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Abs t r ac t .  This paper deals with communication optimization which is 
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an efficient space-time transformation. It reduces first the distant com- 
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1 I n t r o d u c t i o n  

Among the many  works dealing with automat ic  parallelization techniques, one of 
the impor tant  issues is concerned with communication minimization. Our paper  
focuses on this question. It  discusses strategies of communication optimization 
for systems of parameterized affine recurrence equations (PARE's) [10] which 
formalize single assignment affine loop nests. The parallelization of a PARE 
is classically based on an affine space-time transformation [5]. It assigns each 
computat ion to a virtual processor defined by an allocation function and to an 
execution t ime defined by a schedule function. The communications between 
virtual processors result from the projection of the dependences of the PARE. 

We distinguish between two types of communications: local communications 
and distant communications. While local communications can be efficiently im- 
plemented on most  target architectures since they are regular, distant commu- 
nications are inefficient and should be avoided. Therefore our strategy of com- 
munication optimization mainly focuses on dependences which generate distant 
communications in order to localize them as much as possible. The localization 
requires certain conditions to be satisfied by the allocation function and in some 
cases by the schedule function. 

This technique relies on the dependence information given by parameterized 
utilization sets and utilization vectors [9, 6]. This dependence modeling allows 
the classification of the dependences according to the potential number of distant 
communications they may induce. 

This paper is organized as follows. Section 2 recalls the basis notions of PARE 
parallelization. Communication minimization is discussed in section 3, where two 
conditions to eliminate distant communications are presented. A heuristic to 
optimize communications using these two techniques is described in section 4 and 
illustrated with an example in section 5. In section 6 we compare our approach 
with related works and propose different ways to improve the heuristic. 
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2 P a r a l l e l i z a t i o n  o f  S y s t e m s  o f  P a r a m e t e r i z e d  A f f i n e  
Recurrence Equations 
A parameterized a]fine recurrence equation (PARE) is defined by: 

X[z] = f(. . . ,Y[g(z,p)],  ...) z E 73(p) (E) 

where X and Y are variable names, p is a vector of 77q defining the problem 
parameters,  and D(p) C g "  is a parameterized convex bounded polyhedron 
called the iteration space. It is defined by a set of k linear constraints of the form 
73(p) = {z E 77 '~ I C z + C ' p + c  >_ 0}, where C is a k x n matrix,  C '  a k x q matr ix ,  
and c a k-vector. The index function g(z,p) is defined by g(z,p) = Rz + Qp+ r, 
where R and Q are integer matrices, and r is an integer vector. 

As detailed in [9], the dependence information extracted from such a PARE 
is characterized by its utilization and emission sets. The utilization set corre- 
sponding to occurrence Y[z0] in equation (E) is: 

UtiIE,Y(zo,p) = {z E V(P) ] g(z,p) = z0}. 

The utilization set is a convex polyhedron parameterized by z0 and p. Its vertices 
are denoted by vi. They can be determined as functions of z0 and p using the 
algorithm developed by Loechner and Wilde in [6]: vl = Aizo + Bip + ci. This 
algorithm deals with rational polyhedra, and therefore finds rational vertices of 
such polyhedra 1. Used in the context of utilization set derivation, it computes 
the rational vertices of the rational convex hull of UtilE,y. Notice however, that  
in most  practical problems, utilization sets are characterized by integer vertices. 
In the following, we develop methods to minimize communications relatively to 
the vertices of utilization sets. They only apply to integer vertices. 

The lineality space of any utilization set associated with index function 
g(z,p) = Rz  + Qp + r is Ker(R).  Such a set is therefore characterized by 
a basis of vectors called the utilization vectors and denoted by uE,Y,j with 
1 < j ~ dimut i lE ,  Y and dimutil~.~. = d i m ( D ( p ) ) -  Rank(R).  They can be 
computed using the Hermite normal form decomposition of matr ix  R. They ver- 
ify RuE,y,j = 0. In the particular ease of a full rank matrix,  Ker(R)  = 0 and the 
utilization set is reduced to one single point. We call this a degenerate utilization 
set. 

The dependence from Y to X in equation (E) is expressed by a set of de- 
pendence vectors of the form d = z - z0, where z C UtilE,Y(zo,p). Since the 
utilization set is a convex polyhedron, this dependence is characterized by a set 
of extremal dependence vectors. For any integer vertex vi of UtilE,y(zo,p) the 
corresponding extremal vector is denoted by di -- vi - z0. 

