
SAMPLING THEORY IN SIGNAL AND IMAGE PROCESSING
c© 2011 SAMPLING PUBLISHING

Vol. 10, No. 1-2, 2011, pp.17-35
ISSN: 1530-6429

Non-Uniform Filter Interpolation

in the Frequency Domain

Brigitte Bidégaray-Fesquet
CNRS, Université Joseph Fourier, Grenoble INP, Université Pierre Mendès-France

Laboratoire Jean Kuntzmann

B.P. 53, 38041 Grenoble Cedex 9, France

Brigitte.Bidegaray@imag.fr

Laurent Fesquet
CNRS, Grenoble INP, Université Joseph Fourier

Techniques de l’Informatique et de la Microélectronique

pour l’Architecture des systèmes intégrés

46 avenue Felix-Viallet, 38031 Grenoble Cedex, France

Laurent.Fesquet@imag.fr

Abstract

We propose a filtering technique which takes advantage of a specific
non-uniform sampling scheme which allows the capture of a very low num-
ber of samples for both the signal and the filter transfer function. This
approach leads to a summation formula which plays the same role as the
discrete convolution for usual FIR filters. Here the formula is much more
complicated but it can easily be implemented and the evaluation of these
more elaborate expressions is compensated by the very low number of sam-
ples to process.

Keywords and phrases: non-uniform sampling and processing

2000 AMS Mathematics Subject Classification — 94A08, 84A20, 33B10

1 Introduction

Reducing the power consumption of mobile systems – such as cell phones, sensor
networks and many others electronic devices – by one to two orders of magni-
tude is extremely challenging but will be very useful to increase the system
autonomy and reduce the equipment size and weight. In order to reach such a
goal, the signal processing theory and the associated system architectures have
to be rethought. This paper is a first step towards well suited signal processing
techniques for non-uniform sampled signals [10].

18 B. BIDÉGARAY-FESQUET AND L. FESQUET

Today signal processing systems uniformly sample analog signals (at Nyquist
rate) without taking advantage of their intrinsic properties. For instance, tem-
perature, pressure, electro-cardiograms, speech signals significantly vary only
during short moments. Thus the digitizing system part is highly constrained
due to the Shannon theory, which fixes the sampling frequency at least twice
the input signal frequency bandwidth. It has been proved in [9] and [12] that
Analog-to-Digital Converters (ADCs) using a non equi-repartition in time of
samples lead to interesting power savings compared to Nyquist ADCs. A new
class of ADCs called A-ADCs (for Asynchronous ADCs) based on level-crossing
sampling (which produces non-uniform samples in time) [2, 3] and related signal
processing techniques [1, 11] have been developed.

This work suggests an important change in the filter design. Like analog
signals which are usually performed uniformly in time, filter transfer function
are also usually sampled with a constant frequency step. Non-uniform sampling
leads to an important reduction of the weight-function coefficients. Combined
with a non-uniform level-crossing sampling technique performed by an A-ADC,
this approach drastically reduces the computation load by minimizing the num-
ber of samples and operations, even if they are more complex.

2 Principle and Notations

For a large class of signals, especially sporadic signals, non-uniform sampling
leads to a reduced number of samples, compared to a Nyquist sampling. This
feature has already been used in [1] to design non-uniform FIR filtering tech-
niques based on interpolation and in [7] for IIR filtering in the state representa-
tion. In these works the authors however used a classical (uniform) filter, that
is a usual discretization in time of the impulse response.

Here we want to go further and take advantage of the fact that the filter
transfer function evolves gently with respect to frequency. It can therefore be
well approximated by the linear interpolation of quite few samples.

We consider the analog signal s(t) in the time domain and the analog filter
transfer function H(ω) in the frequency domain. Then the result x(t) of the
filtering process is the convolution of s(t) with the impulse response h(t) which
is the inverse Fourier transform of H(ω):

x(t) =

∫ +∞

−∞
h(t− τ)s(τ)dτ,

h(t) =
1

2π

∫ +∞

−∞
H(ω)eiωtdω.

In this paper we will only deal with the interpolation of causal filters. Al-
though the sampling and interpolation procedures do not commute with impos-

NON-UNIFORM FILTER IMPLEMENTATIONS 19

ing causality, this is approximatively true and we will include the concept of
causality here by changing the formula for x(t) into

x(t) =

∫ t

−∞
h(t− τ)s(τ)dτ,

in order to use only past input samples to compute the output filtered signal.
The general formula is

x(t) =

∫ T (t)

−∞
h(t− τ)s(τ)dτ,

where T (t) = t if causality is taken into account, and T (t) = ∞ otherwise. A
deeper analysis of the impact of causality will be part of the subject of an other
paper dealing with non uniform filter design.

