Skip to main content
Log in

Reversal of Established Rat Crescentic Glomerulonephritis by Blockade of Macrophage Migration Inhibitory Factor (MIF): Potential Role of MIF in Regulating Glucocorticoid Production

  • Original Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Macrophage migration inhibitory factor (MIF) is a potent pro-inflammatory cytokine that also counter-regulates glucocorticoid action. We investigated whether immunoneutralization of MIF could reverse established experimental crescentic glomerulonephritis and if this treatment could modulate endogenous glucocorticoid levels. Accelerated anti-GBM glomerulonephritis was induced in six littermate pairs of rats. Once crescentic disease was established on day 7, one animal in each pair was given a daily injection of neutralizing anti-MIF antibody (Ab) or irrelevant isotype control Ab for 14 days and then killed on day 21. In addition, a group of 6 animals was killed on day 7 of disease without any treatment. Animals receiving the control Ab exhibited a rapidly progressive glomerulonephritis with severe renal injury (proteinuria), loss of renal function (creatinine clearance), anemia, and marked histologic damage (including glomerular crescent formation), compared with animals killed on day 7 without treatment. In contrast, anti-MIF Ab treatment partially reversed the disease by restoring normal renal function and reducing histological damage compared with untreated animals killed on day 7 (p < 0.05). Interestingly, anti-MIF Ab treatment also prevented severe anemia (p < 0.05). Reversal of disease was associated with a significant reduction in leukocyte infiltration and activation and renal interleukin-1 (IL-1) production. Importantly, anti-MIF Ab treatment caused a significant increase in endogenous serum corticosterone levels, which correlated with the reversal of disease parameters. In conclusion, this study has demonstrated that blocking MIF activity can partially reverse established crescentic glomerulonephritis and suggests that MIF operates by both enhancing the cellular immune response and suppressing the endogenous anti-inflammatory glucocorticoid response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. David JR. (1966) Delayed hypersensitivity in vitro: its mediation by cell-free substances formed by lymphoid cell-antigen interaction. Proc. Natl. Acad. sci. U.S.A. 56: 72–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bloom BR, Bennett B. (1966) Mechanism of a reaction in vitro associated with delayed-type hypersensitivity. Science 153: 80–82.

    Article  CAS  PubMed  Google Scholar 

  3. Calandra T, Bucala R. (1997) Macrophage migration inhibitory factor (MIF): a glucocorticoid counter-regulator within the immune system. Crit. Rev. Immunol. 17: 77–88.

    Article  CAS  PubMed  Google Scholar 

  4. Bernhagen J, Bacher M, Calandra T, et al. (1996) An essential role for macrophage migration inhibitory factor in the tuberculin delayed-type hypersensitivity reaction. J. Exp. Med. 183: 277–282.

    Article  CAS  PubMed  Google Scholar 

  5. Bacher M, Metz CN, Calandra T, et al. (1996) An essential regulatory role for macrophage migration inhibitory factor in T-cell activation. Proc. Natl. Acad. sci. U.S.A. 93: 7849–7854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Calandra T, Bernhagen J, Metz CN, et al. (1995) MIF as a glucocorticoid-induced modulator of cytokine production. Nature 376: 68–71.

    Article  Google Scholar 

  7. Nishno T, Bernhagen J, Shijki H, Calandra T, Dohl K, Bucala R. (1995) Localization of macrophage migration inhibitory factor (MIF) to secretory granules within the corticotrophic and thyrotrophic cells of the pituitary gland. Mol. Med. 1: 781–788.

    Article  Google Scholar 

  8. Bacher M, Meinhardt A, Lan HY, et al. (1997) Migration inhibitory factor expression in experimentally induced endotoxemia. Am. J. Pathol. 150: 235–246.

    PubMed  PubMed Central  CAS  Google Scholar 

  9. Calandra T, Bernhagen J, Mitchell RA, Bucala R. (1994) The macrophage is an important and previously unrecognized source of macrophage migration inhibitory factor. J. Exp. Med. 179: 1895–1902.