For a given dependence, the set of all the points z0 which originate the 
dependence vectors is called the emission set: 

EmitE,y(p)  = {zo e 2~ ~ [3z E 7)(p) such that  z0 = g(z,p)} 
= { R z + Q p + r  ]z E D(p)} 

1 Notice that the number of vertices may depend on symbolic parameters p. This is 
taken into account in [6] by splitting the problem in subdomains relatively to p. 
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Its dimension is dimE,m~,r  = Rank(R) .  It is contained in an affine space of 
dimension Rank(R) ,  whose basis vectors are eE,Yj with 1 < j < dimE~its ,y .  

A parallel solution to a set of PARE is characterized by an affine space- 
time transformation [5]. It is expressed, for each variable X, by a full rank 

/ 

Ax 
\ 

n x n transformation matrix Tx = ( ~  where cr X is a da ×n integer matrix 
\ o- X / 

representing the allocation on a virtual processor space of dimension do, and 
Ax is a dx ×n integer matrix defining the multi-dimensional schedule: t x ( z )  = 
Axz  + a x .  The row vectors of c~x define the basis vectors of the virtual processor 
space. The allocation function is defined by allocx(z) = C~xz + 7x .  The row 
vectors of Ax are called the schedule vectors. The schedule must satisfy the 
causal constraints which are classically expressed for any dependence from Y to 
X by ty(zo)  -~ t x ( z ) ,  Vz E UtilE,y(zo,p) where -4 is the lexicographical lower 
than operator. 

3 Communicat ion Minimization 

Let us now focus on the core of this paper: communication minimization. We 
classically distinguish between two types of communications: local communica- 
tions between neighboring processors and distant communications. Local com- 
munications can be efficiently implemented on most target architectures whereas 
distant ones have to be avoided as much as possible. 

3.1 How to El iminate  Distant Communicat ions  

A communication results from the projection or allocation of a dependence vector 
on two different virtual processors. For a dependence from Y to X, the resulting 
communication vector is: allocx ( z ) -a l locy(zo) .  Using equality z0 : R z + Q p + r  
with z E UtilE,y (zo, p), we have: 

allocx (z) - allocy (z0) = allocx (z) - allocy (Rz + Qp + r) 
: (crx - cry. R)Z -- cry(Qp+ r) - 7Y + 7x  
= (crx - R ) z  + p(p) (1) 

where p(p) = -cry (Qp + r ) - T Y  + 7x  does not depend on z and can therefore be 
seen as a constant term. From this equation we can deduce a sufficient condition 
to eliminate distant communications [2, 4, 8]: 

T h e o r e m  I [S t rong  condi t ion] .  The dependence from Y to X does not induce 
any distant communication if  o'y • R = crx. 

When, this theorem is verified all the utilization points are allocated to the same 
virtual processor. Since the allocation matrices must be full row rank, this con- 
dition can only be satisfied if Rank(R)  > do. 

One of the results of this paper is to show that the condition given in The- 
orem 1 is often too strong. As proved in [8], this condition is necessary only in 
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the case of degenerate utilization sets. However it is sufficient but  not neces- 
sary in the case of non-degenerate utilization sets, i.e. one or mult i-dimensional  
sets. Our objective is to propose for such utilization sets a weaker condition to 
eliminate distant communications. 

In the case of a non-degenerate utilization set, the data  computed at a given 
emission point is used by a convex polyhedron: the utilization se~.~ An efficient 
way to t ransmit  this data  to the whole utilization set is to send iti along one of 
its extremal  dependence vectors, and then to send it from neighb0r-.to neighbor 
using the utilization vectors. Since the utilization vectors are cons£ant, these 
lat ter  communicat ions are local. Therefore the only distant communicat ions tha t  
may occur are the ones induced by the chosen extremal dependenc, ewector  di. 
Notice tha t  this propagation technique imposes new constraints on ~h~ schedule 
as discussed in section 3.3. 

