. This subset forms a subgraph G' of G. Since
G is connected and r ¢ G ~, there must be at least one node y C G t such that
Arc(y) ~ ~ and since this y is unprivileged, there exists a node z such that
L(z) = L(y) - 1 = C - 1. Then, by repeated application of the Lamina 14, there
must be at least one node each with level values C - 1, C - 2 , . - . ,0. This is a
contradiction since C > n where n is the number of nodes in the graph.

C o r o l l a r y 16. For some integer m, m < C, (m denotes the highest level of a
node in a legitimate state), the set of nodes in the graph is given by U0<k<m R(k) ,
where R(k) is the set of nodes with level k.

L e m m a 17. In a legitimate state, (1) R(O) = {r}; (2) for each node x E R(k) ,
1 < k < m, there exists a node y E R(k - 1) such that D(x) = m a x { n (y) , w~y}.

Proof. (1) Clearly, R(0) contains the reference node r since in a legitimate s tate
L(r) = O. Assume R(0) contains another node x. Since x is not privileged and is
not the reference node, L(x) = Lmin(X) + 1 and since levels cannot be negative,
L(x) > 0; thus, R(0) cannot contain x.

(2) Since node x is not privileged, nmin(X) = n(x) - 1 and D(x) = 8m~n(x),
i.e., there exists a node y, such that L(y) = L(x) - 1 (thus, y E R(k - 1)) and
~min(X) : max{D(y) , w~v}.

T h e o r e m 18. In a legitimate state, when no node is privileged, for any arbitrary
node x, we have D(x) = Oxr.

484

Proof. Consider any path r = Yo,Yl, . . . ,Ye = x from the reference node r to any
arbi t rary node x. The a-cost of this path is given by w = max{w(yi,yi+l)]i =
0 , . . - , g - 1}. Also, since no node is privileged, D(yo) = O, and for all i, i =
1, . . . ,~ , D(yi) = 5m~n(Yi) <_ max{D(y i - l ,w(y i - l , y i) } <_ w. Thus, we have
proved tha t for any arbi t rary node x, D(x) < ~xr.

To prove D(x) _> ~ r , we use induction. Clearly the claim holds for the node
r in R(0). Assume the claim hold for nodes in R(k). Consider any arbi t rary
node x in R(k + 1). By Lemma 17, there exists a node y in R(k) such tha t
D(x) = max{D(y), W,y}. Since D(y) = ~yr (i.e., there exists a path from node
y to node r with a-cost D(y)) , there is a pa th from node x to r with cost D(x) ,
i.e., D(x) > ~x~.

Next, we need to prove that the system converges to a legitimate state after
a finite number of moves start ing from any arbi t rary initial illegitimate state.
We need some more definitions.

D e f i n i t i o n 19. In any illegitimate state, a f o r c i n g n o d e of any privileged node
x (x ~ r), is defined to be

node x if H e (x) =
a node YlY • Amin(X) A L(y) = Lmin(x) otherwise

Remark 20. The reference node r, when it is privileged, does not have any forcing
node. Also, for any other node x, the forcing node may not be unique, i.e., the
set {YlY • Am~n(x) A L(y) = Lmin(x)} may have more than one node. But, the
new state of a node after the move is the same irrespective of the choice of the
forcing node.

L e m m a 21. When a privileged node x takes action, the new state of node x is
greater than the state of its forcing node (in the previous system state).

Proof. If He(x) = 0 and x is privileged, node x is its own forcing node, S(x) <
(MAX, C) and the new state after the move S'(x) = (MAX, C) and hence
S'(x) > S(x). If A/'c(x) • ~, the forcing node y E He(x) has L(y) < C (y C
Lmin(X) and after the move, D'(x) > max{w~y,D(y)} > D(y) and L'(x) =
L(y) + 1 > L(y); hence, S'(x) > S(y).

Let A be a subset of the node set V of the graph not including the reference
node r. The following definitions are based on such a set A.

D e f i n i t i o n 22. For any given A, the set of nodes in A that have an edge to
some node in V - A is called the b o r d e r s e t of A and is denoted by BA.

Remark 23. For a given graph and a given set A, the set BA is always non null
since r ~ A and the graph is connected.

D e f i n i t i o n 24. For a given A, and a system state, the minimum value of the
local states S(x) for all x E A is called the m i n i m u m v a l u e of A and is denoted
by Min(A).