    Article  CAS  PubMed  Google Scholar 

  10. Lan HY, Mu W, Yang N, et al. (1996) De novo renal expression of macrophage migration inhibitory factor (MIF) during the development of rat crescentic glomerulonephritis. Am. J. Pathol. 149: 1119–1127.

    PubMed  PubMed Central  CAS  Google Scholar 

  11. Lan HY, Yang N, Metz C, et al. (1997) TNF-alpha up-regulates renal MIF expression in rat crescentic glomerulonephritis. Mol. Med. 3: 136–144.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Lan HY, Bacher M, Yang N, et al. (1997) The pathogenic role of macrophage migration inhibitory factor in immunologically induced kidney disease in the rat. J. Exp. Med. 185: 1455–1465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bernhagen J, Calandra T, Mitchell RA, et al. (1993) MIF is a pituitary-derived cytokine that potentiates lethal endotoxaemia. Nature 365: 756–759.

    Article  CAS  PubMed  Google Scholar 

  14. Sunderland CA, McMaster WR, Williams AF. (1979) Purification with monoclonal antibody of a predominant leukocyte-common antigen and glycoprotein from rat thymocytes. Eur. J. Immunol. 9: 155–159.

    Article  CAS  PubMed  Google Scholar 

  15. Dijkstra CD, Dopp EA, Joling P, Kraal G. (1985) The heterogeneity of mononuclear phagocytes in lymphoid organs: distinct macrophage subpopulations in the rat recognized by monoclonal antibodies EDI, ED2 and ED3. Immunology 54: 589–599.

    PubMed  PubMed Central  CAS  Google Scholar 

  16. Damoiseaux JG, Dopp EA, Calame W, Chao D, MacPherson GG, Dijkstra CD. (1994) Rat macrophage lysosomal membrane antigen recognized by monoclonal antibody EDI. Immunology 83: 140–147.

    PubMed  PubMed Central  CAS  Google Scholar 

  17. Hunig T, Wallny HJ, Hartley JK, Lawetzky A, Tiefenthaler G. (1989) A monoclonal antibody to a constant determinant of the rat T cell antigen receptor that induces T cell activation. Differential reactivity with subsets of immature and mature T lymphocytes. J. Exp. Med. 169: 73–86.

    Article  CAS  PubMed  Google Scholar 

  18. Tellides G, Dallman MJ, Morris PJ. (1989) Mechanism of action of interleukin-2 receptor (IL-2R) monoclonal antibody (MAb) therapy: target cell depletion or inhibition of function?. Transplant. Proc. 21: 997–998.

    PubMed  CAS  Google Scholar 

  19. Schotanus K, Holtkamp GM, Meloen RH, et al. (1995) Domains of rat interleukin 1 beta involved in type I receptor binding. Endocrinology 136: 332–339.

    Article  CAS  PubMed  Google Scholar 

  20. Mitchell R, Bacher M, Bernhagen J, Pushkarskaya T, Seidin MF, Bucala R. (1995) Cloning and characterization of the gene for mouse macrophage migration inhibitory factor (MIF). J. Immunol. 154: 3863–3870.

    PubMed  CAS  Google Scholar 

  21. Lan HY, Paterson DJ, Atkins RC. (1991) Initiation and evolution of interstitial leukocytic infiltration in experimental glomerulonephritis. Kidney Int. 40: 425–433.

    Article  CAS  PubMed  Google Scholar 

  22. Lan HY, Nikolic-Paterson DJ, Zarama M, Vannice JL, Atkins RC. (1993) Suppression of experimental crescentic glomerulonephritis by the interleukin-1 receptor antagonist. Kidney Int. 43: 479–485.

    Article  CAS  PubMed  Google Scholar 

  23. Lan HY, Nikolic-Paterson DJ, Mu W, Atkins RC. (1995) Local macrophage proliferation in the progression of glomerular and tubulointerstitial injury in rat anti-GBM glomerulonephritis. Kidney Int. 48: 753–760.

