
Load Balancing Based on Process Migration for
MPI

Georg Stellner and JSrg Trinitis

Institut f/ir Informatik der Technischen Universit£t M/inchen
Lehrstuhl f/Jr Rechnertechnik und Rechnerorganisation

D-80290 M/inchen
{st ellner,trinitis}@informatik.tu-muenchen.de

http: / /wwwbode.informatik.tu-muenchen.de/~stellner
Tel.: +-t-49-89-28925348, Fax: +-4-49-89-28928232

Abs t r ac t . Process migration is one technique to implement environ-
ments that perform automatic load balancing. However on networks of
workstations the load indices and heuristics that are used must respect
the load that is imposed on the system by other users' processes. In this
paper we suggest an approach that uses an existing process migration
component to construct an automatic load balancing system for MPI ap-
plications. Both the load indices and the heuristics consider load that is
imposed on the system due to other users activity. For a computational
fluid dynamics application performance improvements between 10% and
54~0 could be achieved.

1 Consistent Checkpointing with CoCheck

The CoCheck environment allows both the creation of checkpoints and the mi-
gration of processes of parallel applications on networks of workstations. Initially
CoCheck extended PVM [3], so that PVM applications could be star ted under
the control of a resource management system [9]. In that case, CoCheck was
used to create checkpoints in order to provide global scheduling of parallel ap-
plications. Although process migrat ion was already supported, its performance
needed further improvement. Consequently, the focus of the research was set on
performance improvements of checkpointing and particularly process migration.
This could be achieved by transferring the checkpoints directly over T C P net-
work connections [8]. As the next step, CoCheck was implemented to support
the proposed MPI [5] message passing standard. Therefore, the protocol was
integrated with tuMPI 1 which is an implementat ion of the MPI s tandard defi-
nition [10]. As could be shown in [10] migration times of a process are depended
on the size of the migrated process. The t ime to migrate a single process is given
in 1.

X

t(x) = 1.77s + 763kBytes/s (1)

1 Technische Universit£t M/inchen Message Passing Interface

151

For that implementation of CoCheck a load balancer was added that performs
automatic load balancing by process migration. The load balancer comprises a
component to gather load information from all nodes. This information is used by
a decision component to determine nodes that are overloaded and underloaded
respectively. Among the processes on the overloaded nodes candidates have to
be selected which will be migrated to new nodes. Finally, a process is selected
and migrated.

The remainder of this paper is organized as follows. Firstly, an overview on
related work is presented. Then the automatic load balancing system for MPI is
explained. After that performance results of the load balancing system will be
discussed. Finally a conclusion and an outlook on future work is given.

2 R e l a t e d W o r k

Andres et al. [1] describe an environment that performs automatic load balanc-
ing on a network of workstations for PVM applications. In their approach the
migration component is completely integrated into the PVM system. On each
node a load monitor determines the current load. This information is broad-
casted to all PVM daemons. Each daemon sets up a matr ix with the current
load indices of all the nodes. Upon request this matr ix is made available to the
load balancer. Migrations are only performed if the load imbalance exceeds a
predefined constant which represents the cost of the migration. Processes which
dominate the current processor or which perform only small amounts of work are
not migrated. Also the number of migrations is restricted per process to avoid
thrashing. In [1] Andres et al. conclude that "Although we did not achieve the
dramatic performance improvements we had hoped for when we implemented
load migration under PVM, a great deal was learnt about what makes a good
or bad migration heuristic [...]."

Hector [6] provides dynamic task allocation to MPI applications. Its migra-
tion component has been inspired by former versions of CoCheck [8; 10]. Hector
adds an additional process (task allocator) to each node of the system. Each task
allocator is responsible to collect the load information on its node, launch pro-
cesses and monitor the execution of the processes. In addition there is a master
allocator that collects the load information of all slave allocators. Based on this
global load view of the application the master allocator decides about migrating
processes.

3 A u t o m a t i c L o a d B a l a n c i n g w i t h C o C h e c k f o r t u M P I

tuMPI is an implementation of the MPI standard. It is primary intended for
conducting research in the area of process migration and checkpointing [10]. The
automatic load balancer which has been implemented for tuMPI consists of three
components: a load measure component, a decision component and a migration
component. The latter is provided by CoCheck [8; 10]. The remaining two com-
ponents will be introduced now. Both have been added as an additional part

152

to the tuMPI daemon. This is a central component of every tuMPI application
which is responsible for the process management .

