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1. Introduction

The classical sampling problem may be asked in two parts: first, for a given
class of signals, does it suffice to know the samples, or values, of a signal at a given
discrete set of points in order to recover the signal in some manner? Second,
how might the signals be recovered, and moreover, how might it be done in a
computationally efficient way? There are many theoretical and practical answers
to this problem in various settings, and perhaps the most fundamental result
is the classical Whittaker–Kotelnikov–Shannon sampling theorem [24], which
states that L2(R) functions whose Fourier transform is supported on [−π, π], for
example, may be recovered in L2 and uniformly via

f(x) =
∑
j∈Z

f(j)
sin(π(x− j))

π(x− j)
.

While Whittaker [28] saw the series above as a cardinal interpolation series, i.e.
evaluating the right-hand side at k ∈ Z produces f(k), it was later shown that
the convergence was uniform for bandlimited signals.
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The drawback of this sampling formula for practical considerations is that the
series is difficult to approximate well by truncation since the cardinal sine func-
tion sinc(x) := sin(πx)/(πx) decays slowly (like |x|−1). There is an abundance
of literature tracing back to this fundamental theorem, and correspondingly
many techniques to get around the slow decay of sinc. One such method is
oversampling, which can be costly in practice. Another method intimately re-
lated to the analysis here is what I. J. Schoenberg, the father of spline theory,
terms summability methods (see [23] and references therein). Specifically, one
attempts to replace sinc in the series above by another function which decays
more rapidly, nonetheless requiring that the new series is close to the original
signal in whatever way one wants to measure (e.g. in L2 or uniformly).

Some study of summability methods using cardinal functions formed from
translates of a single radial basis function (RBF) – one which satisfies φ(x) =
φ(|x|)– has been made [4, 5, 6, 11, 12, 13, 16, 21, 25]. Cardinal functions are
those which satisfy the interpolatory condition L(k) = δ0,k, k ∈ Z, of which sinc
is the prototypical example. Such cardinal functions fashioned from radial basis
functions have a special form in the Fourier transform domain as discussed in
the sequel – in particular, our analysis will pertain to those which are radial in
nature as they are formed from a given RBF.

Building on these results, there are many techniques for sampling at nonuni-
form sets in R

d. Of course, the analysis is typically much simpler in one dimen-
sion, whereas many of the techniques that are currently known in higher dimen-
sions rely on the geometry of the points in R

d in a nontrivial way. Even the first
part of the classical sampling question leaves some deep open questions in this
area and has seen links with many interesting realms of mathematics including
space-tiling, convex geometry, basis theory, and abstract harmonic analysis. Of
interest to this work are those nonuniform sampling methods which use RBFs
[3, 8, 10, 15, 22]. For a survey of some of these themes using multiquadrics
consult [9], of which this article is a continuation.

The primary concern of this article is twofold: to analyze what happens to
various interpolation schemes involving RBFs for either bandlimited or time-
limited signals in the presence of noise, and also to give some indication of the
computational feasibility and methodology for performing the sampling scheme.
We consider two kinds of noise and the effect they have on the sampling and
reconstruction of certain classes of signals, with the primary method being that
of reconstruction via interpolation. Consequently, this allows us to make some
comparisons with the traditional literature on RBF interpolation on compact
domains. The error estimates for noisy interpolation also allow for a stability
result for interpolation on closed intervals, essentially stating that up to a con-
stant, it suffices to consider interpolation at uniform points on the interval. For
the sake of ease, we present the results in one dimension, and discuss which ones
lend themselves to multivariate analogues in the final section.

The rest of the paper is laid out as follows: we begin with a section of basic
notions, facts, and recall some previous results on multiquadric interpolation of
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bandlimited signals. Section 3 contains new results on how the interpolation
methods from Section 2 behave in the presence of noise. Then, in Section 4,
approximation rates in terms of the spacing of the samples in one dimension
and the effect of noise on them are considered. Section 5 discusses how our
method compares with classical RBF interpolation theory for compactly sup-
ported functions, and we end with a brief discussion of extensions in Section
6.

2. Background Material

If Ω ⊂ R is a set of positive Lebesgue measure, then let Lp(Ω) be the typ-
ical Banach space of p–integrable (or essentially bounded in the case p = ∞)
Lebesgue measurable functions on Ω with its usual norm. If no set is specified,
it is to be assumed that Ω = R. Similarly, �p(I) are the usual sequence spaces
of p–summable sequences indexed by a set I, and if no set is specified, we mean
�p(Z). Let C0(R) be the space of continuous functions on R which vanish at
infinity.

For k ∈ N, let W k
p (Ω) be the Sobolev space of Lp(Ω) functions whose weak

derivatives of order up to k are all in Lp(Ω). The seminorm on the Sobolev space
may be defined by

|g|Wk
p (Ω) :=

(∫
Ω
|g(k)(x)|pdx

) 1
p

= ‖g(k)‖Lp(Ω),

and the following is a norm on W k
p : ‖g‖Wk

p (Ω) := ‖g‖Lp(Ω) + |g|Wk
p (Ω). Again, if

no set is specified, we refer to W k
p (R).