2.1 Level crossing sampling

These signals are sampled in their initial domain thanks to a level crossing
technique (which has to be adapted in the case of the filter transfer function
which is a complex valued function: level crossing for the amplitude, for the
phase, for both, see Discussion Section 4).

2.1.1 Signal sampling

For the signal, this yields N samples (sn, δtn)n=1,...,N , where sn is the amplitude
of the nth sample and δtn is the time delay elapsed since the previous sample
(see Figure 1(a)). We can compute the times of the samples from the interval
lengths with the formula tn = t0 +

∑n
n′=1 δtn′ .

2.1.2 Filter sampling

We suppose we have a symmetric filter with respect to frequency ω0 = 0, i.e. a
filter with real-valued impulse response. The level crossing technique provides
K samples (Hk, δωk)k=1,...,K which only describe the transfer function for the
positive frequencies (see Figure 1(b)). We can compute the frequencies of the
samples from the interval lengths: ωk =

∑k
1 δωk′ . A symmetric filter has even

amplitude and odd phase, which means that sampling the negative part of the
filter transfer function would have led to a sample H−k at frequency −ωk with
H−k = H∗

k (complex conjugate of Hk). We also need the value of the filter
transfer function for the zero frequency ω0 and denote it by H0 ∈ R.

20 B. BIDÉGARAY-FESQUET AND L. FESQUET

tn−1 tn t

δtn

sn−1

sn

(a)

ωk−1ωk ω

δωk

Hk−1

Hk

(b)

Figure 1: Non-uniform sampling of the input signal in the time domain (a) and
the filter transfer function in the frequency domain (b).

Figure 1(b) suggests that we take samples of the filter transfer function when
its amplitude crosses some predefined levels. We can combine this (or not) with
taking samples when the phase also crosses levels. It is natural to take equi-
spaced levels in phase, and non equi-spaced levels in amplitude. The choice of
the levels (number, repartition) is not the goal of this paper, since we want to
describe a generic algorithm, and strongly depends on the type of filter we want
to sample.

2.2 Signal and filter interpolation

Thanks to interpolation we construct new analog functions from these samples,
producing s̄ for the signal and H̄ for the filter transfer function. The numerical
filter yields then for (possibly) all time t an approximate value for x(t), namely

x̄(t) =

∫ T (t)

−∞
h̄(t− τ)s̄(τ)dτ where h̄(t) =

1

2π

∫ +∞

−∞
H̄(ω)eiωtdω.

2.2.1 Signal interpolation

We consider here only piecewise constant and piecewise linear interpolation,
which can both be cast as the piecewise linear case which reads

s̄(t) =

N∑
n=1

(an + bnt)χIn .

where χIn is the characteristic function of the interval In = [tn−1, tn]. This
formula covers in fact many situations.

NON-UNIFORM FILTER IMPLEMENTATIONS 21

Piecewise linear interpolation Piecewise linear interpolation yields

bn =
sn − sn−1

δtn
and an = sn − bntn.

an can be seen as a weighted mean of sn−1 and sn, namely

an = sn−bntn = sn−sn − sn−1

δtn
tn =

tn
δtn

sn−1+

(
1− tn

δtn

)
sn =

tn
δtn

sn−1− tn−1

δtn
sn.

This leads to define an initial sample at time t0. There are basically three ways
to perform this:

• consider that the signal starts at time t0 and therefore s0 = 0,

• consider that the signal is constant and therefore s0 = s1,

• consider that the signal slope is constant and therefore

s0 = s1 − (t1 − t0)b2 = s1 − (t1 − t0)
s2 − s1
t2 − t1

=
t2 − t0
t2 − t1

s1 − t1 − t0
t2 − t1

s2.

The choice mainly affects the transient behavior, which is not an issue for filter-
ing.

Piecewise constant interpolation. Piecewise constant interpolation means
that bn = 0 in the above formula. This case however splits in three sub-cases.

Right piecewise constant interpolation which consists in using the
original samples which leads to an = sn.

Left piecewise constant interpolation where we try to respect more or
less the causality condition by taking an = sn−1. However this is not completely
achieved since we have to wait until time tn to be able to process this sample.
For the sample s0, the choices s0 = 0 and s0 = s1 are both possible.

Nearest neighbor piecewise constant interpolation. Piecewise con-
stant approximations with nearest neighbor interpolation reads an = sn and
t̃n = 1

2(tn + tn+1), which leads to redefine

δ̃t1 =
1

2
(2δt1 + δt2), δ̃tn =

1

2
(δtn + δtn+1) and δ̃tN =

1

2
δtN .

