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Abstract. We address the concurrent rebalancing of almost balanced 
binary search trees (AVL trees). Such a rebalancing may for instance be 
necessary after successive insertions and deletions of keys. We show that 
this problem can be studied through the self-reorganization of distributed 
systems of nodes controlled by local evolution rules in the line of the 
approach of Dijkstra and Scholten. This yields a much simpler algorithm 
that the ones previously known. As a by-product, this solves in a very 
general setting an old question raised by H.T. Kung and P.L. Lehman: 
where should rotations take place to rebalance arbitrary search trees? 
Keywords: Concurrent a]goidthms, Search trees, AVL Crees, Concurrent 
insertions and deletions, Concurrent generalized rotations, Safety and 
l/veness proofs. 
Note: The full version of this paper can be found in [BGMS97]. 

1 Introduction 
Search trees are the key in implementing large data structures where keys are 
searched, inserted and deleted. The scheme introduced by Adel'somVelskr/and 
Landis [AL62,Knu73], nowadays known as the AVL scheme, consists in keeping 
all internal nodes balanced, that  is, the height of their subtrees differing at most 
by one. Sequential algorithms to insert one key at a time are well-known: once 
the key is inserted, the nodes along the access path are recursively updated by 
rotating their subtrees. But inserting and/or  deleting many keys concurrently is 
much more difficult: the transient shapes of the tree may become very unbalanced 
in general, and no instantaneous update of the local registers maintained at each 
node can be assumed. 

Many solutions have been proposed to this problem. Earlier coarse.grain 
solutions, e.g., by Ellis JEllS0], lock the access path to the inserted key to guar- 
antee that two concurrent upwards update waves do not interfere. The degree 
of concurrency is obviously quite low. Later medium-grain solutions, e.g., by 
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Kessels [Kes83], split the upwards rebalancing wave into local atomic steps. 
Each insertion launches a new wave, so that several concurrent waves can be 
interleaved. The local rebalancing steps are described through a set of guarded 
rules. This idea has been later reworked and improved by by Nurmi, Soisalon- 
Soininen and Wood [NSSW87,NSSW92,NSS96]. Larsen [Lar94] shows that the 
reorganization process converges in O(k. log(n+2.k)) steps in a tree with n nodes 
updated with k insertions. 

The contribution of this paper is to go one step further in this direction 
by completely uncoupling the insertions (and/or deletions) and the rebalancing 
waves. The key idea for this fine-grained approach is taken from the work of Di- 
jkstra, Lamport et al. [DLM+78] on concurrent "on the fly" garbage-collection. 
We see insertions/deletions as unpredictable perturbations on the tree data- 
structure, whilst rebalancing is independently performed by a number of mutator 
daemons based on local shape information only. The daemons flow information 
upwards through the tree (Propagation) or rotate the subtrees of a (apparently) 
unbalanced node (Rotation). 

Our approach leads to fewer and simpler rules than previous ones, and it 
clarifies the essential nature of AVL rebalancing. As the shape of the tree may 
now be arbitrary, this amounts to solve an old question raised by H.T. Kung 
and P.L. Lehman [KL80]: where should rotations take place for to rebalance 
arbitrary trees? The answer is: anywhere. 

The price to pay for this "fine-grained approach" is that O(n 2) steps are 
needed to rebalance an arbitrary binary tree in the worst case, instead of Larsen's 
O(n. log(n)) for an empty tree filled by n successive insertions. Note however that 
a single atomic step of Larsen corresponds to several steps here which makes the 
comparison slightly more balanced. Also, we provide the user with a better degree 
of concurrency. Finally, there is good experimental evidence that the convergence 
is obtained in O(n) steps in the average. 

2 A C o n c u r r e n t  A V L  R e b a l a n c i n g  S c h e m e  

The challenge is to design a set of local guarded rules such that, if no externM 
perturbation occurs, than any sequence of local rule applications eventually leads 
to a globally balanced tree. 

2.1 General Descript ion 

Let u be a node of the search tree. We denote respectively by u-~p, u-+is, u--~rs 
the parent, the left son and the right son of u in the tree. The empty tree is 
denoted 'nil' and the root of the tree 'root'. The real height realh(u) is defined as 
usual: 

realh(nil) "- 0 
realh(u :~ nil) = 1 + max(realh(u-~,ls), realh(u-..+rs)) 

As concurrent modifications in the tree prevent from maintaining realh on each 
node, each node u ¢ nil encodes its local knowledge of the state of the structure 
in two private registers in addition to the key register: 
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- le f th(u) and rlghth(u) are respectively the apparent heights of the left and 

right sons of u, at the best of  the knowledge of u. 