For a function f ∈ L1, define its Fourier transform via

f̂(ξ) :=

∫
R

f(x)e−ixξdx.

Thus under suitable conditions (for example, if f is continuous and f̂ ∈ L1) the

following inversion formula holds: f(x) = (f̂)∨(x) = (2π)−1
∫
R
f̂(ξ)eiξxdξ. The

Fourier transform can be uniquely extended to a linear isomorphism of L2 onto
itself, and under this normalization, the Parseval/Plancherel Identity states that

2π‖f‖L2 = ‖f̂‖L2 .
For a parameter σ > 0, define the Paley–Wiener space of bandlimited func-

tions (with band-size σ) via PWσ := {f ∈ L2(R) : f̂ = 0 a.e. outside [−σ, σ]}.
The Paley–Wiener Theorem states that an equivalent definition of the latter is
the space of entire functions of exponential type σ > 0 whose restriction to R is
in L2. As all Paley–Wiener spaces are isometrically isomorphic, we typically re-
strict ourselves to the canonical space PWπ; however all of the results mentioned
here may be dilated to a space with different band-size.

The interpolation scheme considered in the sequel will use the following ideas
for point distributions in R, whose definitions are taken from [30].
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Definition 2.1. (i) A sequence (xn)n∈Z ⊂ R is a complete interpolating
sequence (CIS) for PWπ provided for every a ∈ �2(Z), there exists a
unique f ∈ PWπ such that f(xn) = an, n ∈ Z.

(ii) A sequence (fn)n∈Z in a Hilbert space H is a Riesz basis for H provided
(fn) is complete and there exist C1, C2 > 0 such that the following
inequality holds for all a ∈ �2(Z):

C1‖a‖2�2 ≤
∥∥∥∥∥∑
n∈Z

anfn

∥∥∥∥∥
2

H
≤ C2‖a‖2�2 . (1)

For Paley–Wiener spaces, complete interpolating sequences are equivalent to
Riesz bases of exponentials in the corresponding L2 space in the Fourier domain
via the following theorem.

Theorem 2.2 ([30], Theorem 9, p. 143). (xn)n∈Z ⊂ R is a CIS for PWπ if and

only if
(
e−ixn(·))

n∈Z is a Riesz basis for L2[−π, π].

For subsequent use, we catalog here some facts related to Riesz bases of ex-
ponentials. First, it bears noting that in dimension 1, such bases are abundant
by the following classical result.

Theorem 2.3 (Kadec’s 1/4–Theorem, [14]). If (xj)j∈Z ⊂ R satisfies

sup
j∈Z

|xj − j| < 1

4
,

then (xj) is a CIS for PWπ. Moreover, the bound of 1/4 is sharp.

There are higher dimensional analogues of Kadec’s theorem, for example, see
[1, 2, 26]. Having a sufficient condition, we also note that a necessary condition
for (xj) to be a CIS is that it is separated, i.e. infj �=k |xk−xj | > 0. For a complete
characterization by Pavlov using Muckenhoupt’s Ap condition in terms of zeros
of so-called sine-type entire functions, see [19].

There are also some important notions of stability of complete interpolating
sequences which will be required.

Theorem 2.4. (i) [29, Theorem 1] If (xj)j∈Z is a CIS for PWπ, then there
exists a positive constant L such that if |yj − xj | ≤ L for every j ∈ Z,
then (yj) is a CIS for PWπ.

(ii) [18, Lemma 3.1] If (xj)j∈Z is a CIS for PWπ, and (yj)j∈Z is such that
yj �= xj for only finitely many j ∈ Z, and yj �= yi for any i �= j, then
(yj) is also a CIS for PWπ.

2.1. The Interpolation Scheme. The primary concern of this paper is to
analyze a scheme which samples a smooth function via interpolation from a shift-
invariant space of certain radial basis functions. To wit, consider the following
general problem: given a function f with a certain order of smoothness (e.g. in
PWπ or W k

p (R)), a separated sequence X := (xj)j∈Z ⊂ R, and a radial basis
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function φ : R → R such that φ(x) = φ(|x|), find an interpolating function of
the form

Iφf(x) =
∑
j∈Z

ajφ(x− xj), x ∈ R, (2)

which satisfies

Iφf(xk) = f(xk), k ∈ Z.

If the reliance on the sequence X needs to be clear, the notation I X
φ f will be

used.
As this article continues the theme of the SampTA 2015 article by the second

author [9], the sequel will primarily emphasize interpolation using the so-called
general multiquadrics as kernels, though we stress that the results here are part
of a more general phenomenon and have analogues for a variety of different
kernels, which we briefly mention in Section 6. The general multiquadrics are
defined using two parameters via

φα,c(x) := (|x|2 + c2)α.

To avoid notational encumbrance, we adopt the convention Iα,c := Iφα,c .
Let us first note that if c > 0, α < −1/2 and X is a CIS for PWπ, then for any

f ∈ PWπ, a multiquadric interpolant Iα,cf as in (2) exists [15]. Furthermore,
the interpolant is unique (i.e. the sequence (aj) in (2) is uniquely determined
as the solution to the equation Ma = y, where yj = f(xj), and M is the bi-
infinite matrix whose entries are (φ(xj−xk))j,k∈Z), and Iα,c is a bounded linear
operator from PWπ → C0 ∩ L2(R) [15, Proposition 1].