22 B. BIDÉGARAY-FESQUET AND L. FESQUET

2.2.2 Causality

To take into account causality we have to be able to truncate the interpolated
signal. Besides we have to interpolate the signal on the last interval, with no
knowledge of the next sample, i.e. with left piecewise constant interpolation.
If time t coincides with some sample, there is no specific problem, otherwise
we have to define an extra sample at time t, which has the same amplitude as
the previous sample. This leads to N(t) samples for the truncated interpolated
signal. We still call the amplitudes or coefficients sn, an, bn, but we keep in
mind that the last sample n = N(t) can be a duplicate of the previous one (with
delay t− tN(t)−1). If causality is not taken into account, N(t) = N for all time.

2.2.3 Filter interpolation

For the filter transfer function, we have the same alternatives for piecewise
constant approximations and we have many ways to write the linear interpo-
lation. We denote by Jk = [ωk−1, ωk] the frequency sampling intervals and
J−
k = [−ωk,−ωk−1] the symmetric intervals. We investigate two methods. A

graphical representation of both methods is given in Figures 2 and 3 in the
discussion.

Real interpolation: Separate interpolation of the amplitude and the
phase in the real domain. If we interpolate separately the amplitude ρ and
the phase θ in the real domain, taking into account that amplitude is even and
phase is odd, we obtain

H̄(ω) =

K∑
k=1

{
(ρ0k + ρ1kω)e

i(θ0k+θ1kω)χJk + (ρ0k − ρ1kω)e
−i(θ0k−θ1kω)χJ−

k

}
.

where

ρ1k =
|Hk| − |Hk−1|

δωk
, ρ0k = |Hk| − ρ1kωk,

θ1k =
arg(Hk)− arg(Hk−1)

δωk
and θ0k = arg(Hk)− θ1kωk.

Complex interpolation: Interpolation in the complex plane. Interpo-
lation in the complex plane yields

H̄(ω) =
K∑
k=1

{
(ζ0k + ζ1kω)χJk + (ζ0∗k − ζ1∗k ω)χJ−

k

}
where

ζ1k =
Hk −Hk−1

δωk
and ζ0k = Hk − ζ1kωk.

NON-UNIFORM FILTER IMPLEMENTATIONS 23

For further computations we need to define the real and imaginary parts of the
coefficients: ζ0k = ξ0k + iη0k and ζ1k = ξ1k + iη1k.

3 Towards a summation formula

Now h̄(t) can be split as a sum of elementary impulse responses
∑K

k=1 hk(t) with
a different expression according to the interpolation chosen for the filter transfer
function. We compute explicitly the functions hk(t) in Section 3.2. Functions
hk(t) have an infinite support. This is not a practical problem since we compute
the convolution of these functions with the compact support signal s̄(t). This
convolution equals

x̄(t) =

∫ T (t)

−∞
h̄(t− τ)s̄(τ)dτ =

N(t)∑
n=1

K∑
k=1

∫ tn

tn−1

hk(t− τ)(an + bnτ)dτ

=

N(t)∑
n=1

{
an

K∑
k=1

h0nk(t) + bn

K∑
k=1

h1nk(t)

}
,

where

h0nk(t) =

∫ tn

tn−1

hk(t− τ)dτ and h1nk(t) =

∫ tn

tn−1

hk(t− τ)τdτ.

We have a summation formulation for which we have to compute the elementary
contributions h0nk(t) and h1nk(t).

3.1 Elementary impulse responses

We first define the elementary impulse responses by integrating in frequency
both on intervals Hk and H−k, in the real case

hk(t) =
1

2π

{∫ ωk

ωk−1

(ρ0k + ρ1kω)e
i(θ0k+θ1kω)eiωtdω +

∫ −ωk−1

−ωk

(ρ0k − ρ1kω)e
−i(θ0k−θ1kω)eiωtdω

}

=
ρ0k cos(θ

0
k)

π

∫ ωk

ωk−1

cos(ω(t+ θ1k))dω − ρ0k sin(θ
0
k)

π

∫ ωk

ωk−1

sin(ω(t+ θ1k))dω

+
ρ1k cos(θ

0
k)

π

∫ ωk

ωk−1

cos(ω(t+ θ1k))ωdω − ρ1k sin(θ
0
k)

π

∫ ωk

ωk−1

sin(ω(t+ θ1k))ωdω,

24 B. BIDÉGARAY-FESQUET AND L. FESQUET

and in the complex case

hk(t) =
1

2π

{∫ ωk

ωk−1

(ζ0k + ζ1kω)e
iωtdω +

∫ −ωk−1

−ωk

(ζ0∗k − ζ1∗k ω)eiωtdω

}

=
ξ0k
π

∫ ωk

ωk−1

cos(ωt)dω − η0k
π

∫ ωk

ωk−1

sin(ωt)dω

+
ξ1k
π

∫ ωk

ωk−1

cos(ωt)ωdω − η1k
π

∫ ωk

ωk−1

sin(ωt)ωdω.