3.2 A W e a k  C o n d i t i o n  t o  E l i m i n a t e  D i s t a n t  C o m m u n i c a t i o n s  

Let us focus on non-degenerate utilization sets and apply the propagat ion tech- 
nique. In this case, the only distant communication that  may occur fis~the one 
related to the chosen integer vertex vi. This communication is characterized by 
vector alloex (v~) - allOc~r(zo). The necessary condition which eliminates distant 
communicat ions according to this dependence must guarantee that  thb projec- 
tion of this vector on the processor space does not depend on z0: 

allocx (vi) - alloey (zo) = al locx (At zo + Bip + ci) - allocy (Zo) 
= (crx " Ai - -  o ' y ) z o  + c rX  • Bip + crxcl + "IX - 7Y 
= (~rx" Ai - cry)zo +p ' (p )  (2) 

where p'(p) = ~rx • Bip + ~rxci + 7x  - 7Y is a constant function according to z0. 

T h e o r e m  2 [ W e a k  c o n d i t i o n ] .  The dependence from Y to X does not induce 
any distant communication i f  and only if: (o'x . Ai  - Cry) eE,Y,j = 0 for  all j 6 
[1, dimEmitE.v],  where eE ,y j  are the basis vectors of  the affine space supporting 
E m i t  E,y (P). 

d Proof  Let zo,z l  C Emi t • , y (p ) .  W~ have zo = zl + ~ = 1  (a jxE ,Y , j )  where 
c~j E 2Z and d denotes dimEmit~,y .  From equation (2) we deduce that  there 
is no distant  communication if and only if ( a x  • Ai - cry)zo is constant,  Vz0 6 
E m i t E , y  (p). Therefore we have: (Crx • Ai - cry)(zo - Zl) = 0 

¢~ (crx . A~ - cry) ~.~=1 (c~j ~E,Y,j) ~- 0 VOtj 6 7] 
¢:~ (crx Ai O'y)~E,Y,j = 0 V1 <_ j < d [] 

3.3 C o n s t r a i n t s  o n  t h e  S c h e d u l e  

The whole process of space-time transformation requires the computat ion of 
both a schedule function and an allocation function. Since we deal with com- 
munication minimization, our first concern is the allocation as discussed above. 
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However, in order to obtain a valid space-time transformation the determina- 
tion of both schedule and allocation functions must be conducted simultaneously. 
When applying the strong condition (Theorem 1) each utilization set is projected 
onto a single virtual processor and therefore its points have to be scheduled at 
successive t ime steps. However this condition is already expressed by the fact 
that  t ransformation matrices are full rank and there are no new constraints on 
the schedule in this case. Conversely in the case of the propagation technique 
new constraints on the schedule have to be stated as discussed hereunder. They 
are added to the initial causal constraints. 

The propagation technique consists in sending the da ta  from the virtual 
processor associated with z0 to the processor associated with a chosen vertex vi 
and then to all the processors related to the other utilization points. Therefore 
the execution t ime step related to vertex vi must be less than or equal to any of 
the other utilization points. This results into the following theorem. 

T h e o r e m  3. The propagation related to vertex vi o f  U t il E,y ( zo, p) can be applied 
only i f  the schedule funct ion satisfies: Ak . ~ > O, Vk E [1, dx], where ~-f denote 
the set o f  generating vectors o f  the smallest cone whose origin is vi and which 
contains the utilization set. 

Notice that  vectors Wjj are the vectors supported by the edges of Uti lE,y  at 
vertex vi. They do not depend on parameters  z0 and p, as proved in [6]. 

Theorem 3 guarantees the existence of a valid schedule. It  does not necessarily 
avoid broadcast communications. As classically stated in the literature, there is 
a broadcast communication along ~ if and only if Ak - Wj = 0, gk E [1, d),]. 

3.4 S p e c i a l  cases  

Ful l  r a n k  i n d e x  m a t r i x .  When index matr ix  R is full rank the dependence is 
degenerate and there is only one utilization point z related to a given emission 
point zo = Ttz + Q p +  r. Therefore, point z is vertex Vl = AlZo + B I p +  cl. Since 
R is full rank we have z = R - t z o  - R -1 • Qp - R - l r  = Alzo + B l p +  cl. This 
implies At = R -1. In this case, Theorem 2 can be rewritten as: 

( f iX  " t :~-1 - -  f Y )  6E,Y, j  : 0 g j  E [1, dimEmitE,r]. 
If  dimErnitE,v = n, the basis vectors eE,y,j generate the whole n-dimensional 
space, and the above condition is equivalent to f x  - f v  • R = 0 and it proves 
that  in this particular case, the strong condition is necessary as proved in [8]. 

