
Workshop 04 08+13 

Parallel and Distr ibuted 
Algorithms 



Workshop 04%08-t-13: 
Parallel and Distributed Algorithms 

Keith Marzullo and Cynthia Phillips 

The 16 papers in this workshop represent papers submitted in three areas: 
theory and models of parallel computation, parallel discrete algorithms, and 
distributed systems and algorithms. These papers share the common theme of 
searching for algorithms which run efficiently on real machines, and building 
theoretical foundations for analysis and comparison of these algorithms. Within 
this common theme, however, the papers represent the diversity of the field: new 
models of parallel and distributed computation; better algorithms and analyses 
within known models where "better" is frequently a simpler algorithm or one 
which makes fewer assumptions about the underlying system; first-time NC par- 
allelizations; and experimental analyses. 

There is still no agreement on a model of parallel (tightly coupled) compu- 
tation. This decade has seen the introduction of many variants of the historical 
PRAM models, as well as the currently popular BSP and LogP models and vari- 
ants thereof. The search continues for a model that is just complicated enough 
to give proper guidance on algoritlmfic choice on a wide variety of parallel ma- 
chines. Two papers in this workshop make strong contributions to this search: 
the paper by Wachsmann and Wanka, which shows the promise of analysis using 
multilinear functions, and the paper by Sanders, Vollmar, and Worsch, which 
argues that the (in)ability of higher-dimensional architectures to dissipate power 
can fundamentally limit their computational power. 

Given the difficulty of choosing a model of parallel computation, increasing 
emphasis has been placed on implementation both to determine the performance 
of a particular algorithm on a particular machine and to test the efficacy of 
particular parallel models. The algorithms community is willing to consider an 
algorithm with poorer worst-case analysis compared to previous algorithms if 
it is simpler and has experimental analysis to back up its practicality. There is 
a trend in all of computer science to be more clever, careful, and rigorous in 
performing experimental analyses, as indicated by the foundation of the online 
ACM Journal of Experimental Algorithmics. In this workshop, the paper by 
Boug@, Gabarr6~ Messeguer, and Schabanel also demonstrates a new trend to use 
experimentation as an algorithmic design tool. Their analysis reveals interesting 
structure of the behavior of their AVL-tree rebalancing algorithm. 

The popularity of the BSP and I~gP models has led to a rush to adapt, 
develop, and analyze algorithms for these models. However, this workshop rep- 
resents algorithmic advances in fundamental problems for many different models. 
There are new sorting algorithms for the CROW PRAM, the mesh, and as ana- 
lyzed by multilinear functions, and priority queue algorithms for both BSP and 
the CREW PRAM. One unique contribution in the sorting paper by Sibeyn is 
inclusion of second-order terms in the analysis. 



378 

The simpler PRAM is still the model of choice when developing first-time 
highly parallel algorithms. Though in practice one rarely has a number of pro- 
cessors even linear in the size of the problem, inclusion in NC is still a good 
first indication of the parallelizability of a problem. This workshop has two first- 
time NC algorithms: Liang's paper on 2-connectivity augmentation in a graph, 
and Serna and Xhafa's paper on approximate scheduling of unrelated parallel 
machines. The latter paper shows that it is possible to parallelize a technique re- 
cently used in many sequential combinatorial approximation algorithms, namely 
using a linear-programming relaxation as a starting point and as a lower bound 
for analysis. 

Research in distributed computing has focused on the development of robust 
algorithms for computing environments where machines or communications can 
be faulty. The goal is to develop provably correct and robust algorithms (given 
a failure model) that are simple, that use the weakest possible atomic oper- 
ations, aad that make reasonably weak assumptions about system properties. 
Papers in this workshop represent a new modeling formalization, improved al- 
gorithms for combinatorial problems and tools that serve as building blocks for 
other algorithms, and continued investigations into primitives needed to perform 
higher-level service. 

Self-stabilizing algorithms are extremely robust because no matter what 
state they start in, they will eventually converge to a legal state. The first self- 
stabilizing protocol, by Edsgar Dijkstra, was for token passing, and in this work- 
shop a paper by Petit and Villain gives a new protocol for self-stabilizing token 
passing that improves the state of the art. A second paper, by Antonoiu and 
Srimani, gives a self-stabilizing protocol for computing a minimimum spanning 
tree. 

Two papers address the issues of what primitives are needed to perform de- 
sired higher-level service. Agrawal, Alonso, E1 Abbadi, and Stanoi discuss the 
limits of building transaction-level primitives for replicated databases using reli- 
able broadcast primitives. This is an appealing problem, since reliable broadcast 
protocols seem very suitable for the problem, but as the authors discuss, their ap- 
plication for real systems is not straightforward. Skubiszewski' and Porteix show 
how to build distributed garbage collectors using properly-timed snapshots of 
object-oriented databases using cuts that are weaker than consistent cuts. 

There is one paper on a distributed system: Kalantery's paper on a signifi- 
cantly more efficient version of the parallel discrete event simulator Time Warp. 
The Time Warp simulation technique uses a liberal amount of optimistic exe- 
cution to shorten the running time of a simulation. Kalantery's paper describes 
how they improved the Time Warp technique via a number of optimizations, 
some of which apply to traditional systems and some of which depend on virtual 
channels which preserve message order. 