3.2 Computation of the elementary impulse responses

In both the real and the complex cases, we can split each elementary impulse
response into four contributions

hk(t) = αkh
α
k (t) + βkh

β
k(t) + γkh

γ
k(t) + δkh

δ
k(t),

where

αk =
ρ0k cos(θ

0
k)

π
, βk = −ρ0k sin(θ

0
k)

π
, γk =

ρ1k cos(θ
0
k)

π
, δk = −ρ1k sin(θ

0
k)

π
, in the real case,

αk =
ξ0k
π
, βk = −η0k

π
, γk =

ξ1k
π
, δk = −η1k

π
, θ1k = 0, in the complex case,

and

hαk (t) =

∫ ωk

ωk−1

cos(ω(t+ θ1k))dω,

hβk(t) =

∫ ωk

ωk−1

sin(ω(t+ θ1k))dω,

hγk(t) =

∫ ωk

ωk−1

cos(ω(t+ θ1k))ωdω,

hδk(t) =

∫ ωk

ωk−1

sin(ω(t+ θ1k))ωdω.

3.2.1 Regular formulae for elementary impulse responses

We first compute the hεk(t), for ε = α, β, γ, δ, assuming that t �= −θ1k,

hαk (t) =

{
sin(ωk(t+ θ1k))

t+ θ1k
− sin(ωk−1(t+ θ1k))

t+ θ1k

}
,

hβk(t) = −
{
cos(ωk(t+ θ1k))

t+ θ1k
− cos(ωk−1(t+ θ1k))

t+ θ1k

}
,

NON-UNIFORM FILTER IMPLEMENTATIONS 25

hγk(t) =

{
cos(ωk(t+ θ1k))

(t+ θ1k)
2

− cos(ωk−1(t+ θ1k))

(t+ θ1k)
2

}
+

{
ωk

sin(ωk(t+ θ1k))

t+ θ1k
− ωk−1

sin(ωk−1(t+ θ1k))

t+ θ1k

}
,

hδk(t) =

{
sin(ωk(t+ θ1k))

(t+ θ1k)
2

− sin(ωk−1(t+ θ1k))

(t+ θ1k)
2

}
−
{
ωk

cos(ωk(t+ θ1k))

t+ θ1k
− ωk−1

cos(ωk−1(t+ θ1k))

t+ θ1k

}
.

The integrals are not singular for t = −θ1k and therefore we want to find formulae
that are valid for all t in order to avoid test cases in the filter implementation.

Definition 1 We define the usual cardinal functions.

sinc(x) =
sin(x)

x
and cosc(x) =

cos(x)− 1

x
.

sinc is an even function with sinc(0) = 1 and cosc is an odd function.

With these special functions, we may rewrite

hαk (t) =
{
ωk sinc(ωk(t+ θ1k))− ωk−1 sinc(ωk−1(t+ θ1k))

}
,

hβk(t) = −{
ωk cosc(ωk(t+ θ1k))− ωk−1 cosc(ωk−1(t+ θ1k))

}
.

Definition 2 To rewrite hγk(t) and hδk(t) we need specific ”double” cardinal func-
tions which are both continuous on R.

sincc(x) =
sinc(x)− 1

x
and coscc(x) =

cosc(x)

x
.

sincc is an odd function and coscc is an even function with coscc(0) = −1
2 .

We then have

hγk(t) =
{
ω2
k coscc(ωk(t+ θ1k))− ω2

k−1 coscc(ωk−1(t+ θ1k))
}

+
{
ω2
k sinc(ωk(t+ θ1k))− ω2

k−1 sinc(ωk−1(t+ θ1k))
}
,

hδk(t) =
{
ω2
k sincc(ωk(t+ θ1k))− ω2

k−1 sincc(ωk−1(t+ θ1k))
}

−{
ω2
k cosc(ωk(t+ θ1k))− ω2

k−1 cosc(ωk−1(t+ θ1k))
}
.

The cardinal and double cardinal functions are regular and these new for-
mulations of the hεk(t) are also valid for t = −θ1k.

26 B. BIDÉGARAY-FESQUET AND L. FESQUET

3.2.2 Centered elementary impulse responses

Now clearly hαk (t), h
β
k(t), h

γ
k(t) and hδk(t) are functions of t + θ1k rather than t,

therefore for ε = α, β, γ, δ we define h̃εk(t+ θ1k) = hεk(t), where

h̃αk (t) = {ωk sinc(ωkt)− ωk−1 sinc(ωk−1t)} ,
h̃βk(t) = −{ωk cosc(ωkt)− ωk−1 cosc(ωk−1t)} ,
h̃γk(t) =

{
ω2
k coscc(ωkt)− ω2

k−1 coscc(ωk−1t)
}
+

{
ω2
k sinc(ωkt)− ω2

k−1 sinc(ωk−1t)
}
,

h̃γk(t) =
{
ω2
k sincc(ωkt)− ω2

k−1 sincc(ωk−1t)
}− {

ω2
k cosc(ωkt)− ω2

k−1 cosc(ωk−1t)
}
.