485

Remark 25. The quanti ty M i n (A) is an ordered pair of est imate values and
levels (just like local states of nodes) and hence can be compared by the total
ordering of Definition 6. Also, note that M i n (A) is a function of the given set A
and a given global system state.

L e m m a 26. For a given A and a given global system state with its M i n (A) = c,
M i n (A) can decrease at a subsequent system state only after a node x E BA
makes a move with a forcing node in { V - A } such that after the move S(x) < c.

Proof. Since no node in {A - BA} has any neighbor outside of A and since the
new state of a node making a move is greater than its forcing node (Lemma 21),
to lower the value of M i n (A) , a node x E BA must make a move with a forcing
node in {V - A) such that after the move S(x) < c.

Our approach to prove the convergence of the algorithm is to prove that
the assumption of an infinite sequence of moves leads to a contradiction. Let us
consider one such infinite sequence of moves s tar t ing from a given illegitimate
state without reaching the legitimate state. We can divide the set of nodes, V,
in two subsets: A, the set of nodes each of which makes an infinite number of
moves in the sequence and { V - A } , the set of nodes each of which makes finitely
many moves in the sequence. The reference node r cannot belong to the set A
since it can make at best only one move (see Remark 9). Start ing from any
illegitimate state, after a finite number of moves, all nodes not in set A will stop
making moves (from the assumption). Let tl denotes this point in time. Let the
minimum value of A at t l be M i n i (A). The following lemmas are based on such
an assumed infinite sequence, the set A and the time instant t l .

L e m m a 27. Consider an arbitrary system state (after t l) with M i n (A) = c. I f
there exists a node x E BA such that S(x) = c and x is un privileged, then x can
be privileged again in a subsequent system state only when M in(A) becomes .less
than c.

Proof. We need to consider two cases:
(1) S(x) = (M A X , C); since x is the minimal node, each node in A has the

state (M A X , C); no node in A - BA can be privileged; only a node z E BA can
be privileged and can make a move due to a forcing node in {V - A} and after
the move, S(z) < (M A X , C).

(2) S(x) < (M A X , C); since x is un privileged, • c (x) ¢ O and there exists
a neighbor y of x such that max(wxy,D(y)) = D(x) and L(y) = L(x) - 1.
Since x is a minimal node in A, the node y is in {V - A} and hence node y
does not make a move. Since y does not make any move, by the construction of
the algorithm (and the definitions of Amin and Lmi,~), in order that node x be
privileged again, another neighbor z of x must acquire a state S~(z) < S(x) in a
subsequent system state. Since nodes in {V - A} do not make any move, z E A
and hence M i n (A) is now less than e.

L e m m a 28. f f in any system state (after t l) the subset BA does not contain
any minimal node of A, then it will do so in finitely many moves.

486

Proof. The value of Min(A) can possibly be lowered only by a move of a node
in BA with a forcing node in {V - A} (see Lemma 21). We now consider two
c a s e s :

(1) When a node in BA makes a move with a forcing node in {V - A} such
that Min(A) is lowered, the node (in BA) making the move becomes the minimal
node of A;

(2) otherwise, by assumption each node in A makes infinitely many moves.
Let t2 be the time when each node has made at least one move. If BA does not
still contain any minimal node, then Min2(A) > Mini(A) by Lemma 21. Since
the number of all possible local states is finite, repeating the argument the proof
follows.

T h e o r e m 29. Starting from any illegitimate state, the system reaches the legit-
imate state in a finite number of moves, irrespective of the order in which the
nodes make their moves and the number of nodes that move at any instant.

Proof. Suppose otherwise. Since each node in A is to make infinitely many moves
(the number of all possible local states is finite), and a node making a move
becomes un privileged (until one of its neighbors makes a move; see Remark 10),
in light of Lemmas 27 and 28, we must have a infinite sequence Mini(A) >
Min2(A) > . . . >, which is a contradiction.

C o r o l l a r y 30. In the sequence of state transitions from the initial global ille-
gitimate state to the final global legitimate state, no illegitimate system state is
repeated.

Proof. The proof follows from the previous lemma. If it were possible to reach
the same global illegitimate state in a finite number of moves, then it is possible
that the same sequence of moves repeat indefinitely and the system never reaches
a legitimate state in a finite number of moves.