2.2. Bandlimited Recovery. Here we recall one of the main recovery results
for bandlimited functions using the interpolation method set out in the previous
section.

Theorem 2.5 (cf. [9], Theorem IV.1). Let α < −1/2 and let X be a complete
interpolating sequence for PWπ. If f ∈ PWπ, then I X

α,cf ∈ L2(R) and

lim
c→∞‖I X

α,cf − f‖L2(R) = 0,

and

lim
c→∞|I X

α,cf(x)− f(x)| = 0

uniformly on R.
Moreover, if f ∈ PWσ for some σ < π,

‖I X
α,cf − f‖L2(R) ≤ Ce−c(π−σ)‖f‖L2(R), (3)

where the constant C depends on α and X, but not on c.

While the first part of this theorem only says something about the asymp-
totic behaviour of the interpolants for functions whose Fourier transform is fully
supported in the band of the Paley-Wiener space, we nonetheless obtain expo-
nential convergence in terms of the shape parameter, c, of the multiquadric when
oversampling, corresponding to the same notions in classical sampling theory.
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Currently, no approximation rates in terms of c are known when f̂ has support
on the full interval [−π, π].

For a multivariate analogue of Theorem 2.5, see [10, Theorem 3.6]; since its
statement is somewhat technical and would take us out of the scope considered
here, we omit it.

3. Interpolation in the Presence of Noise

Given the preliminaries above, we turn our attention to considering how the
interpolation scheme behaves in the presence of noise. There are two main kinds
of noise that will be considered: noisy data, and so-called jitter error.

3.1. Stability Under Perturbation of Sample Points. Jitter error corre-
sponds to the case when the sample points X are perturbed. That is, instead
of sampling at X := (xj)j∈Z, we sample at X̃ := (x̃j)j∈Z with x̃j = xj + εj for
some bounded perturbation (εj) ∈ �∞(Z). Physically, this may correspond to
non-ideal sensors which have some error in the timing of the sampling.

Notice that it follows from Theorem 2.5 that the recovery results therein are
independent under perturbations of the sample points at least as long as the
perturbed points still form a complete interpolating sequence. So if X̃ = X + ε
is a complete interpolating sequence for the Paley–Wiener space, we have

lim
c→∞‖IX̃α,cf − f‖L2 = lim

c→∞‖IXα,cf − f‖L2 = 0.

Of course, the rate of convergence may differ, though it is difficult to relate how.
As a particular example of this, the following proposition is evident.

Proposition 3.1. Suppose that X satisfies Kadec’s 1/4–Theorem, and sup
j∈Z

|xj−
j| = L < 1/4. Then if ‖(εj)j‖∞ < 1/4−L, X̃ given by x̃j = xj + εj is a CIS for

PWπ. In particular, lim
c→∞I X̃

α,cf = f in L2 and uniformly on R for any f ∈ PWπ.

Proof. Notice that X̃ still satisfies the condition of Kadec’s Theorem and apply
Theorem 2.5. �

Similarly, if εj = 0 for all but finitely many j, Theorem 2.4(ii) implies that

X̃ is again a CIS. Theorem 2.4(i) also implies that for any CIS X, there exists

a constant L such that if ‖ε‖�∞ ≤ L, then X̃ is again a CIS, and consequently
the conclusion of Proposition 3.1 holds in both of these cases.

However, one drawback is that this L may be very small. One can see this,
for example, because the 1/4–Theorem is sharp, so if X was perturbed from the
integer lattice arbitrarily close to 1/4, a small perturbation might fail.

Nonetheless, we may make some estimate on L based not on the magnitude
of ‖ε‖�∞ , but on the so-called frame bounds of the basis (e−ixj(·))j∈Z. Note that
it follows from (1) and Plancherel’s Identity that there are constants 0 < A ≤
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B < ∞ (the frame bounds), such that for any f ∈ PWπ,

A‖f‖2L2(R)
≤

∑
j∈Z

|f(xj)|2 ≤ B‖f‖2L2(R)
. (4)

The following can be found in [7]:

Proposition 3.2. Suppose that (e−ixj(·))j∈Z is a Riesz basis for L2[−π, π] with

frame bounds A,B > 0. Then if 0 < L < π−1 ln

(√
A
B + 1

)
, and x̃j = xj + εj,

with ‖(εj)j‖�∞ ≤ L, (e−ix̃j(·))j∈Z is a Riesz basis for L2[−π, π] with frame bounds

A(1−√
C)2 and B(1 +

√
C)2, where C = B

A (e
πL − 1)2.

Thus combining Proposition 3.2 and Theorem 2.5 gives a bound on the mag-
nitude of jitter error allowed for a given CIS.

3.2. Robustness to Noisy Samples. Next, consider what happens if, instead
of sampling f(xj) exactly, we actually measure yj = f(xj)+δj . For now, assume
that (δj) ∈ �2, and ‖(δj)j‖�2 ≤ δ. In this case, the noise is added to the signal,
and could appear as random background noise, or in some cases deterministic
(possibly adversarial) noise. There are many ways to model such noise, but our
focus here will be on that which is square-summable.