3.3 Computation of the elementary contributions

The elementary contributions are computed using the values of the elementary
impulse responses. We therefore should compute

h0nk(t) = αkh
0α
nk(t) + βkh

0β
nk(t) + γkh

0γ
nk(t) + δkh

0δ
nk(t)

and
h1nk(t) = αkh

1α
nk(t) + βkh

1β
nk(t) + γkh

1γ
nk(t) + δkh

1δ
nk(t),

for ε = α, β, γ, δ, where

h0εnk(t) =

∫ tn

tn−1

hεk(t− τ)dτ =

∫ tn

tn−1

h̃εk(t− τ + θ1k)dτ,

h1εnk(t) =

∫ tn

tn−1

hεk(t− τ)τdτ =

∫ tn

tn−1

h̃εk(t− τ + θ1k)τdτ.

The final results will be easily written in terms of the shifted times tn,k(t) =
t− tn + θ1k and we can cast the elementary contributions as

h0εnk(t) =

∫ tn−1,k(t)

tn,k(t)
h̃εk(τ)dτ,

h1εnk(t) =

∫ tn−1,k(t)

tn,k(t)
h̃εk(τ)(t− τ + θ1k)dτ = (t+ θ1k)h

0ε
nk(t)− ĥεnk(t)

where

ĥεnk(t) =

∫ tn−1,k(t)

tn,k(t)
h̃εk(τ)τdτ.

Using the special functions and primitives rescaled in Appendix A:, we com-
pute

h0αnk(t) = {Si(ωktn−1,k(t))− Si(ωktn,k(t))} − {Si(ωk−1tn−1,k(t))− Si(ωk−1tn,k(t))},

NON-UNIFORM FILTER IMPLEMENTATIONS 27

h0βnk(t) = {Cin(ωktn−1,k(t))− Cin(ωktn,k(t))}
−{Cin(ωk−1tn−1,k(t))− Cin(ωk−1tn,k(t))},

h0γnk(t) = −ωk{cosc(ωktn−1,k(t))− cosc(ωktn,k(t))}
+ωk−1{cosc(ωk−1tn−1,k(t))− cosc(ωk−1tn,k(t))},

h0δnk(t) = −ωk{sinc(ωktn−1,k(t))− sinc(ωktn,k(t))}
+ωk−1{sinc(ωk−1tn−1,k(t))− sinc(ωk−1tn,k(t))}.

and

ĥαnk(t) = −{tn−1,k(t) cosc(ωktn−1,k(t))− tn,k(t) cosc(ωktn,k(t))}
+{tn−1,k(t) cosc(ωk−1tn−1,k(t))− tn,k(t) cosc(ωk−1tn,k(t))},

ĥβnk(t) = −{tn−1,k(t) sinc(ωktn−1,k(t))− tn,k(t)) sinc(ωktn,k(t))}
+{tn−1,k(t) sinc(ωk−1tn−1,k(t))− tn,k(t) sinc(ωk−1tn,k(t))},

ĥγnk(t) = −{Cin(ωktn−1,k(t))− Cin(ωktn,k(t))}
+{Cin(ωk−1tn−1,k(t))− Cin(ωk−1tn,k(t))}
−{cos(ωktn−1,k(t))− cos(ωktn,k(t))}
+{cos(ωk−1tn−1,k(t))− cos(ωk−1tn,k(t))},

ĥδnk(t) = {Si(ωktn−1,k(t))− Si(ωktn,k(t))}
−{Si(ωk−1tn−1,k(t))− Si(ωk−1tn,k(t))}
−{sin(ωktn−1,k(t))− sin(ωktn,k(t))}
+{sin(ωk−1tn−1,k(t))− sin(ωk−1tn,k(t))}.

3.4 Summation formulae according to the signal interpolation
type

3.4.1 Piecewise constant approximation

In the case of piecewise constant approximations the summation formula restricts
to

x̄(t) =

N(t)∑
n=1

sn

K∑
k=1

h0nk(t).

3.4.2 Linear interpolation

In the case of linear interpolation, for fixed n and k, we have

anh
0
nk(t) + bnh

1
nk(t)

= (an + bn(t+ θ1k))h
0
nk(t)− bnĥnk(t)

= − 1

δtn
(tn,k(t)h

0
nk(t)− ĥnk(t))sn−1 +

1

δtn
(tn−1,k(t)h

0
nk(t)− ĥnk(t))sn.