2.2 T h e M S T a l g o r i t h m

We can now generalize the algorithm in the previous section to compute the
minimum a-cost paths to all nodes and thereby compute the MST of the graph.
Instead of the simple local variable D(i), each node i now maintains a local array
Di[1..n] and instead of the simple local variable L(i), each node i now maintains
a local array Li[1..n]. The value of Di[j], for all i , j e V, at any system state
gives the cost of the minimum a-cost path from node i to j in that system state.
Similarly, the value of Li[j] is the value of the level of node i with respect to
the implicit tree rooted at node j . The contents of the arrays Di[] and Li[]
denote the local state of the node i and the union of all local states defines the
global system state, kV~j denotes the cost of the minimum a-cost path from node
i to node j for all i and j . Note that ~Pii ---- 0 for all i. Each node behaves as
a special (reference) node when it a t tempts to compute the a-cost to itself; it
unconditionally sets that value to 0. The data structure ~i at each node i keeps
track of the MST edges incident on node i

487

We now present the self-stabilizing algorithm to compute the MST. Every
node in the system has the same uniform rule. The rule at node i is as follows:

(m

V j = l , . - . , n do
i f ((j = i) A (D i (j) 7 £ O) v (Li (j) 7 ~ 0)) t h e n L i (j) = 0 & Di(j) = O;
else i f ((j ¢ i) A (He(i) = O) h (Di(j) ¢ M A X V Li (j) 7 ~ C)

t h e n D i (j) = M A X & Li(j) = C
else i f ((j 7~ i) A ((Li (j) 7 £ Lmi,~(j) + 1) V (Di(j) ¢ 5mln(j)))

t h e n ni (j) = Lmin(j) + 1 & Di(j) = 6rain(J) &
~2i = {klk • N (i) A Wik = Di(k)};

3 Conc lus ion

We have proposed a self stabilizing algorithm for MST computation in a arbi trary
undirected graph; each edge of the graph is assigned an unique non zero weight.
When the algorithm terminates (in finite time), each node knows which of its
incident edges belong to the MST of the graph.

References

[ADG92]

[Agg94]

[as951

[BGW89]

[CYH91 l

[Dij74]

[FD921

[HC921

[HS841

[Lam84]

[MP88]

[Sch931

[ss921

A. Arora, S. Dolev, and M. Gouda. Maintaining~digital clocks in step. Parallel
Processing Letters, 1(1):11-18, 1992.
S. Aggrawal. Time optimal self-stabilizing spanning~tree algorithms. Techni-
cal Report MIT/LCS/TR-632, Massachusetts Institute of Technology, May
1994.
G. Antonoiu and P. K. Srimani. A self-stabilizing distributed algorithm
to construct an arbitrary spanning tree of a connected graph. Computers
Mathematics and Applications, 30(9):1-7, September 1995.
G. M. Brown, M. G. Gouda, and C. L. Wu. Token systems that self-stabilize.

IEEE Trans. Comput., 38(6):845-852, June 1989.
N. S. Chen, H. P. Yu, and S. T. Huang. A.self-stabilizing algorithm for
constructing spanning trees. Inf. Processing Letters, 39(3):14-151, 1991.
E. W. Dijkstra. Self-stabilizing systems in spite of distributed control. Com-
munications of the ACM, 17(11):643-644, November 1974.
M. Flatebo and A. K. Datta. Two-State self-Stabilizing algorithms. In Pro-
ceedings of the IPPS-92, California, June 1992.
S.T. Huang and N.-S. Chen. A self-stabilizing algorithm for constructing
breadth first trees. Inf. Processing Letters, 41:109-117, January 1992.
E. Horowitz and S. Sahni. Fundamentals of Computer Algorithms. Computer
Science Press, 1984.
L. Lamport. Solved problems, unsolved problems, and non-problems in con-
currency. In Proceedings of the 3rd Annual ACM Symposium on Principles
of Distributed Computing, pages 1-11, 1984.
B. M. Maggs and S. A. Plotkin. Minimum-cost spanning tree as a path
finding problem. Information Processing Letters, 26:291-293, January 1988.
M. Schneider. Self-stabilization. ACM Computing Surveys, 25(1):45-67,
March 1993.
S. Sur and P. K. Srimani. A self-stabilizing distributed algorithm to con-
struct BFS spanning tress of a symmetric graph. Parallel Processing Letters,
2(2,3):171-180, September 1992.