3.1 L o a d M e a s u r e m e n t

In accordance with the literature where simple load indices and strategies achieved
good results [2] the automat ic load balancer of tuMPI also uses a simple load
index. It is based on the average length of the ready queue on a node during
the last minute (a v e n r u n) . This value is available on every UNIX system and
can easily be determined. With the rup command the value of a v e n r u n can also
be determined on remote nodes, so that there is no need for additional monitor
processes on the nodes which execute processes of parallel applications.

At s tar tup t ime of an application the user can specify two additional param-
eters which configure the intervals at which the load should be determined. The
first parameter specifies the t ime between two successive measurements when no
migrat ion was necessary. The second parameter determines the t ime at which
the next measurement is performed when a process was migrated. This facility
has been introduced to allow more t ime after a migrat ion for the load values
to stabilize. This avoids too many migrations to a machine before the addi-
tional load of a process has shown its effects also in the a v e r u n value. Since the
complete parameters with which an application is s tar ted are given to the call
of l~PI__Init those two parameters are removed from the parameter list during
tha t function. Hence, the application does not need to be changed to handle the
additional parameters: MPI__In±l; provides the desired transparency.

3.2 Decision Component

Although the migrat ion of processes with CoCheck is only possible between mi-
gration compatible (homogeneous) machines 2 the decision component supports
heterogeneous networks of workstations. Therefore the network is divided in ho-
mogeneous sub-clusters and the decision component tries to evenly distribute
the load within each sub-cluster. As even within homogeneous sub-clusters the
potential computat ional power of the machines can vary due to different clock
frequencies, main memory capacity, etc. the above mentioned a v e n r u n value of
each machine is normalized with a machine specific architectural constant c~. In
the current implementat ion the user is responsible to assign this constant to each
machine in the mapping table that specifies the cluster and that is processed by
tuMPI during startup. Future versions will automatical ly assign this value to
each machine. The load index that is used in the decision component is provided
in (2).

2 Migration between binary compatible machines is not always possible due to different
run-time properties of processes. In the case of Sun machines the binaries can be run
on any machine, but it is not possible to migrate a process from a sun4m to a sun4c
implementation of the SPARC specification due to a different run-time stack. Hence
the requirement of binary compatible machines is not sufficient.

153

1-4- a v e n r u n i
loadi - - (2)

o~i

imbal = I m=ax(loadi) - m in (load i) l (3)

Increasing the a v e n r u n value by one in the denominator guarantees that
in case of unloaded machines (a v e n r u n = 0) machines with different speeds
can actually be distinguished. Hence, the decision component can choose the
potentially faster machine in case a destination machine for a migration has to
be determined.

The evaluation phase begins after the load on all machines has been deter-
mined. Therefore the normalized load indices of all nodes are calculated using (2)
for a node i. After that the difference between the highest and lowest normal-
ized value is calculated according to (3). If this difference exceeds a specified
imbalance value a migration is considered. Otherwise no migration will be per-
formed and the next measurement starts after the waiting time that has been
specified (c.f. section 3.1). If however, the current load imbalance is greater than
the specified imbalance value suitable migration candidate is determined. Cur-
rently, a simple strategy is used which selects a process of the application on the
node with the highest normalized load index. Similarly the destination node is
selected with a simple strategy: it is the node with the lowest normalized load
index. Finally, CoCheck is requested to migrate the selected process from the
source to the destination node.

As the a v e n r u n value is influenced by processes which do not belong to the
parallel application this approach also can cope with load imbalances caused
by external influences. However problems arise when the machine pools of two
tuMPI applications overlap. In this case the two load balancers might work
against each other. In future versions this situation must be detected and the
load balancers must coordinate their migration decisions regarding the nodes in
the overlapping node set.

Currently, the above mentioned value for the load imbalance that has to be
exceeded so that migrations are actually performed to level the load must be
specified by the user as an additional parameter on the command line. As in the
case of the measurement intervals (c.f. section 3.1) this parameter is automati-
cally removed during MPI_Init.