S e l f - d e p e n d e n c e .  In the case of an self-dependence from a given variable X to 
itself, the communicat ion vector is: 

al locx(z )  - a l locx(zo)  = ( f  x - f x " R ) z  + p(p). 
The strong condition to avoid distant communications is f x  • (R  - Id)  = O. 

This condition can only be verified if R a n k ( R  - Id) <_ n - do. 
Recall that  this condition allocates all the utilization points to the same 

virtual processor. The alternative to avoid distant communications is to use the 
propagation technique. It works in the same way as a cross-dependence from Y to 
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X and is based on the choice of an integer vertex v~. Conditions on the schedule 
are also given by Theorem 3. The weak condition on the allocation mat r ix  (given 
in Theorem 2) simplifies into: o'x • (Ai - [d) gE,Y,j - ~ -  O, Vj E [1, dimE~itz,y].  

Notice that  in the case of a uniform self-dependence, R = Id and there is no 
distant communication,  since Theorem 2 simplifies into C~x = crx. 

4 A H e u r i s t i c  f o r  C o m m u n i c a t i o n  O p t i m i z a t i o n  

A system of affine recurrence equations is of course characterized by several 
dependences which most of the t ime are incompatible in terms of communicat ion 
elimination. In many  practical cases, communication-free solutions result in only 
one virtual processor. Therefore, our objective is to propose a heuristic which: 

- first eliminates as many distant communications as possible, using either 
the strong or the weak condition. 

- then reduces as much as possible the remaining local communicat ions by 
zeroing the constant terms p(p) or p'(p). 

This is done by successively analyzing the dependences. They are ordered so 
as to deal first with the dependences which could result in the largest number  
of distant communications. Recall that  uniform self-dependences always result 
in local communications and are therefore taken into account after all the affine 
and cross dependences. 

As it has been proved in this paper, the number of distant communicat ions 
accountable to one dependence is in the worst case equal to Card( Emi t  E,y (p)). 
Therefore, the dependences are ordered according to dimEmitE,y. 

The algorithm we propose consists in building a tree of solutions. Each level 
of the tree corresponds to one dependence; each node on a level defines one 
set of constraints on the schedule and the allocation related to the dependence 
for a given strategy of communication minimization. The root of the tree de- 
fines the set of causal constraints on the schedule and the set of compatibility 
constraints between allocation and schedule, in order to ensure that  the trans- 
formation matrices are full rank. The constraints are propagated from ancestors 
to descendants. A given node contains all the constraints of its direct ancestor 
plus the ones corresponding to the strategy used at this node. The intersection 
of all the constraints is determined, and if it has no solution the node is removed. 
All the paths in the tree have the same length. The leaves represent the various 
parallel solutions to the PARE. 

In order to estimate the efficiency of the various solutions, the algorithm 
determines at each step the volume of distant and local communicat ions in terms 
of dimensions. A similar approach based on communication volume is used in 
[4]. The volume is recorded in two arrays where any entry d corresponds to the 
number  of d-dimensional communications (1 < d < n). The strategies applied 
at each node to build its direct descendants related to a given dependence are: 

la.  s t r o n g  c o n d i t i o n  a n d  p(p)=O (Theorem 1 and Eq. (1)). Creation of a node 
with Cry • R = CrX and p(p) = 0 as new constraints if they can be satisfied. 
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The resulting allocation function projects onto the same virtual processor 
all the utilization points and their corresponding emission points. There are 
therefore no new communications. Notice that  the initial constraints on the 
schedules (causal and compatibil i ty constraints) ensure that  they are valid 
relatively to these allocations. 

lb.  s t r o n g  c o n d i t i o n  (Theorem 1) alone. If  cry • R = ~rx can be satisfied, a 
new node is created, with one new set of local communications of dimension 
dimEmit due to p(p). 