28 B. BIDÉGARAY-FESQUET AND L. FESQUET

Therefore the summation formula reads in the linear case

x̄(t) =

N(t)−1∑
n=1

K∑
k=1

sn

(1

δtn
(tn−1,k(t)h

0
nk(t)− ĥnk(t))

− 1

δtn+1
(tn+1,k(t)h

0
n+1,k(t)− ĥn+1,k(t))

)
−s0

1

δt1

K∑
k=1

(t1,k(t)h
0
1,k(t)− ĥ1,k(t))

+sN(t)
1

δtN(t)

K∑
k=1

(tN(t)−1,k(t)h
0
N(t),k(t)− ĥN(t),k(t)).

4 Discussion

4.1 Choice of the transfer function linear interpolation

We have given two means to perform the linear interpolation of the transfer
function, above-mentioned as the real and complex interpolations. They lead to
very similar algorithms since only the coefficients αk, βk, γk and δk depend on
the choice of the linear interpolation type. However they lead to very different
result, and the reasons can be deduced from Figure 2.

(a) (b)

Figure 2: Amplitude response (a) and phase response (b) of the linear interpo-
lations (real (dashed-dotted plot) and complex (dashed plot) interpolations) of
a Chebychev filter compared to the exact values (solid line).

This figure represents the amplitude response (a) and the phase response (b)
of a Chebyshev filter and its linear interpolations via the real (dashed-dotted
plot) and complex (dashed plot) interpolations. Real interpolation consists in
linearly interpolating the amplitude and the phase and therefore the dashed-
dotted plot consists of piecewise affine functions. Complex interpolation is a

NON-UNIFORM FILTER IMPLEMENTATIONS 29

linear interpolation in the complex plane and as can be seen in Figure 3, inter-
polating in the complex plane, lead to smaller amplitudes.

Figure 3: Complex plane representation of linear interpolations (real (dashed-
dotted plot) and complex (dashed plot) interpolations) of a Chebychev filter
compared to the exact values (solid line).

This lead to the dip in Figure 2(a) and really bad filtering of the low frequen-
cies. In the case of the Chebyshev filter, real interpolation has another advantage
to cut the oscillations in the low frequencies, leading to a better filtering of the
low frequencies than usual filtering methods.

We also notice a bump between the last two samples on the phase interpo-
lation (Figure 2(b)) which is more developed for complex interpolation. If one
of the frequencies we want to filter out lies in this range, the filtering result will
be altered.

In the examples below the linear interpolations of the transfer function will
therefore be presented with real interpolation.

4.2 Numerical results

To illustrate this filtering algorithm we filter the signal

s(t) = 0.45 sin(2πt) + 0.45 sin(10.2πt) + 0.9

with various low pass filters with the cutoff frequency ωc = 4π. This is not the
typical sort of signal which is supposed to be addressed by our technique since
it is not a sporadic one and a relatively large number of samples are taken. We
perform the computations within the Matlab SPASS (Signal Processing for
ASynchronous Systems) framework [6]).

This signal is sampled with an M -bit Asynchronous A/D Converter (AADC)
which leads to a level crossing sampling over the amplitude range [0, 1.8]. 1.8 V

30 B. BIDÉGARAY-FESQUET AND L. FESQUET

is a classical nominal voltage for a 180nm CMOS technology used for fabricating
the AADC [3].

We can choose as we want the times at which the filtered signal is computed.
To display the results we choose a sequence of times tm such that the sampling
points are dispatched irregularly over the obtained solution.

Figure 4: Example of filtering result. Initial signal (dashed line), theoretical
filtered signal (solid line), non-uniformly sampled initial signal (asterisk markers)
and computed filtered samples (circle markers connected with a dotted line)

In Figure 4, you can see an example of the result with a 5th order Butterworth
filter and a 3-bit AADC. We plot continuous functions with lines: the initial
signal s(t) (dashed line) and the theoretical filtered signal x(t) (solid line). We
plot the sampled results with markers: the non-uniformly sampled initial signal
sn (asterisk markers) and the computed filtered samples xm (circle markers) at
times tm.

Figure 4 is only an example of a possible result since there are very numerous
parameters to tune the method:

• number of bits of the AADC,

• continuous filter chosen (Butterworth, Chebyshev, elliptic, Cauer, and
many others),

• choice of the levels to quantize the transfer function, number of these levels,
equi-spaced or not in amplitude, levels in amplitude and in phase,

• choice of interpolation type for both the signal and the filter.

The theoretical filtered signal displayed in Figure 4 is given by

x(t) = 0.45 sin(2πt) + 0.9,

NON-UNIFORM FILTER IMPLEMENTATIONS 31

but this is not a fair function to compare with since there is always a phase
shift due to the value of the filter phase at the 2π-frequency. Therefore we will
compare our results to x(t) = 0.45 sin(2π(t + φ)) + 0.9, where φ depends on
the theoretical filter used. We also consider from Figure 4 that the transient
evolution takes place in the [−1, 0] time interval and therefore only compare the
results for positive times.