4 P e r f o r m a n c e E x p e r i m e n t s

To evaluate the performance of the automatic load balancer we applied it to a
computational fluid dynamics application. This application is briefly described
in the next section. After that the hardware environment for the experiments
and the results of the experiments are presented.

154

4.1 N S F L E X

NSFLEX is a computational fluid dynamics application which is used to solve
problems in aerodynamics [4]. More precisely, it solves two and three dimensional
Navier-Stokes and Euler Equations. The speed of the flow can stretch from 0.3
to 100 Mach. The discretization was clone with a finite volume method by solv-
ing the Reynolds Equations. The linearization uses the Newton method. The
turbulent flow is modeled with Baldwin-Lomax and solved with a Gaufl-Seidel
method. Several grid topologies are supported (C-grid, O-grid and H-grid). The
NSFLEX code for MPI which has been used in the experiments was initially
implemented for MPICH and solves the Cast-7 problem. The problem was par-
titioned in such a way, that four processes were required to compute the solution.
Each of the processes occupied 6840 kBytes main memory during run-time. Most
of this memory (6044 kBytes) was located in the data segment.

4.2 H a r d w a r e E n v i r o n m e n t f o r the Exper iments

All experiments have been done on five Sun Spare 10 machines which were
equipped with 32 Mbytes of main memory and ran under the SunOS 4.1.3 op-
erating system. The machines were physically distributed over several buildings
and were interconnected via the local area Ethernet network of the computer sci-
ence department. The measurements have been performed during off-peak hours
in the nights and on weekends to reduce the influence of other users. Despite
these precautions it was not possible to completely dedicate the machines and
the network for the experiments.

4.3 Results

In a first series of experiments we were concerned about how the number of
migrations would influence the execution time of NSFLEX. Therefore NSFLEX
was executed on four machines and a varying number of migrations were forced
to the remaining machine. The average results are depicted in Fig. 1 whereas t(n)
in equation (4) is the result of a linear regression applied to all measurements.

t(n) = 330.55 + 12.83n (4)

Although the average values and the linear regression show a linear increase
of the execution times of NSFLEX a closer look at the individual measure-
ments unveils noteworthy details. In contrast to the expectation that migrations
prolongs the execution time in any case, surprisingly also reductions could be
observed. This is depicted in Fig. 2.

The explanation for this effect is as follows. Although the migration itself
takes a certain amount of time the experiment already describes an automatic
load balancer with a random strategy where migration decisions are based on
coincidence. Since the external load could not be completely eliminated, this

1 5 5

700

600

500

,W 400

.~ 300

200

100

0

F ig . 1.

0 2 4 6 8 10
Number of migrations

Average execution times of NSFLEX depending on the number of migrations.

500
450
400
350
300

'~' 250

150
100
50
0

r-

?-

I I I I 7
-I-

Linear regression line
Single measurement + _

. I I I [. I

0 2 4 6 8 I0
Number of migrations

Fig. 2. Single measurements and linear regression.

simply strategy of migrating a randomly selected process lead to better toad
distributions under certain circumstances. The examination of the log files of
the experiments, in which the load values of all machines had been recorded,
showed that in the cases where better execution times could be achieved, the
source nodes indeed were overloaded.

In a second series of experiments an additional process was placed on one of
the nodes where an NSFLEX process was executed. The automatic load bMancer
was enabled and configured, so that the toad imbalance value was set to 1.5
and the two interval parameters were both set to 40 s. Hence, migrations were
performed if the normalized difference between the least and most loaded node
exceeded 1.5 and the time between two measurements were 40 s independent of
migrations having been performed or not. The additional process on the node
consumed about the same amount of CPU-time as the NSFLEX process as can
be seen from the output of the t o p c o m m a n d in Fig. 3.

156

PID PRI SIZE RES STATE TIMEWCPU CPU COMMAND
1340276 24K 144K r u n 1 : 4 5 45.37~ 45.31~ AddLoad
1343177 6840K 2904K run 1:23 45.37~ 45.31~ NsFlex

Fig. 3. CPU time of the NSFLEX process and the additional load process.