Given noisy samples (yj) as above, let Ĩ X
α,cf be the interpolant of the data

yj satisfying Ĩ X
α,cf(xk) = yk, k ∈ Z. Note that (yj) ∈ �2 by the condition on

the noise sequence (δj). Consequently, on account of Definition 2.1, there is a
unique g ∈ PWπ such that g(xj) = yj . Thus, by uniqueness of the interpolant,

there is a unique g ∈ PWπ such that Ĩ X
α,cf = I X

α,cg, and the following holds.

Theorem 3.3. Let X be a CIS for PWπ and let yj = f(xj) + δj for some
f ∈ PWπ with ‖(δj)‖�2 ≤ δ. Then

‖Ĩ X
α,cf − f‖L2 ≤ δ√

A
+ o(1), c → ∞,

where A is as in (4).

Proof. Let g ∈ PWπ be the function described above. Then we have

‖Ĩ X
α,cf − f‖L2 = ‖I X

α,cg − f‖L2 ≤ ‖I X
α,cg − g‖L2 + ‖g − f‖L2 =: N1 +N2.

It follows from Theorem 2.5 that N1 = o(1), c → ∞. Applying (4), we
estimate N2 as follows:

‖g − f‖L2 ≤ A− 1
2 ‖(g(xj)− f(xj))j‖�2 = A− 1

2 ‖(δj)j‖�2 ≤ A− 1
2 δ,

which concludes the proof. �
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4. Approximation Rates Based on Spacing

As discussed in the previous section, the approximation rates in terms of the
shape parameter, c, of the multiquadric are maintained in the presence of noise
(hence the error of approximation is dominated by the �2 norm of the noise as
in Theorem 3.3). But another type of approximation rate has been considered.
Specifically, we fix a CIS, X, and consider interpolation at hX for 0 < h ≤ 1,
and we tune the shape parameter of the multiquadric to reflect the dilation.
More precisely, we interpolate from the space⎧⎨⎩∑

j∈Z
ajφα,1(· − hxj) =

∑
j∈Z

aj
(| · −hxj |2 + 1

)α
: (aj)j∈Z ⊂ �2

⎫⎬⎭ ,

where the series is to be considered to converge in L2 (Note this is the L2

principal shift-invariant space associated with φα,1). In the uniform interpolation
setting, when X = Z, these interpolants have a special structure, which will be
discussed later. To emphasize the distinction (and the reliance of the shape
parameter on h) we write this new interpolant in a different manner as IhXα f .
One may show that the relation to the original interpolant is

IhXα f(x) =
1

h
Iα,h−1fh

(x
h

)
, (5)

where fh(x) := hf(hx). When α is fixed, we drop the subscript to ease the
notation.

To begin the analysis of the effect of noise on this process, let us recall the
following.

Theorem 4.1 ([8], Theorem 3.4). Suppose that α < −1/2, k ∈ N, 0 < h ≤ 1,
and X is a CIS for PWπ. Then there exists a constant C, independent of h,
such that for every f ∈ W k

2 (R),

‖IhXf − f‖L2(R) ≤ Chk|f |Wk
2 (R). (6)

Remark 4.2. Note again that the estimate in Theorem 4.1 is invariant under
perturbing the CIS in a certain manner. Specifically, if X is a CIS for PWπ,
and so is Y , then (6) holds for both interpolants albeit with a different constant
C. Moreover, one finds via the triangle inequality that

‖IhXf − IhY f‖L2 ≤ (CX + CY )h
k|f |Wk

2
. (7)

4.1. Noise in Nonuniform Interpolation. To discuss the question of recon-
struction from noisy data in the setting described in this section, it is pertinent
to recall a theorem on the stability of interpolating a given Sobolev function via
a bandlimited one as an intermediate step to analyzing the interpolant.

Theorem 4.3 ([8], Theorem 3.1). Let k ∈ N, h > 0, and let X be a fixed CIS
for PWπ. There exists a constant C = Ck,X , independent of h, such that for

every f ∈ W k
2 (R), there exists a unique F ∈ PWπ

h
such that

F (hxj) = f(hxj), j ∈ Z,
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|F |Wk
2
≤ C|f |Wk

2
,

and

‖F − f‖L2 ≤ Chk|f |Wk
2
.

Additionally, the interpolation operators are uniformly bounded in the Sobolev
seminorm:

Theorem 4.4 ([8], Theorem 3.3). For each k ≥ 0, there is a constant C,
independent of h, such that

|IhXf |Wk
2
≤ C|f |Wk

2
, f ∈ W k

2 (R).

Now, suppose that we measure yj(h) = f(hxj)+δj(h) with sup
h
‖(δj(h))j‖�2 ≤

δ, and let ĨhXf be the interpolant of yj(h). Then we have the following rate of
approximation.

Theorem 4.5. Under the assumptions of Theorem 4.3, there is a constant C =
Ck,X such that, for every f ∈ W k

2 (R),

‖ĨhXf − f‖L2 ≤ Chk|f |Wk
2
+

δ√
A
,

where A is the lower frame bound for X given by (4).