Definition 1 We call height.relaxed search tree (HRS-tree) a search tree whose 
nodes are equipped with the two private registers lefth and righth satisfying the 
following consistency condition: lefth(u) = 0 (resp. righth(u) = 0) for any node 
u with an empty left (reap. right) son. 

The following auxiliary functions on the nodes of HRS-trees will be useful. 

- Iocalh(u) is the apparent local height of u, as computed from the two previous 
registers: Iocalh(u)  = 1 -t- max(lefth(u),  r ighth(u) )  

- car(u), the carry of u, is the gap of knowledge between u and its parent: 
f lefth(u--+p) - Iocalh(u) if  u is the left son of its parent car(u) righth(u-+p) - locaih(u) otherwise 

The car function measures the inconsistency of local information on the 
structure of the tree. A node u is said reliable if car(u) = 0. 

- bat(u) of u is the apparent balance of u, defined as follow: 
bal (u)  = le f th (u)  - r ighth(u)  

A node u is said apparently balanced if Ibal(u)l ~< 1 
The following fact holds: I f  each node of  an HRS-tree T is reliable and ap- 

parently balanced, then T is an AVL. 

2.2 D e s c r i p t i o n  o f  t h e  D a e m o n s  
Propagation Rule. It propagates informat ion upwards from a son to its parent. 
As a convention the final state of a node u after application of a rule is denoted 
U / . 

lefth(t,) :~ I o ~  llfth(v') = Ioclli(u' ~ 

Fig. 1. Propagation rules: Rule (LP) left propagation if car(u) ~ 0 

Rule (LP) - Left Propagation (Figure 1) 
Guard: Node u is the left son of  node v and u is not reliable: car(u) ¢ 0 
Action: the apparent left height of  v is updated:  iefth(v') = Iocalh(u) 
Spatial scope: u and its parent v = u-+p. 

The right propagation rule (RP) where u is the right son of v, can be deduced 
symmetrically from (LP). It is easy to see tha t  applying these rules repeatedly 
will eventually set the apparent local height of each node to its real height. 
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Rotation Rules. These rules are inspired f rom the original AVL rules [AL62] but 
extended to the case where the balances of the nodes may exceed 2. These relaxed 
preconditions allow to rebalance any tree with any initial local knowledge. The 
rotation rules tend to reduce the apparent  balance, but  of course, can worsen not 
only the consistency of the local heights bu t  also the real balance if the apparent 
balance was wrong. 
Rule (RR~ - Right Rotation, Unbalanced case (Figure 2.2) 
Guard: Node u is the left son of  node v, u is reliable, bal(u) ~> 0 and bal(v)/> 2 
Action: u and v execute a right ro ta t ion  [FIG. 2.2] with the obvious updating: 

lefth(u') = lefth(u) righth(u') = Iocalh(v') 
lefth(v') - righth(u) righth(v') = righth(v) 

Spatial scope: u and its parent  v = u--+p. 
The rule (LR*), where u is the left son of v, and u and v execute a left rotat ion 

when bal(u) < 0 and bal(u) ~< - 2 ,  is obta ined symmetrically from (RR*). 
Rule (RR=) - Right Rotation, Balanced case (Figure 2.2) 
Guard: Node u is the left son of node v, u is reliable, bal(u) = 0 et bal(v) >/2 
Action: u and v execute a right ro ta t ion  [Fm.  2.2] with the obvious updating: 

lefth(u') - h f t h ( u )  righth(u') - Ioca lh (v ' )  
lefth(v') = righth(u) righth(v') = righth(v) 

Spatial scope: u and its parent  v - u-~p. 
The rule (LR=), where u is the left son of v and, u and v execute a left 

rotation when bal(u) = 0 and bal(v) ~< - 2 ,  is obtained as before symmetrically 
from (RR=). 
Rule (LRR) - Left-Right double Rotation (Figure 2.2) 
Guard: Node w is the right son of  the left son u of node v, w and u are reliable, 
bal(u) < 0 et bal(v)/> 2 
Action: u, v and w execute a left-right double rotat ion [FIG. 2.2] with the obvious 
updating: 

lefth(u') = lefth(u) righth(u') = lefth(w) 
lefth(v') -- r ighth(w) r ighth(v')  - righth(v) 
Jefth( ') = IocaJh(u') righth( ') = Iocalh(, ')  

Spatial scope: u, its parent v = u-~p and its right son w = u~rs. 
The symmetrical rule (RLR) where w is the left son of the right son u of v 

and u, v and w execute a right-left double rotation, applies when u and w are 
reliable, bal(u) > 0 and bal(v) ~ - 2 .  

