Skip to main content

Advertisement

Log in

CD39 Modulates Endothelial Cell Activation and Apoptosis

  • Original Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

CD39 is the dominant vascular nucleoside triphosphate diphosphohydrolase (NTPDase) that exerts major effects on platelet reactivity by the regulated hydrolysis of extracellular adenine nucleotides. The effects of NTPDases on endothelial cell (EC) activation and apoptosis remain unexplored.

Material and Methods

Recombinant replication-deficient adenoviruses were constructed with human CD39 cDNA (rAdCD39) or the bacterial β-galactosidase (rAdβgal).

Results

Intact human umbilical vein EC cultures infected with rAdCD39 had substantial and stable increases in NTPDase biochemical activity (14.50 ± 3.50 Pi nmole/well/min), when contrasted with noninfected cells (0.95 ± 0.002) and rAdβgal infected cells (1.01 ± 0.02; p <0.005). Increased NTPDase activity efficiently inhibited immediate type 2Y purinergic receptor (P2Y)-mediated EC activation responses viz. von Willebrand factor secretion in response to extracellular ATP. In addition, CD39 up-regulation blocked ATP-induced translocation of the transcription nuclear factor (NF)-κB to the cell nucleus, and abrogated transcription of mRNA encoding E-selectin, and consequent protein synthesis. CD39 also decreased the extent of apoptosis triggered by putative type-2X purinergic (P2X7) receptors in response to high concentrations of extracellular ATP in vitro.

Conclusion

These properties of CD39 indicate primary vascular protective effects with potential therapeutic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3.
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kittel A, Kaczmarek E, Sevigny J, Lengyel K, Csizmadia E, Robson SC. (1999) CD39 as a caveolar-associated ectonucleotidase. Biochem. Biophys. Res. Comm. 262: 596–599.

    Article  CAS  PubMed  Google Scholar 

  2. Kaczmarek E, Koziak K, Sevigny J, et al. (1996) Identification and characterization of CD39 vascular ATP diphosphohydrolase. J. Biol. Chem. 271: 33116–33122.

    Article  CAS  PubMed  Google Scholar 

  3. Marcus AJ, Broekman MJ, Drosopoulos JHF, et al. (1997) The endothelial cell ecto-ADPase responsible for inhibition of platelet function is CD39. J. Clin. Invest. 99: 1351–1360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Koziak E, Sevigny J, Robson SC, Siegel JB, Kaczmarek K. (1999) Analysis of CD39/ATP diphosphohydrolase expression in endothelial cells, platelets and leukocytes. Thromb. Haemost. 82: 1538–1544.

    Article  CAS  PubMed  Google Scholar 

  5. Zimmermann H. (1999) Two novel families of ectonucleotidases: molecular structure, catalytic properties and a search for function. TIPS 20: 231–236.

    PubMed  CAS  Google Scholar 

  6. Zimmermann H. (1992) 5′-nucleotidase: molecular structure and functional aspects. Biochem. J. 285: 345–365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Abbracchio MP, Burnstock G. (1994) Purinoceptors—are there families of P2X and P2Y purinoceptors [Review]. Pharmacol. Therap. 64: 445–475.

    Article  CAS  Google Scholar 

  8. Cronstein BN, Bouma MG, Becker BF. (1996) Purinergic mechanisms in inflammation. Drug Develop. Res. 39: 426–435.

    Article  CAS  Google Scholar 

  9. Barros LF, Yudilevich DL, Jarvis SM, Beaumont N, Young JD, Baldwin SA. (1995) Immunolocalisation of nucleoside transporters in human placental trophoblast and endothelial cells: evidence for multiple transporter isoforms. Pflugers. Archiv. Eur. J. Physiol. 429: 394–399.

    Article  CAS  Google Scholar 

  10. Coade SB, Pearson JD. (1989) Metabolism of adenine nucleotides in human blood. Circ. Res. 65: 531–537.

    Article  CAS  PubMed  Google Scholar 

  11. Luthje J. (1989) Origin, metabolism and function of extracellular adenine nucleotides in the blood [published erratum appears in J. Klin. Wochenschr. (1989) 67: 558]. [Review]. J. Klin. Wochenschr. 67: 317–327.

    Article  CAS  Google Scholar 

  12. Motte S, Communi D, Pirotton S, Boeynaems JM. (1995) Involvement of multiple receptors in the actions of extracellular ATP: the example of vascular endothelial cells. [Review]. Int. J. Biochem. Cell Biol. 27: 1–7.