The average execution times of NSFLEX without performing migrations in-
creased to 697 s in comparison to 336 s without the additional load process. The
experiment was repeated with the the automat ic load balancer being activated.
In this case the average execution t ime could be reduced to 327 s. In some cases
more migrations were necessary to achieve an even load distribution. In these
cases execution times of 374 s and 500 s respectively could be achieved (54%
reduction). The individual measurements and the corresponding average vMues
are given in Fig. 4.

900 ~.¥ .
8 0 0 .

700 ," + . ÷+
600 .

~, 5 0 0 . '

..................... iiiiiliil ::
N 300 ii::i~i~iii~i~iii~i~iii~i~iii~i~iii~i~iii~i~

200 ~

100 Withou
0

Number of migrations

Fig. 4. Effect of load balancing on NSFLEX execution times with one additional load
process.

In a similar experiment with two load processes execution times could be
reduced from 636 s to at least 573 s (10% reduction).

5 C o n c l u s i o n a n d F u t u r e W o r k

In concert with tuMPI CoCheck provides the basis for an automat ic load bal-
ancing system for MPI applications. Both the migrat ion times of processes (not
discussed here, refer to [10] for details) and the improvements which could be

157

achieved using the NSFLEX application are very encouraging. Already the sim-
ple policy based on the normalized length of the ready queue and the threshold
value used in the prototype implementat ion could reduce execution times from
10% to 54%.

Current l imitations of the the decision components are tha t they only initiate
the migrat ion of a single process at a given t ime and tha t decision components of
several applications cannot cooperate. The first l imitation reduces the efficiency
of distributing the load evenly whereas the latter leads to problems in case of
overlapping machine pools when processes migrate to the same machine. Hence,
the decision components have to be modified, so that they migrate more than one
process if this is appropriate and that they can coordinate their migrat ion de-
cisions in case of overlapping machine pools. Furthermore, the intra-application
scheduling aspect which is covered by dynamic load balancing should be ex-
tended to a resource driven inter-application scheduler which can be found in
resource management systems. Finally, the heuristics must be evaluated with
more applications. Particularly, the ability to balance the load in heterogeneous
clusters must be examined.

R e f e r e n c e s

1. D. Andres, C. Elford, B. Fin, and L. Smith. Dynamic load balancing in PVM. Tech.
rep., University of Illinois at Urbanna-Champaign, April 1993.

2. D. L. Eager, E. D. Lazowska, and J. Zahorjan. Adaptive load sharing in homoge-
neous distributed systems. IEEE Trans. on Software Engineering, SE-12(5):662-675,
May 1986. Abgedruckt in [7, S. 340-353].

3. A. Geist, et al. PVM: Parallel Virtual Machine -- A Users' Guide and Tutorial for
Networked Parallel Computing. Scientific and Engineering Computation. The MIT
Press, Cambridge, MA, 1994.

4. M. Lenke, S. Rathmayer, A. Bode, T. Michl, and S. Wagner. Parallelization with
a real-world CFD application on differentparallel architectures, volume 2, chapter 8,
pages 119-166. Computational Mechanics Pubfications, Southampton, Boston, 1995.

5. Message Passing Interface Fortun. MPh A Message Passing Interface Standard,
May 1994.

6. S. Russ. Hector: Automated Task Allocation for MPI. In Proc. of IPPS, pages
344-348, Honolulu, HI, April 1996. IEEE CS Press, Los Alamitos, CA.

7. B. A. Shirazi, A. R. Hurson, and K. M. Kavi (eds.) Scheduling and Load Balancing
in Parallel and Distributed Systems. IEEE CS Press, Los Alamitos, CA, 1995.

8. G. Stellner and J. Pruyne. Resource Management and Checkpointing for PVM.
In Proc. o] the 2nd European PVM Users' Group Meeting, pages 131-136, Lyon,
September 1995. Editions Hermes.

9. G. Stellner. Consistent Checkpoints
of PVM Appfications. In Proc. of the 1st European PVM Users Group Meeting,
http: / / www.labri.u-bordeaux.fr / - desprez / C O NFS /PAP ERS / absO l O.ps.gz, 1994.

10. G. Stellner. CoCheck: Checkpointing and Process Migration for MPI. In Proc. of
the IPPS, pages 526-531, Honolulu, HI, April 1996. IEEE CS Press, Los Alamitos,
CA.