2.3 I n v a r i a n t  P r o p e r t i e s  

The following lemma ensures the safety of the algorithm: "nothing bad can 
happen: if the algorithm blocks, then we hold the right result". 

Lemma 1 (Safety ~operty) Le~ T be an HRS-tree. l fT '  is obtained by applying 
on T any one of  the rules described above, then T' is an HRS-tree holding the 
same keys than T. Moreover i f  no rule applies on T, T is an AVL. 
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Iociih(,,i') = I ocalh(v) - 1 

I,,ltl,(,.,)~ 
ALh,h.,~..~th@) 

1> 2 . m u m m  . _ ~ _ . ~ . . ~ l ( , , )  _ 2 

(a) Rule (RR')  right ro ta t ioa  if car(u) = O, hal(u) > 0 and bal(v)/> 2. 

Iocalh(u') = Iocalh(v) 

I.tth(,,) 
Right Rotation 

bai(u') = -1  

Co) Rule (RR=) right rotation if car(u) = O, bal(u) = 0 and bal(u) t_. 2. 

Iocalh(~) = 2 + righth(u) 

Double P-,,oCation ' ~  '~''t'~j r~[h~w]~"~ ~'r'nt~J 
, ~ u ~ ( ~  ~ Left-Right , .~. .  

" -  N Z" 
bml( . . . . . . . . . . . . . . . . .  

(c) Rule (LRR) left-right double-rotat ion if car(u) ---- car(w) --- 0, bal(u) < 0 
and hal(v) >/2, 

F ig .  2. The  rota t ion rtlles 
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A closer look at the rules reveals the following stable property which is ac- 
tually the key to the proof of convergence below. 

Lemma 2 Let T be an l-[RS-treei:so thatVu E T.car(u) >i 0. llfT ~ is obta/ned by 
applying on T any one of  the rules describ~ above, then.V,u', E~T' car(u t) ) 0. 

3 Convergence 

3.1 P r o o f  o f  l iveness  

As long as perturbations occur in the tree (insertion or deletionof keys), the dae- 
mons just compete with the mutators. The ~res~Li~g behavior:essentially depends 
on their relative speeds. For the convergence,.maalFsis, wd~aence assume that no 
insertion or deletion occurs any longer ~and prova then that~at most ~ (n2), where 
n is the number of nodes of the tree, ,~les~m~yi'be applied. By Lemma 1, the 
resulting tree is an AVL: the algorithrrL~ebalances thus any arbitrary tree using 
at most ~(n 2) rules. 

The convergence proof is based on ~.a ~nmber of global quantities express- 
ing the progress towards a final state. The complete description can be found 
in [BGM95,BGMS97] and we only sketch here an intuitive description. 

The first observation is that  on each rule application, negative carries van- 
ish or flow upwards the root. The tree progressively converges towards a state 
described by Lemma 2. Let us define NEG = ~ ( ~ ) < o O u t ( u ) .  lear(u)[, where 
Out(u) denotes the numSer of nodes of the tree Which are not in the subtree 
rooted in u, as introduced by Kesseis [Kes83]. It car~:be shown that NEG cannot 
increase. 

When it does not decrease, there is a subtle interaction between car and bah 
rebalancing a node may increase its carry as its apparent local height may de- 
crease; conversely, propagating a carry may increase the ~imbalance of its father. 
Let us define PO$ = Ec,,(~)>0 car(u) and BAL = ~-~-u Ib, l(u)l. It can be shown 
that the trade-off (2POS + BAL) cannot increase. 

In the only case where NEG and (2POS+BAL) does not decrease (Rule LR--), 
the quantity RBAL = ~"~dt~l(u)])2 ]bal(u)[-  1 necessarily decreases. 

Property 1 (Liveness property) (NEG, 2POS + BAL, RBAL) is a valid variant: 
it strictly decreases for the lexicographic order on any rule application and it 
is greater than (0, O, 0). Therefore, no infinite sequence o£ rule applications is 
possible. 

This proposition implies moreover that the algorithm converges on any tree 
after at most 3n 7 rule applications. 

A tedious exhaustive case analysis (summed up by a table in the complete 
paper [BGMS97]) reveals a more subtle interaction between those four quantities 
and leads to a simpler variant: 

Theorem 1 6(NEG + POS) + 2BAL + RBAL is a valid variant for ~he algorithm. 
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Therefore if cm~= and bin,= respectively denote the maximum absolute values 
of cat and bal initially, our scheme applies at most 6cm~n(n + 1)+ 3bm~=n rules 
to rebalance any arbitrary HRS-tree with any initial state. 

Two examples of worst cases applying O(n 2) rules: are shown Figure 3. An 

~ _  1) n -- 1 prop.  

 i prop 
~ 4 3 )  1 prop .  