    Article  CAS  PubMed  Google Scholar 

  13. Vischer UM, Wolheim CB. (1998) Purine nucleotides induce regulated secretion of von Willebrand factor. Blood. 91: 118–127.

    PubMed  CAS  Google Scholar 

  14. Cotran RS, Pober, J. S. (1990) Cytokine-endothelial interactions in inflammation, immunity, and vascular injury. J. Amer. Soc. Nephrol. 1: 225–235.

    CAS  Google Scholar 

  15. Cotran RS, Pober JS. (1989) Effects of cytokines on vascular endothelium: their role in vascular and immune injury. Kidney Int. 35: 969–975.

    Article  CAS  PubMed  Google Scholar 

  16. Pober JS, Cotran RS. (1990) Cytokines and endothelial cell biology. Physiol. Rev. 70: 427–451.

    Article  CAS  PubMed  Google Scholar 

  17. Bach FH, Robson SC, Ferran C, et al. (1994) Endothelial cell activation and thromboregulation during xenograft rejection [Review]. Immunol. Rev. 141: 5–30.

    Article  CAS  PubMed  Google Scholar 

  18. Siebenlist U, Franzoso G, and Brown K. (1994) Structure, regulation and function of NF-κB. Annu. Rev. Cell Biol. 10: 405–455.

    Article  CAS  PubMed  Google Scholar 

  19. Baeuerle PA, Henkel T. (1994) Function and activation of NF-κB in the immune system. Ann. Rev. Immunol. 12: 141–179.

    Article  CAS  Google Scholar 

  20. Von Albertini M, Palmetshofer A, Kaczmarek E, et al. (1998) Extracellular ATP and ADP activate transcription factor NF-κ-b and induce endothelial cell apoptosis. Biochem. Biophys. Res. Comm. 248: 822–829.

    Article  Google Scholar 

  21. Ferrari D, Wesselborg S, Bauer M, Schulze OK. (1997) Extracellular ATP activates transcription factor NF-κB through the P2Z purinoreceptor by selectively targeting NF-κB p65. J. Cell. Biol. 139: 1635–1643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Franceschi C, Abbracchio MP, Barbieri D, et al. (1996) Purines and cell death. Drug Develop. Res. 39: 442–449.

    Article  CAS  Google Scholar 

  23. Marcus AJ, Safier LB, Hajjar KA, Ullman HL, Islam N, Broekman MJ, Eiroa AM. (1991) Inhibition of platelet function by an aspirin-insensitive endothelial cell ADPase. Thromboregulation by endothelial cells. J. Clin. Invest. 88: 1690–1696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Marcus AJ, Safier LB. (1993) Thromboregulation: multicellular modulation of platelet reactivity in hemostasis and thrombosis. [Review]. FASEB J. 7: 516–522.

    Article  CAS  PubMed  Google Scholar 

  25. Robson SC, Kaczmarek E, Siegel JB, et al. (1997) Loss of ATP diphosphohydrolase activity with endothelial cell activation. J. Exp. Med. 185: 153–163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Enjyoji K, Sevigny J, Lin Y, et al. (1999) Targeted disruption of cd39/ATP diphosphohydrolase results in disordered hemostasis and thromboregulation. Nature Med. 5: 1010–1017.

    Article  CAS  PubMed  Google Scholar 

  27. Fabre JF, Nguyen M, Latour A, et al. (1999) Decreased platelet aggregation, increased bleeding time and resistance to thromboembolism in P2Y1-deficient mice. Nature Med. 5: 1199–1202.

    Article  CAS  PubMed  Google Scholar 

  28. Deguchi H, Takeya H, Urano H, Gabazza EC, Zhou H, Suzuki K. (1998) Adenosine regulates tissue factor expression on endothelial cells. Thrombosis Res. 91: 57–64.

    Article  CAS  Google Scholar 

  29. Robson SC, Candinas D, Siegel JB, et al. (1996) Potential mechanism of abnormal thromboregulation in xenograft rejection—loss of ecto-ATPases upon endothelial cell activation. Transplantation Proc. 28: 536.

    CAS  Google Scholar 

  30. Candinas D, Koyamada N, Miyatake T, et al. (1996) Loss of rat glomerular ATP diphosphohydrolase activity during reperfusion injury is associated with oxidative stress reactions. Thromb. Haemost. 76: 807–812.

    Article  CAS  PubMed  Google Scholar 

  31. Robson SC, Daoud S, Begin M, et al. (1997) Modulation of vascular ATP diphosphohydrolase by fatty acids. Blood Coagul. Fibrinolysis 8: 21–27.