Since we cannot explore here the whole range of possible parameters, we
chose to present only a 5th order Butterworth filter. We sample it both in
amplitude (0.99, 0.8, 0.5, 0.3, and 0.01) and phase (multiples of π) leading to
11 frequency samples. We compare here the results obtained for left piecewise
constant and linear interpolation for both the signal and the transfer function
and for different values (2, 3, 4 and 5) of the AADC resolution. Causality is
taken into account.

On Tables 1 and 2 we give the relative l2 and l∞ errors between computed
filtered samples xm at times tm = .01m (m integer) and the theoretical values
x(tm).

signal filter M = 2 M = 3 M = 4 M = 5

left left 0.0569 0.0597 0.0597 0.0597
linear 0.0120 0.0025 0.0017 0.0018

linear left 0.0577 0.0601 0.0599 0.0598
linear 0.0096 0.0033 0.0021 0.0020

Table 1: l2 error with an interpolated Butterworth filter. Comparison of various
interpolation types and AADC resolutions

signal filter M = 2 M = 3 M = 4 M = 5

left left 0.4549 0.4950 0.4854 0.4846
linear 0.1154 0.0264 0.0170 0.0210

linear left 0.4636 0.5035 0.4904 0.4870
linear 0.0963 0.0347 0.0187 0.0214

Table 2: l∞ error with an interpolated Butterworth filter. Comparison of various
interpolation types and AADC resolutions

We first see that left interpolation is a very bad choice for interpolating the
transfer function and we investigate this point further in Table 3 and 4.

In the case of the 2-bit AADC, there are 2.8 points per period for the highest
frequency part of the signal. This is a very low rate, and we are however able to
have only 1% l2 error on the filtered result which is quite sufficient for a large
range of applications. The other results all show less than 1% error. However
we have to be very careful about the values displayed on Tables 1 and 2 which

32 B. BIDÉGARAY-FESQUET AND L. FESQUET

are very dependent on the choice of the function to filter.
We now fix the AADC resolution to 3 bits and choose a linear interpolation

for the signal to only compare the possible interpolation of the transfer function.
This time, we choose a Chebyshev filter, with exactly the same sampling choice
as for the above Butterworth filter.

filter interpolation left right complex linear real linear

exact 0.2058 0.0682 0.0626 0.0427

approximate 0.1756 0.0871 0.0550 0.0122

Table 3: l2 error with an interpolated Chebyshev filter. Comparison of various
interpolation types for the transfer function

filter interpolation left right complex linear real linear

exact 0.0480 0.0170 0.0159 0.0101

approximate 0.0427 0.0201 0.0126 0.0038

Table 4: l∞ error with an interpolated Chebyshev filter. Comparison of various
interpolation types for the transfer function

The first line on Tables 3 and 4 is the error with respect to the shifted exact
filtered signal for the theoretical shift at 2π (-0.3651 rad), whereas the second
line, which shows smaller errors, is the error for the approximated shift, i.e. the
linearly interpolated phase, 0.3321 rad. Only the real linear interpolation yields
a good approximation. The other methods give incorrect amplitudes either for
the constant or the 2π frequencies, or add a low-frequency component.

5 Conclusions

We have presented a novel approach to filtering based on the non-uniform sam-
pling of the signal but also the non-uniform sampling in frequency of the filter
transfer function. The final result is complex but nonetheless possible to im-
plement in hardware devices and of course in numerical codes. This complexity
is balanced by the very low number of samples and the relatively low number
of operations needed for each evaluation. This approach is very promising to
achieve a lower power consumption in the upcoming mobile systems.

Indeed, the power consumption of electronic devices is correlated to the
activity of the system, which is in our case drastically reduced, thanks to our
specific samplings applied to the signal and to the filter. A preliminary study
has already been done to estimate the overall consumption of such a system and
the first implementation results show interesting power saving with the use of
our A-ADC [4]. Moreover, the activity is directly connected to the signal and

NON-UNIFORM FILTER IMPLEMENTATIONS 33

is able to produce a non-uniform sampling with a reduced number of samples.
We can notice that this approach is particularly interesting with some sporadic
signals. Moreover, coupling this technique with asynchronous (clockless) digital
is really appropriate since asynchronous logic only computes when samples are
available (event-driven logic). This will lead to drastic power savings compared
to the classical approach, i.e. uniform sampling and clocked circuits.

ACKNOWLEDGEMENT

This work has been supported by a funding from the Joseph Fourier-Grenoble
1 University: MSTIC project TATIE.