Proof. The first key observation is that hX is a CIS for PWπ
h
, which can be

seen because Riesz bases are preserved under bounded, invertible linear trans-
formations. Consequently, let g ∈ PWπ

h
be the unique function such that

g(hxj) = yj(h). Then we have

‖ĨhXf − f‖L2 = ‖IhXg− f‖L2 ≤ ‖IhXg− IhXf‖L2 + ‖IhXf − f‖L2 =: N1+N2.

Theorem 4.1 implies that N2 ≤ Chk|f |Wk
2
. Secondly, Theorem 4.4 with k = 0

implies that

N1 ≤ ‖IhX(g − f)‖L2 ≤ C‖g − f‖L2 .

Let F ∈ PWπ
h
be the function given by Theorem 4.3 such that F (hxj) = f(hxj).

Then we have

‖g − f‖2 ≤ ‖g − F‖2 + ‖F − f‖2 ≤ ‖g − F‖2 + Chk|f |Wk
2
.

From (4),

‖g − F‖2 ≤ A− 1
2 ‖(g(hxj)− f(hxj))j‖�2 = A− 1

2 ‖(δj(h))j‖�2 ≤ A− 1
2 δ.

Thus N1 ≤ Chk|f |Wk
2
+A− 1

2 δ.

Combining the estimates on N1 and N2 completes the proof. �
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4.2. Uniform Sampling. In the uniform case (when X is a lattice), this inter-
polation scheme has some special properties, including the possibility of using
growing kernels such as multiquadrics with positive α). Additionally, the in-
terpolants themselves have a simpler form as they lie in the span of shifts of a
single cardinal function which behaves like the classical cardinal sine function.

Given a multiquadric, we form a cardinal function Lα,c satisfying Lα,c(j) =
δ0,j , j ∈ Z, which lies in the closure of the linear span of (φα,c(· − j))j∈Z (where
convergence is uniform for sufficiently negative α, and uniform on compact sub-
sets for positive α. Then the multiquadric interpolant can be written as

I Z

α,cf(x) :=
∑
j∈Z

f(j)Lα,c(x− j). (8)

The cardinal function Lα,c can be defined by its Fourier transform:

L̂α,c(ξ) :=
φ̂α,c(ξ)∑

k∈Z
φ̂α,c(ξ + 2πk)

, ξ ∈ R \ {0}. (9)

Note that the series in (8) is rather similar to the series in the classical
Whittaker-Kotelnikov-Shannon sampling theorem if f ∈ PWπ, but with the
sinc function replaced by the cardinal function associated with the general mul-
tiquadric. This indeed was the observation made by Schoenberg, who instigated
the study of cardinal spline interpolation. The point was to apply a sort of
summability method to the sinc series in the sampling theorem because the fact
that sinc(x) = O(|x|−1) implies that it takes a rather large number of terms to
well-approximate the series via truncation. If the cardinal functions Lα,c decay
faster than the sinc function, then the series in (8) will be easier to approximate
by truncation; of course, the question then is whether or not the cardinal inter-
polant I Z

α,cf is close to f (either in L2 or uniformly depending on the kind of
guarantees one desires). For an in-depth study of the decay rates of the cardinal
functions associated with general multiquadrics, see [11], especially Section 4
therein. For a broad range of values of α, Lα,c decays faster than |x|−1. We
note also that for the cases α = ±1/2, such considerations were already made
by Buhmann [5] and Riemenschneider and Sivakumar [20]. Additionally, Lp ap-
proximation rates of the same order as in Theorem 4.1 for interpolation at hZ
can be found in [12].

4.3. Interpolation of Compactly Supported Functions. Let us now turn
our attentions to some more practical considerations which may prove useful
in applications. Of course, everything from Theorem 3.3 to Theorem 4.1 holds
whenever we take X = Z, which is clearly a CIS for PWπ. Let us consider
for the moment what happens whenever we consider interpolation of univariate
compactly supported Sobolev functions. To wit, let f ∈ W k

2 (R) with supp(f) ⊂
[−1, 1] (this choice of interval is arbitrary for ease of presentation, and can easily

be dilated). Then for N ∈ N, the interpolant IN
−1

Zf is actually interpolating
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f at the sequence { j
N }Nj=−N , and has the following form by combining (5) and

(8):

IN
−1

Zf(x) =

N∑
j=−N

f

(
j

N

)
Lα,c(Nx− j). (10)

Consequently, Theorem 4.1 shows that the approximation rate in this case
has an upper bound in terms of the number of sample points. Namely, if X =
{ j
N }Nj=−N , then

‖IN−1
Zf − f‖L2 ≤ CN−k|f |Wk

2
= C|X|−k|f |Wk

2
. (11)

Also, Theorem 3.3 still holds with h replaced by |X|−1 as well.
But now, consider N−1X = {xj

N }NJ=−N to be an arbitrary set of distinct points
in [−1, 1] (i.e. xj are arbitrary in [−N,N ]). Then let

x̃k :=

{
k, |k| > N
xk, |k| ≤ N.