    Article  CAS  PubMed  Google Scholar 

  24. Lan HY, Zarama M, Nikolic-Paterson DJ, Kerr PG, Atkins RC. (1993) Suppression of experimental crescentic glomerulonephritis by deoxyspergualin. J. Am. Soc. Nephrol. 3: 1765–1774.

    PubMed  CAS  Google Scholar 

  25. Lan HY, Mu W, Ng Y-Y, Nikolic-Paterson DJ, Atkins RC. (1996) A simple, reliable, and sensitive method of nonradioactive in situ hybridization: use of microwave heating to improve hybridization efficiency and preserve tissue morphology. J. Histochem. Cytochem. 44: 281–287.

    Article  CAS  PubMed  Google Scholar 

  26. Yu XQ, Nikolic-Paterson DJ, W. Mu et al. (1998) A functional role for osteopontin in experimental crescentic glomerulonephritis in the rat. Proc. Assoc. Am. Physicians 110: 50–64.

    PubMed  CAS  Google Scholar 

  27. Nikolic-Paterson DJ, Lan HY, Hill PA, Vannice JL, Atkins RC. (1994) Suppression of experimental glomerulonephritis by the interleukin-1 receptor antagonist: inhibition of intercellular adhesion molecule-1 expression. J. Am. Soc. Nephrol. 4: 1695–1700.

    PubMed  CAS  Google Scholar 

  28. Tang WW, Feng L, Vannice JL, Wilson CB. (1994) Interleukin-1 receptor antagonist ameliorates experimental anti-glomerular basement membrane antibody-associated glomerulonephritis. J. Clin. Invest. 93: 273–279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tang WW, Qi M, Warren JS. (1996) Monocyte chemoattractant protein 1 mediates glomerular macrophage infiltration in anti-GBM Ab GN. Kidney Int. 50: 665–671.

    Article  CAS  PubMed  Google Scholar 

  30. MacPhee IA, Antoni FA, Mason DW. (1989) Spontaneous recovery of rats from experimental allergic encephalomyelitis is dependent on regulation of the immune system by endogenous adrenal corticosteroids. J. Exp. Med. 169: 431–445.

    Article  CAS  PubMed  Google Scholar 

  31. Mason DW, MacPhee IA, Antoni FA. (1990) The role of the neuroendocrine system in determining genetic susceptibility to experimental allergic encephalomyelitis in the rat. Immunology 70: 1–5.

    PubMed  PubMed Central  CAS  Google Scholar 

  32. Lacombe C, Da SJ, Bruneval P, et al. (1988) Peritubular cells are the site of erythropoietin synthesis in the murine hypoxic kidney. J. Clin. Invest. 81: 620–623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Maxwell PH, Ferguson DP, Nicholls LG, Johnson MH, Ratcliffe PJ. (1997) The interstitial response to renal injury-fibroblast-like cells show pheno-typic changes and have reduced potential for erythropoietin gene expression. Kidney Int. 52: 715–724.

    Article  CAS  PubMed  Google Scholar 

  34. Eschbach JW. (1989) The anemia of chronic renal failure: pathophysiology and the effects of recombinant erythropoietin. Kidney Int. 35: 134–148.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National Health and Medical Research Council of Australia (no. 9960106) and the National Institutes of Health (no. 13591). We are grateful to Ms. M. Lo for corticosterone assay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Y. Lan Ph.D..

Additional information

Communicated by R. Bucala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, N., Nikolic-Paterson, D.J., Ng, YY. et al. Reversal of Established Rat Crescentic Glomerulonephritis by Blockade of Macrophage Migration Inhibitory Factor (MIF): Potential Role of MIF in Regulating Glucocorticoid Production. Mol Med 4, 413–424 (1998). https://doi.org/10.1007/BF03401748

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401748

Keywords

Navigation