.....-":.//7 

(a) Initially each node has its lo- 
cal height set to 1: c,,,,,= = 1 and 
b,,~o= -- 0 

", " "  ~¢~ rt -- 3 propagations 

=,t,o° 

~ - 1)th rot.tlon 
2nd rotat ion 

l s t  ~ t a t l o n  

(b) Initially the local heights 
are the real heights: cm,= = 0 
and b~°= = n - 1 

Fig. 3. Two examples of O(n 2) rules executions highlighting the importance of the two 
terms 6¢m~zn(n + 1) and 3bma=n. 

amazing fact is that we could not find any execution scheme involving more 
than O(n) rotations. It is tempting to relate this to the '.two parts of the variant: 
6c~zn (n  + 1) = O(n 2) may be related to the number of propagations, and 
3bma=n = O(n) to the number of rotations. We therefore conjecture that at most 
O(n) rotations may be applied. It is likely that  such a bound would certainly 
shed a new light on the intimate structure of A VL trees. 

3.2 E x p e r i m e n t a l  studies  

We have essentially proceeded to two kinds of experimental behavior studies: 
practical worst case and average convergence time studies. 
Experimental Worst Convergence Time Analysis. First, we concentrate on small 
trees and record for each tree the worst convergence time measured on a large 
number of simulations. The results are displayed on [FIG. 3.2]. The diagrams are 
based on the following tree enumeration: we dnumerate the binary trees of fixed 
size n simply by enumerating recursively all "the possible right subtrees for all 
the possible left subtrees and we index each tree by its rank in this enumeration. 
The advantage of this method is that  it respects the recursive structure of binary 
trees; in particular trees which have close indexes have close shapes. 

It appears that these diagrams Figure 3.2 have fractal structures: this means 
that our rebalancing algorithm is somehow continuous with respect to the shape 
of the tree. 
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I , { 1 ~  ~ u l l t l o 4 ~  o n  l ~ h  t l l m  ~ 10  n o d ~  

.......... i .......... i ......... 

- - - ~ k ~  - - 

(a) Worst convergence times ob- 
served.The '*' point out the linear 
trees. The dashed rectangles highlight 
the worst convergence time localiza- 
tions. 

I ...... ÷ ....... L,.....£ ...... 

. . . . .  ~.. ..:.......-: ...... 

r ~ t k m  ~ lira ~ m  ~ ~ mml~m INms 

| ~ - : : : : : : : ~ : : : : : : : ~ ~  

(b) Average convergence time observed. 
The dashed lines represent the dispersion 
intervals. 

Fig.  4. Experimental Analysis 

The worst worst cases are always obtained on linear trees and more precisely, 
on the second pair of the regular zigzag tree, i.e. the linear trees where each son 
of a right son (resp. left son) is a left son (resp. right son) (cf. [BGMS97]). 

Experimental Average Convergence Time Analysis. A more precise analysis of 
the convergence t ime distribution confirms the above assumption. The result of 
the simulations is shown [FIG. 3.2]. 

The behavior of our algori thm appears to be very smooth: the convergence 
time seems to follow a "Gauasian-like" distribution as well as the number of 
rotation rule applications. The average convergence time appears to be a .n  with 
a -~ 3.5 with a standard deviation of flx/'n with/~ -~ 4.1. 

Unfortunately we do not have any theoretical estimation concerning the con- 
vergence time distribution. 

4 C o n c l u s i o n  

This paper presents a fine-grained, distributed approach to the problem of man- 
aging concurrent request in AVL search trees. Our contribution is to show that 
completely uncoupling the insertion/deletion of keys from the rebalancing pro- 
cess yields fewer, simpler and clearer local rules. In fact, our scheme allows to 
rebalance any trec with n nodes in O(n ~) local steps with a very high degree of 
parallelism: each steps only locks at most 3 nodes. However, extensive simulation 
results indicate that quadratic behaviors are extremely unlikely. 
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In fact, this fine-grained scheme yields a useful basis to design more com- 
plex algorithms by restricting the scheduling of the rules to "efficient" ones. It 
turns out that many existing algorithms previously proposed in the literature 
can be seen as such specializations (up to a suitable renaming of the registers). 
The extended version of this paper shows that this is the case for the algo- 
rithms of Ellis [Ell80], Keasels [Kes83], Nurmi and al. [NSSW87,NSSW92], and 
Larsen [Lar94]. The initial sequential AVL algorithm even appears as a limit 
case. As our scheme has been proved correct (safety and liveness), any non- 
deadlocking specialization of it yields a correct algorithm, too. 
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