Evidently, X̃ is a CIS for PWπ on account of Theorem 2.4(ii). It follows from
(7) that

‖IN−1X̃f − f‖L2 ≤ ‖IN−1X̃f − IN
−1

Zf‖L2 + ‖IN−1
Zf − f‖L2

≤ (C
X̃
+ 2CZ)N

−k|f |Wk
2
. (12)

The constant C
X̃

depends on a few things: the minimum spacing of the
sequence (i.e. infj �=k |xj−xk|), and the frame bounds for the basis as in (4). Since
the lower frame bound A can degenerate as the minimal distance between the

points shrinks, we cannot hope to have a uniform constant for all X̃. However,
for a class of small perturbations of the integers, the constant can be uniform.
Indeed, combining (12) with Proposition 3.2 yields the following.

Theorem 4.6. Let L < ln(2)/π. There is a constant C such that for any X̃
with supk∈Z |x̃k − k| < L,

‖IN−1X̃f − f‖L2 ≤ CN−k|f |Wk
2
,

for every f ∈ W k
2 (R) which is supported on a closed interval.

This theorem and the estimate in (12) imply that if one wishes to approximate

a compactly supported f by its interpolant IN
−1X̃f , it suffices to consider the

more simple uniform interpolant IN
−1

Zf up to the penalty of a possibly larger
constant C. The usefulness of this will be discussed further in the next section.

5. Computational Feasibility

In this section, we investigate the computational feasibility, peculiarities, and
potential advantages of the interpolation method based on cardinal functions
compared to traditional RBF theory. Again, for ease of presentation we limit
our discussion to problems in one dimension. As discussed in Section 4, consider
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a function f ∈ W k
2 (R) whose support lies inside [−1, 1], and we interpolate at

a sequence of points (xj)
N
j=−N ⊂ [−1, 1]. The classical method using RBFs is

to interpolate from the linear span of {φα,c(· − xj) : j = −N, · · · , N}. The
drawback in this case if φ is a multiquadric or the Gaussian kernel is that
forming the interpolant can be computationally quite expensive as it is formed
by inverting the matrix MN := (φα,c(xk − xj))

N
k,j=−N and applying it to the

data vector yj = f(xj) to determine the coefficients of the interpolant. Part of
the problem is that if the minimum spacing of the points is h, then the condition

number for this matrix can be as bad as e1/h
2
[17], which is undesirable. The

other disadvantage of this framework is that it is not robust to noise. RBF
interpolation is very good at recovering smooth functions, but is sensitive to
noise unless other smoothing techniques are applied.

On the other hand, given a sequence (xj)
N
j=−N ⊂ [−1, 1], by (12) and Theorem

4.6, we may simply use the uniform interpolant IN
−1

Zf to approximate f . The

benefit of this, is that IN
−1

Zf is less difficult to compute. Indeed, one must

first estimate the function L̂α,c by truncating the series in the denominator
of (9), then evaluate Lα,c via the Fast Fourier Transform (FFT). Then one
directly forms the series in (10) from the already known sample values f(j/N).
Moreover, as discussed in both of the previous two sections, this method enjoys
the advantage of being robust to noise. Notice however, that this interpolation

scheme is different in the sense that IN
−1

Zf is in the span of (Lα,c(· − j))Nj=−N ,

which in turn is in the span of (φα,c(· − j))j∈Z, as opposed to only the span of
2N + 1 translates of the multiquadric.

5.1. Approximation of the Fourier transform of the cardinal function.
As stated above, one first needs to truncate the series in the denominator of
the Fourier transform of the cardinal function. It is known (see for instance [27,
Theorem 8.15]) that the Fourier transform of a multiquadric is given (in one
dimension) by

φ̂α,c(ξ) =
√
2π

21+α

Γ(−α)

(
c

|ξ|
)α+1/2

Kα+1/2(c|ξ|), ξ ∈ R\{0}, (13)

where Kν(r) :=
∫∞
0 e−r cosh(t) cosh(νt)dt, r > 0, ν ∈ R is the modified Bessel

function of the second kind. Note that these Bessel functions have a pole at the
origin and decay exponentially.

It follows that the truncation of the series in the Fourier transform of the
cardinal function associated with the general multiquadrics is possible thanks to
the fast decay of the Bessel function. In particular, we have the following.

Theorem 5.1. Let ε > 0. Let α ∈ R and α < 0. For any c > 0, there exists
a natural number τ := τc,α,ε ∈ N, such that for all ξ ∈ R, there exists a kξ ∈ Z
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with ∣∣∣∣∣∣
∑
k∈Z

φ̂α,c(ξ + 2πk)−
kξ+τ∑

k=kξ−τ

φ̂α,c(ξ + 2πk)

∣∣∣∣∣∣ ≤ ε

∣∣∣∣∣∑
k∈Z

φ̂α,c(ξ + 2πk)

∣∣∣∣∣ . (14)

Before we prove this result, let us remark that (14) is sufficient to provide

precision ε when estimating L̂α,c via its truncated version. To see this, let

us denote Sα,c(ξ) :=
∑
k∈Z

φ̂α,c(ξ + 2πk) and Sτ
α,c(ξ) :=

∑
−τ≤k≤τ φ̂α,c(ξ + 2πk).