    Article  CAS  Google Scholar 

  32. Robson SC, Candinas D, Hancock WW, Wrighton C, Winkler H, Bach FH. (1995) Role of endothelial cells in transplantation. [Review]. Int.Arch. Allergy Immunol. 106: 305–322.

    Article  CAS  PubMed  Google Scholar 

  33. Bach FH, Winkler H, Ferran C, Hancock WW, Robson SC. (1996) Delayed xenograft rejection [Review]. Immunol. Today 17: 379–384.

    Article  CAS  PubMed  Google Scholar 

  34. Koyamada N, Miyatake T, Candinas D, et al. (1996) Apyrase administration prolongs discordant xenograft survival. Transplantation 62: 1739–1743.

    Article  CAS  PubMed  Google Scholar 

  35. Soares MP, Muniappan A, Kaczmarek E, et al. (1998) Adenovirus-mediated expression of a dominant negative mutant of P65/RelA inhibits proinflammatory gene expression in endothelial cells without sensitizing to apoptosis. J. Immunol. 161: 4572–4582.

    PubMed  CAS  Google Scholar 

  36. Baykov AA, Evtushenko OA, Avaeva SM. (1988) A malachite green procedure for orthophosphate determination and its use in alkaline phosphatase-based enzyme immunoassay. Analyt. Biochem. 171: 266–270.

    Article  CAS  PubMed  Google Scholar 

  37. Winkler H, Stuhlmeier K, Cheng Q, Csizmadia V, Bach FH. (1994) Inhibition of E-selectin transcription by an α-globulin. J. Cell. Biochem. 18A: 325.

    Google Scholar 

  38. Boeynaems J-M, Pearson JD. (1990) P2 purinoreceptors on vascular endothelial cells: physiological significance and transduction mechanisms. TIPS 11: 34–37.

    PubMed  CAS  Google Scholar 

  39. Dubyak GR, Elmoatassim C. (1993) Signal transduction via P2-purinergic receptors for extracellular ATP and other nucleotides [Review]. Am. J. Physiol. 265: C577–C606.

    Article  CAS  PubMed  Google Scholar 

  40. Brake A, Schumacher M, Julius D. (1996) ATP receptors in sickness, pain and death. Chem. Biol. 3: 229–232.

    Article  CAS  PubMed  Google Scholar 

  41. Hechler B, Leon C, Vial C, et al. (1998) The P2y(1) receptor is necessary for adenosine 5′-diphosphate-induced platelet aggregation. Blood 92: 152–159.

    PubMed  CAS  Google Scholar 

  42. Jin JG, Kunapuli SP. (1998) Coactivation of two different G protein-coupled receptors is essential for ADP-induced platelet aggregation. Proc. Nat. Acad. Sci. USA 95: 8070–8074.

    Article  CAS  PubMed  Google Scholar 

  43. Sun B, Li J, Okahara K, Kambayashi J. (1998) P2x(1) Purinoceptor in human platelets—molecular cloning and functional characterization after heterologous expression. J. Biol. Chem. 273: 11544–11547.

    Article  CAS  PubMed  Google Scholar 

  44. Daniel JL, Dangelmaier C, Jin JG, Ashby B, Smith JB, Kunapuli SP. (1998) Molecular basis for ADP-induced platelet activation I—evidence for three distinct ADP receptors on human platelets. J. Biol. Chem. 273: 2024–2029.

    Article  CAS  PubMed  Google Scholar 

  45. Jin JG, Daniel JL, Kunapuli SP. (1998) Molecular basis for ADP-induced platelet activation — the P2y1 receptor mediates ADP-induced intracellular calcium mobilization and shape change in platelets. J. Biol. Chem. 273: 2030–2034.

    Article  CAS  PubMed  Google Scholar 

  46. Yang S, Cheek DJ, Westfall DP, Buxton IL. (1994) Purinergic axis in cardiac blood vessels. Agonist-mediated release of ATP from cardiac endothelial cells. Circ. Res. 74: 401–407.

    Article  CAS  PubMed  Google Scholar 

  47. Fisette PL, Denlinger LC, Proctor RA, Bertics PJ. (1996) Modulation of macrophage function by P2Y-purinergic receptors [Review]. Drug Develop. Res. 39: 377–387.

    Article  CAS  Google Scholar 

  48. Juul B, Plesner L, Aalkjaer C. (1993) Effects of ATP and related nucleotides on the tone of isolated rat mesenteric resistance arteries. J. Pharmacol. Exp. Therap. 264: 1234–1240.