2a. w e a k  c o n d i t i o n  successively applied to each integer vertex vi of the uti- 
lization set, and e l i m i n a t i o n  o f  t h e  loca l  c o m m u n i c a t i o n  d u e  to  pt(p) 
(Eq. (2)). The new constraints on the allocation are given by Theorem 2, 
and by condition pt(p) = 0. The new constraints on the schedule are given by 
Theorem 3. If  they can all be satisfied, a new node is created with all these 
new constraints and with a new set of local communication of dimension 
(dimEmit ÷ dimuta) due to the propagation along the utilization vectors. 

2b. w e a k  c o n d i t i o n  successively applied to each integer vertex vi. of the uti- 
lization set. The new constraints on the allocation are given by Theorem 2 
and the new constraints on the schedule by Theorem 3. If they can be sat- 
isfied, a new node is created with two new sets of local communication: the 
first one due to p~(p) of dimension dimEmit and the second one of dimension 
(dimEmit + dimvtil) resulting from the propagation along the utilization 
vectors. 

3. n o  c o n s t r a i n t s .  Creation of a new node without adding any new constraints, 
with a new set of distant communication of dimension, dimEmit, and a new 
set of local communication of dimension (dimE,~it + di.mutil). This node 
ensures that  at least one space-time t ransformat ion exists. 

5 An Example 

Let the following PARE depending on parameter  N be mapped onto a two 
dimensional array of virtual processors using a unique schedule function. 

X[i, j, k] = Y[j, i - 1, 0] + 2 D(a) = {i, j, k l 0 _< j, k _< N, 1 < i < N} (3) 
Y[ i , j , k ]=X[O,O,k - l ] / 5  D(4)={i , j ,  k l O < _ i , j < _ N , l < k < N  } (4) 

Since the resulting processor array is two dimensional, the schedule is one di- 
mensional. Let t x  = (xl,x2, xa) and cry = (Yl,Y2,Ya) where xi and Yi are 
2-dimensional column vectors. Let l x  = )~y = t = ( t l ,  12, 13) and ax  = ay. 
When restricting the solutions to constant (not depending on N)  schedule vec- 
tors, the causal constraints are: )~1 = .k2 > 0, ,ka > 0. 

Utilization set Util(a),y has dimension I and has therefore two vertices, while 
Util(4), X has dimension 2 and four vertices. These vertices depend on parame-  
ters z0 = (io,jo, ko) and N. In order to apply the propagation technique, new 
conditions on the schedule (related to each chosen vertex) must  be satisfied as 
stated by Theorem 3. These new conditions are not always compatible with the 
causal constraints. For utilization set Util(3)y, propagation is possible only for 
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vertex vl = (jo + 1, i0, 0) and the new constraint on the schedule is )`3 >_ 0. For 
utilization set Util(4),x, propagation is possible only for vertex v2 = (0, 0, k0-4-1) 
and the new constraints on the schedule are )`1, ),2 > 0. 

The following table describes the new set of constraints associated with the 
strong and weak conditions respectively given by Theorems 1 and 2. The con- 
straints to be verified for eliminating all communications due to p(p) and pl(p) 
result respectively from equation (1) and (2). The new constraints on the sched- 
ule imposed by the propagation technique are included in the causal constraints 
and are therefore not reported. 

dep. 

(3), Y 

(4), X 

method 

strong cond. 
(case 1.) 

weak cond. (vt) 
(case 2.) 

new constraints 
(case b.) 

Xl  = y2 

X2 = Yl 

X 3 = 0  

new constraints to 
eliminate the communications 
due to p(p) or p'(p) (case a.) 

"/Y ~ "/X -~- Y2 

X l  = y 2  
*[ Y ~- "~ X 3V X l 

X2 = e l  

strong cond. yl = 0 the strong condition 
13 y 2 = 0  ¢ ~ a y f u l l r o w  (case n o t  b e  satisfied C a n  

Y3 ~ x 3  

weak cond. (vl) 
('case z)%" x3 = y3 7x = 7Y + Y3 

C o m p u t a t i o n  o f  t h e  t r e e  o f  s o l u t i o n s .  Notice that  there is only one incom- 
patibili ty between the constraints in the table above: 7Y = 7x  +y2 corresponding 
to the strong condition in dependence [(3), Y] is incompatible with 7x = 7Y + Y3 
from the weak condition in dependence [(4), X]. Since x3 = Y3 and x3 = 0 we 
have Y3 = -Y2 = x3 = 0 and there is no full row rank matr ix  c~y satisfying the 
equalities y3 = y2 = 0. 