Then
∣∣∣ φ̂(ξ)
Sα,c(ξ)

− φ̂(ξ)
Sτ
α,c(ξ)

∣∣∣ = |Sτ
α,c(ξ)− Sα,c(ξ)|

|Sα,c(ξ)| · |Sτ
α,c(ξ)|

|φ̂(ξ)|. Together with (14), it follows∣∣∣ φ̂(ξ)
Sα,c(ξ)

− φ̂(ξ)
Sτ
α,c(ξ)

∣∣∣ ≤ ε φ̂(ξ)
Sτ
α,c(ξ)

. All terms in Sτ
α,c(ξ) are positive and since φ̂(ξ) is

included as the case k = 0, it follows that
∣∣∣ φ̂(ξ)
Sα,c(ξ)

− φ̂(ξ)
Sτ
α,c(ξ)

∣∣∣ ≤ ε.

Proof. First note that Sα,c(ξ) (defined above) is 2π-periodic. It is straightfor-
ward to see that (14) is equivalent to finding τ such that for any ξ∗ ∈ (−π, π)∣∣∣∣∣∑
k∈Z

φ̂α,c(ξ
∗ + 2πk)−

τ∑
k=−τ

φ̂α,c(ξ
∗ + 2πk)

∣∣∣∣∣ ≤ ε

∣∣∣∣∣∑
k∈Z

φ̂α,c(ξ
∗ + 2πk)

∣∣∣∣∣.
From [27, Lemma 5.13] it follows that for ν ∈ R, 0 ≤ Kν(r) ≤

√
2πr−1/2e−reν

2/(2r).
In particular, let rk := ξ∗+2πk > 0, for some k > τ ; it follows, with ν = α+1/2
that

φ̂α,c(rk) ≤ 21+α

Γ(−α)
cα2πr−α−1

k e−crke
(α+1/2)2

2crk .

With λ := 21+α

Γ(−α)c
α2π, this expression simplifies to φ̂α,c(rk) ≤ λr−α−1

k e−crke
(α+1/2)2

2crk .

For k large enough, there exists a constant γ > 0 such that

φ̂α,c(rk) ≤ γe−crk . (15)

Plugging back in the definition of rk yields

φ̂α,c(rk) ≤ γe−cξ∗e−2πck, for any k > τ.

Similarly, given k < −τ , we arrive at the following estimate:

φ̂α,c(rk) ≤ γecξ
∗
e2πck.

Summing for all k outside of {−τ, · · · , τ} finally yields, for ξ ∈ R,∣∣∣∣∑
k∈Z

φ̂α,c(ξ + 2πk)−
kξ+τ∑

k=kξ−τ

φ̂α,c(ξ + 2πk)

∣∣∣∣ = ∑
k<−τ

φ̂α,c(ξ
∗ + 2πk) +

∑
k>τ

φ̂α,c(ξ
∗ + 2πk)

≤
∑
k<−τ

γecξ
∗
e2πck +

∑
k>τ

γe−cξ∗e−2πck = γ
(
ecξ

∗
+ e−cξ∗

) e−2πc(τ+1)

1− e−2πc

≤ 2γ cosh(cξ∗)
1− e−2πc

e−2πc(τ+1).
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The sum for k ∈ Z can be estimated from below (see for instance [11, Proof
of Prop.3.2]) by ∑

k∈Z
φ̂α,c(ξ) ≥ De−4πc,

for a certain constant D := Dα,c > 0. Therefore, for (14) to be valid, it suffices
to find τ such that

2γ cosh(cξ∗)
1− e−2πc

e−2πc(τ+1) ≤ εDe−4πc,

which is achieved whenever

τ ≥ 1 +
ln(ε−1)

2πc
+

ln (2γ cosh(cπ))

2πc
− ln

(
D(1− e−2πc)

)
2πc

. (16)

�
Remark 5.2. A careful analysis of the proof of Proposition 3.2 from [11] gives
insight on how to pick D. For instance, for 0 > α ≥ −1, one can choose

D ≤ β 21+α

Γ(−α)c
α(2π)−α−1e−2πc, where β := βα is given in [27, Corollary 5.12].

Remark 5.3. The constant γ appearing in (15) can be easily picked in some par-

ticular cases. For instance, for α = −1, then γ :=
√
2π
c e

1
16cπ . In this case, Theo-

rem 5.1 is satisfied for τ ≥ 1+ 1
32π2c2

+ ln(ε−1)
2πc +

ln
(

2
√
2π
c

cosh(cπ)
)

2πc − ln((1−e−2πc)D)
2πc .

5.2. Particular cases of Theorem 5.1.
Poisson kernel: case α = −1. This case is associated to the approximation using
a Poisson kernel as the basis function. The Bessel function involved can be
simplified to K−1/2(r) =

√
π
2re

−r. Carrying out a similar analysis as in the
proof of Theorem 5.1 with rk = ξ∗ + 2πk �= 0, yields

φ̂−1,c(rk) =
π

c
e−c|rk|,

≤
{

π
c e

−cξ∗e−2πck, for k > τ
π
c e

cξ∗e−2πck, for k < −τ.