References

[1] F. Aeschlimann, E. Allier, L. Fesquet, and M. Renaudin, Asynchronus fir
filters, towards a new digital processing chain, in 10th IEEE International
Symposium on Asynchronous Circuits and Systems (ASYNC’04), 198-206,
Crete, Greece, April 2004.

[2] F. Akopyan, R. Manohar, and A.B. Apsel, A level-crossing flash asyn-
chronous analog-to-digital converter, in 12th IEEE International Sympo-
sium on Asynchronous Circuits and Systems (ASYNC’06), 11-22, Grenoble,
France, March 2006.

[3] E. Allier, G. Sicard, L. Fesquet, and M. Renaudin, A new class of asyn-
chronous A/D converters based on time quantization, in 9th IEEE Inter-
national Symposium on Asynchronous Circuits and Systems (ASYNC’03),
197-205, Vancouver, Canada, May 2003.

[4] E. Allier, G. Sicard, L. Fesquet, and M. Renaudin, Asynchronous Level
Crossing Analog to Digital Converters, Special Issue on ADC Modelling
and Testing of Measurement, 37, 296-309, 2005.

[5] B. Bidégaray-Fesquet and L. Fesquet, A fully non-uniform approach to FIR
filtering, in 8th International Conference on Sampling Theory and Applica-
tions (SampTa’09), Marseille, France, May 2009.

[6] B. Bidégaray-Fesquet and L. Fesquet, SPASS 2.0: Signal Processing for
ASynchronous Systems, May 2010,
http://ljk.imag.fr/membres/Brigitte.Bidegaray/SPASS/.

[7] L. Fesquet and B. Bidégaray-Fesquet, IIR digital filtering of non-uniformly
sampled signals via state representation, Signal Processing, 90, 2811-2821,
2010.

34 B. BIDÉGARAY-FESQUET AND L. FESQUET

[8] L. Fesquet, G. Sicard, and B. Bidégaray-Fesquet, Targeting ultra-low power
consumption with non-uniform sampling and filtering, in IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS2010), Paris, France,
June 2010.

[9] J.W. Mark and T.D. Todd, A nonuniform sampling approach to data com-
pression, IEEE Trans. on Communications, 29, 24-32, 1981.

[10] F. A. Marvasti, Nonuniform Sampling. Theory and Practice. Information
Technology: Transmission, Processing and Storage, Springer, 2001.

[11] S. Mian Qaisar, L. Fesquet, and M. Renaudin, Adaptive rate filtering for a
signal driven sampling scheme, in IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP’07), vol. III, 1465-1468, Hon-
olulu, Hawaii, USA, April 2007.

[12] N. Sayiner, H.V. Sorensen, and T.R. Viswanathan, A level-crossing sam-
pling scheme for A/D conversion, IEEE Trans. on Circuits and Systems II,
43, 335-339, April 1996.

Appendix A: Special functions and primitives

A.1 Mathematical tools: Exponential integral, sine integral and
cosine integral

The exponential integral is defined for positive x by

Ei(ix) = −
∫ +∞

x
eiy

dy

y
+ i

π

2
.

The sine integral is defined by

Si(x) =

∫ x

0
sin(y)

dy

y
.

For a positive x is equal to

Si(x) =
1

2i
(Ei(ix)− Ei(−ix)) +

π

2
.

The cosine integral is defined by

Ci(x) = −
∫ ∞

x
cos(y)

dy

y
.

For a positive x is equal to

Ci(x) =
1

2
(Ei(ix) + Ei(−ix)).

NON-UNIFORM FILTER IMPLEMENTATIONS 35

We use in fact the integral of the cosine cardinal. We classically denote for x
positive

Cin(x) =

∫ x

0
(1− cos(y))

dy

y
= −Ci(x) + γ + lnx,

where γ is the Euler constant:

γ = lim
n→∞

(
n∑

k=1

1

k
− lnn

)
.

Clearly, Si is an odd function and Cin is an even function with Cin(0) = 0.

A.2 A row of primitives

∫ x

sinc(cy)dy =
1

c

∫ cx

sinc(y)dy =
1

c
Si(cx),∫ x

cosc(cy)dy =
1

c

∫ cx

cosc(y)dy = −1

c
Cin(cx),∫ x

sincc(cy)dy =
1

c

∫ cx

sincc(y)dy = −1

c
{Cin(cx) + sinc(cx)},∫ x

coscc(cy)dy =
1

c

∫ cx

coscc(y)dy = −1

c
{Si(cx) + cosc(cx)}.

We specifically use the combinations∫ x

(sinc(cy) + coscc(cy))dy = −1

c
cosc(cx),∫ x

(sincc(cy)− cosc(cy))dy = −1

c
sinc(cx).