    CAS  Google Scholar 

  49. Chow SC, Kass G, Orrenius S. (1997) Purines and their roles in apoptosis. Neuropharmacology 36: 1149–1156.

    Article  CAS  PubMed  Google Scholar 

  50. Ferrari D, Chiozzi P, Falzoni S, et al. (1997) ATP-mediated cytotoxicity in microglial cells. Neuropharmacology 36: 1295–1301.

    Article  CAS  PubMed  Google Scholar 

  51. Chadwick BP, Frischauf AM. (1997) Cloning and mapping of a human and mouse gene with homology to ecto-ATPase genes. Mammal. Gen. 8: 668–672.

    Article  CAS  Google Scholar 

  52. Shaul PW, Anderson RGW. (1998) Role of plasmalemmal caveolae in signal transduction [Review]. Amer. J. Physiol. — Lung Cell. Mol. Physiol. 19: L843–L851.

    Article  Google Scholar 

  53. Esch JSA, Sevigny J, Kaczmarek E, et al. (1999) Structural elements and limited proteolysis of CD39 influence ATP diphosphohydrolase activity. Biochemistry. 38: 2248–2258.

    Article  Google Scholar 

  54. Cotran RS, Pober JS. (1989) Endothelial activation and inflammation. Prog. Immunol. 8: 747.

    Article  Google Scholar 

  55. Ferrari D, Chiozzi P, Falzoni S, Hanau S, Divirgilio F. (1997) Purinergic modulation of interleukin-1-β release from microglial cells stimulated with bacterial endotoxin. J. Exp. Med. 185: 579–582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Griffiths RJ, Stam EJ, Downs JT, Otterness IG. (1995) ATP induces the release of IL-1 from LPS-primed cells in vivo. J. Immunol. 154: 2821–2828.

    PubMed  CAS  Google Scholar 

  57. Bombeli T, Karsan A, Tait JF, Harlan JM. (1997) Apoptotic vascular endothelial cells become procoagulant. Blood 89: 2429–2442.

    PubMed  CAS  Google Scholar 

  58. Bombeli T, Schwartz BR, Harlan JM. (1999) Endothelial cells undergoing apoptosis become proadhesive for nonactivated platelets. Blood 93: 3831–3838.

    PubMed  CAS  Google Scholar 

  59. Nicholson DW, Thornberry NA. (1997) Caspases—killer proteases [Review]. TIPS 22: 299–306.

    CAS  Google Scholar 

  60. Imai M, Takigami K, Guckelberger O, et al. (In press) Recombinant adenoviral mediated CD39 gene transfer prolongs cardiac xenograft survival. Transplantation August, 2000 in press.

  61. Candinas D, Lesnikoski BA, Hancock WW, et al. (1996) Inhibition of platelet integrin GPIIbIIIa prolongs survival of discordant cardiac xenografts. Transplantation 62: 1–5.

    Article  CAS  PubMed  Google Scholar 

  62. Traut TW. (1994) Physiological concentrations of purines and pyrimidines [Review]. Mol. Cell. Bioch. 140: 1–22.

    Article  CAS  Google Scholar 

  63. Gayle RB, Maliszewski CR, Gimpel SD, et al. (1998) Inhibition of platelet function by recombinant soluble ecto-ATPase/CD39. J. Clin. Invest. 101: 1851–1859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang TF, Ou Y, Guidotti G. (1998) The transmembrane domains of ectoapyrase (CD39) affect its enzymatic activity and quaternary structure. J. Biol. Chem. 273: 24814–24821.

    Article  CAS  PubMed  Google Scholar 

  65. Wang TF, Handa M, Guidotti G. (1998) Structure and function of ectoapyrase (CD39). Drug Develop. Res. 45: 245–252.

    Article  CAS  Google Scholar 

  66. Matsumoto M, Sakurai Y, Kokubo T, et al. (1999) The cDNA cloning of human placental ecto-ATP diphosphohydrolases I and II. FEBS Letters 453: 335–340.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

CG is a recipient of a fellowship from the Deutsche Forschungsgemeinschaft. This work was supported by NIH R01 HL57307 and American Heart Association Grant in Aid 9650490N. SCR also thanks the MRC UCT Liver Center, Cape Town, South Africa for early research support that facilitated the current work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon C. Robson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goepfert, C., Imai, M., Brouard, S. et al. CD39 Modulates Endothelial Cell Activation and Apoptosis. Mol Med 6, 591–603 (2000). https://doi.org/10.1007/BF03401797

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401797

Keywords

Navigation