The tree of solntion is represented figure 1. The volume of communicat ion 
is computed at each node of the tree by two vectors representing respectively 
the dimensions (1, 2 or 3) of the sets of distant and local communicat ions as 
described section 4. The no constraint leaf is only informative. It  shows that  the 
worst case would result in one set of 1-dimensional distant communications,  one 
set of 2-dimensional distant communications and two sets of 3-dimensional local 
communications.  

The leftmost leaf in figure 1 is the best solution. It results in only two sets 
of local communications, one of dimension 3 and the other of dimension 1. Its 
constraints are: the causal constraints ),1 = ),2 > 0,),3 > 0 and the constraints 
on the allocation c x  = (xl, x2, 0), ~ry = (x2, xl, 0), 7x  = 7Y + Xl with xl and 
x2 two independent 2-dimensional vectors. A possible solution is: 

(10 0 0 0 ) ( ~ ) ( ~ 1 0 ) ( 0 0 )  a x  = 1 , 7 X  ---- , O 'y  = 0 0 , 7 Y  ~- , A = (1, i, 1) and a = 0. 

This example clearly shows that  the weak condition is useful. Hence the 
strong condition for the second dependence can not be satisfied in the case of a 
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Roo t  node  o o o 

First depelldence i n t ~  
f rom F to X .  

S t rong  constra. 

[ 

[°] , f} 0 

Second dependence . . .  ,,, t 

/ / ! " " ' M "  

] 0 1 o 2 yield fewer communica t ions  10 ' 

Fig. 1. The tree of solutions 

2-dimensional processor array. If the strong condition was the only method to 
remove distant communications, there would be no way to localize the second 
dependence. 

6 C o n c l u s i o n  

We have proposed a heuristic to optimize communications resulting in a set of 
constraints on the allocation and schedule functions. Besides the strong condi- 
tion which is classical in other approaches, we have introduced a weak condition. 
It  is a less restrictive condition using the intrinsic information of the utilization 
sets. It  offers more flexibility to the communication optimization problem and 
results in a wider set of solutions. As seen section 5 on the example it may  be 
successful when the strong condition fails. This condition is a generalization of 
the well-known nniformization problem [10]. The uniformization process con- 
sists in transforming at the equation level the affine dependences into uniform 
ones. The propagation technique can be seen as a less restrictive uniformiza- 
tion approach. It  works at the solution level and moreover it does not enforce 
a full uniformization: only the most communication-expensive dependences are 
partially uniformized. 

Other works focus on this question often referred as placement or alignment 
problem. Since this problem has been proved to be NP-complete [2] various 
heuristics have been proposed. Some works do not consider the owner compute 
rule and therefore allocate independently instructions and data.  In [3], Darte and 
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Robert  introduced the notion of communication graph and proposed a method 
to optimize communications in uniforms loop nests. This approach has been 
extended to affine loop nests by Dion and Robert in [2], using a more precise 
graph called the access graph. Both approaches use a condition similar to the 
strong condition presented in this paper. Other heuristics are given with respect 
to the owner compute rule. In [4] Feautrier proposes a greedy algorithm that  cuts 
the edges of the data  flow graph according to their volume of communication. 

As mentioned in this paper, allocation and schedule are strongly related since 
the transformation matrices must be full rank. This important  concept is not 
taken into account by these various approaches which deal exclusively with the 
allocation function. Conversely, our heuristic integrates both the derivation of 
the schedule and allocation functions. As it has been proved in section 3.3 this is 
particularly important  in order to apply the propagation technique where new 
conditions on the schedule have to be added to the causal constraints. 

The heuristic we propose can be refined in severalways. In the current version 
of the algorithm the volume of communication is estimated using the dimensions 
of the utilization and emission sets. It could be computed  exactly as function 
of the parameters using the Ehrhart  algorithm [1].: The current version only 
applies the propagation technique to integer vertices of the utilization sets. This 
should be extended to deal with rational vertices. The propagation technique 
only focus on the chosen integer vertex. In order to reduce the number of local 
communications related to the utilization points, we',could apply well known 
techniques to further reduce this number of local communications [7]. They define 
a set of constraints between the allocation matrices and~ theut i l iza t ion vectors. 
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