Hence, the same argument as in the proof of Theorem 5.1 implies that∑
|k|>τ

φ̂1,c(ξ
∗ + 2πk) ≤ 2π

c

e−2πc(τ+1)

1− e−2πc
cosh(cξ∗).

We want now to ensure the condition 2π
c

e−2πc(τ+1)

1−e−2πc cosh(cξ∗) ≤ εDe−4πc where D
is given by Remark 5.2 as follows:

D−1 =
1

2c
√
2
. (17)

Finally, putting everything together, we see that

τ ≥ ln(ε−1)

2πc
+ 1 +

ln
(
4π

√
2 cosh(cξ∗)

1−e−2πc

)
2πc

(18)
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ensures a relative error of the truncated series within ε, for any ε > 0. As an
example, let us consider the accuracy of a single precision machine ε = 10−16

and a shape parameter c = 1. In this case, τ ≥ 7.712 is sufficient (noting that
|ξ∗| < π). In other words, only 17 evaluations are required for an accurate
estimation of the Fourier transform of the cardinal function. Similarly, for a
double precision machine with ε = 10−32, only 27 coefficients in the expansion
are sufficient for the accurate estimation of the Fourier transform.
Gaussian case:. As mentioned before, every result stated here holds when the

Gaussian kernel, gλ := e−λ|·|2 , is used. Typically, one considers 0 < λ ≤ 1,
and the limiting results above hold for λ → 0+. For simplicity, we omit the
calculations for the Gaussian as they are rather similar to the Poisson kernel.
One finds that to obtain relative error ε, one needs τ ≥ 2

π2 | ln(ε/4)| + 4 terms,
whence for machine precision, 12 terms are sufficient.

Remark 5.4. In the end, starting with (10), we are left with the numerical ap-
proximation of the cardinal function at a given point x ∈ [−N,N ]. This can

be done by first evaluating its (approximate) Fourier transform L̂α,c(ξ) at the
sampling points ξk = k/(2N + 1), for −N ≤ k ≤ N. Following Theorem 5.1, it
suffices to evaluate the Bessel functions at only few sampling points and sum
them together. Finally, a direct application of a Discrete Fourier Transform
allows for the computation of the cardinal function Lα,c at some (uniform) sam-
pling points (xj)j∈J for some uniform finite set J ⊂ [−N,N ] via

x(k) =

N∑
n=−N

L̂α,c(ξn)e
2πikn/|J |.

Note that with the use of Fast Fourier Transform algorithms, this can be achieved
with a total complexity of O(N log(N)). For a sampling set J large enough –
in other words, which samples the Fourier transform of the cardinal function

L̂α,c with enough detail – we are able to build an accurate estimation of Lα,c

at uniform points. Then one can interpolate to approximate the points in the
expansion (10) that have not been calculated exactly via the FFT.

6. Remarks and Extensions

We now conclude with some remarks on the previous results including com-
ments on extensions to other kernels and higher dimensions and some consider-
ations for future work.

Remark 6.1. There are some known convergence phenomena and approximation
results for bandlimited and Sobolev interpolation in the vein above. Specifically,
[3, 10] contain higher dimensional analogues of Theorem 2.5, while the uniform
results in higher dimensions may be found throughout the work of Riemenschnei-
der and Sivakumar. Similarly, extensions to Theorem 4.1 are discussed in [8, 22],
though these are for specific CIS in higher dimensions which are Cartesian prod-
ucts of univariate ones. Unfortunately, the multivariate case of Theorem 4.6 will
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likely prove more difficult for the reason that finding CISs in higher dimensions
remains elusive even for simple domains.

Remark 6.2. As mentioned often before, the use of the multiquadrics here ex-
hibits a particular case of a much more general phenomenon. All of the results

here will hold for Gaussians, gλ := e−λ|·|2 , λ > 0, where in the limit one takes
λ → 0+. In addition, the kernels gλ,p := (e−λ|·|p)∨, λ > 0, p > 0 will allow for
recovery as λ → ∞. For sufficient conditions for a family of kernels governed
by a parameter to allow for recovery in the sense of Theorem 2.5, see [15], while
[16] gives conditions for cardinal interpolation at the integer lattice.

Remark 6.3. Section 5 is meant to give some guideline for the use of cardinal
functions in the sampling series; however, it is not meant to give a comprehen-
sive treatment to computations with these cardinal functions. Indeed, this is an
avenue for further consideration because at the moment, it is not clear if the

benefit to summability that replacing sinc with L̂α,c gives is not offset by the
extra computation required to evaluate Lα,c. Additionally, while we have argued
theoretically that the use of cardinal functions for interpolation of time-limited
Sobolev functions should have advantage over the naive RBF interpolation ap-
proach, more needs to be determined to demonstrate computational benefit. In
particular, an estimate of the constant C from Theorem 4.6 is needed, as well
as some guarantees on estimating Lα,c at uniform points on [−N,N ]. Let us
also point out that there are other ways around the poor condition number of
the multiquadric and Guassian matrices involved in finding the interpolant for
a compact domain; for a summary of some such methods, see Section 2 of [11],
and additionally consult [6, 27].
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