to precipitation of the β' phase of the Cu-Be system and that the subsequent hardening is explained by slow precipitation of the ϵ phase of the Cu-Sn system.

In view of the high cost of beryllium, the fact that approximately the same properties can be obtained in a ternary alloy containing 0.75 pct Be as in a binary alloy containing 2.0 pct Be is noteworthy, and there seems no reason to believe that the cheaper alloy might not function satisfactorily in some of the applications where the binary alloy is now used.

Acknowledgments

This research was carried out in the laboratories of the Tin Research Institute. The authors are indebted to the International Tin Research and Development Council for permission to publish this paper. Grateful acknowledgment is made for guidance given throughout the course of the work by D. Hanson and G. V. Raynor, of the Department of Metallurgy, University of Birmingham, England, the former to whom thanks are also due for carrying out the X-ray examination mentioned in the paper, and the latter for helpful advice and criticism.

References

¹G. V. Raynor: Private communication.

²G. Masing and O. Dahl: Wiss. Veröff. Siemens-Konzern (1929) 8, p. 202.

³G. V. Raynor: Annotated Equilibrium Diagrams, Inst. of Metals (1944) No. 2.

⁴ H. Borchers: *Metallwirts*. (1932) **11**, pp. 317, 329; cf. Metallurgist (1932) 8, p. 152; H. Borchers and H. J. Otto, Metallwirts. (1942) 21, p. 215.

⁵G. V. Raynor: Annotated Equilibrium Diagrams. Inst. of Metals (1949) No. 7.

W. Hume-Rothery, P. W. Reynolds, and G. V. Raynor: Journal Inst. of Metals (1940) 66, p. 191.

⁷ E. S. Rowland and C. Upthegrove: Trans. AIME (1935) 117, p. 190.

⁸ D. W. Crossley and E. M. Foster: Journal of Scientific Instruments (1943) 20, p. 7.

Technical Note

Lattice Parameter of InSb

by T. S. Liu and E. A. Peretti

LITERATURE survey of the In-Sb system, A which was made before a study of the binary diagram was undertaken, revealed that the intermediate phase InSb existed and that its crystal structure is face-centered cubic of the zinc blend type. In 1929 Goldschmidt¹ determined the lattice constant for InSb and obtained a value of 6.452Å. A more recent value, 6.461Å was reported by Iandelli² in 1941. The purity of the indium used was not very high, however. The indium used by Iandelli con-tained 2 pct Ge. In view of this fact it was decided to remeasure the lattice parameter using high-purity indium (99.97+ pct In) and spectrographically standardized antimony of the highest purity available (99.91 pct Sb).

Specimens corresponding to the InSb composition were made by carefully weighing the ingredients on an analytical balance and heating them in vacuo in a quartz tube at 700°C. As melting losses were negligible, the alloys were not analyzed chemically, but the intended analysis was taken as being accu-

Table I. Debye Pattern of InSb*								
θ	Sin θ	đ	Observed In- tensity	hkl	λ			
81.18	0.9881	0.9054	m	711 551 }	α_2			
80.50	0.9863	0.9050	vs	551	α1			
73.55 73.23 69.43 65.33 65.10 61.23 61.05 55.08 51.68 48.13 46.23	0.9590 0.9574 0.9362 0.9086 0.9070 0.8765 0.8750 0.8200 0.7846 0.7446 0.7221	$\begin{array}{c} 0.9328\\ 0.9324\\ 0.8638\\ 0.9846\\ 0.9842\\ 1.021\\ 1.020\\ 1.089\\ 1.138\\ 1.086\\ 1.236\end{array}$	w w vw m vw s vw w w	444 444 642 533 533 620 620 531 440 531 333 511	α2 α1 β α2 α1 α2 α1 α α β α			
42.90 37.38 33.93 27.63 25.08 23.40 21.18 14.28	$\begin{array}{c} 0.6807\\ 0.6070\\ 0.5581\\ 0.4637\\ 0.4238\\ 0.3971\\ 0.3612\\ 0.2464\\ \end{array}$	$1.311 \\ 1.471 \\ 1.599 \\ 1.925 \\ 1.918 \\ 2.248 \\ 2.239 \\ 3.623$	s m w s vw vs vw vw vw	422 331 400 311 311 220 220 111	α α α α β α β α			

* Cobalt radiation with iron filter. s, strong; m, medium; w, weak; vw, very weak.

able 11.	Lattice	Constant	Calculation	for Focusing	Back-Reflection
		Patte	ern Taken at	t 25°C	

Plane		$Sin^2\theta$	$h^2 + k^2 + l^2$	δ*
711 551	α_2	0.976348	51	5.3
711 551	<i>α</i> 1	0.972111	51	6.4
444	΄α2	0.922410	48	17.4
444	α_1	0.917841	48	18.4
731 553	} <i>β</i>	0.913711	59	1 9.2
642	΄ B	0.874521	56	27.5
533	α_2	0.820171	43	38.6
533	α_1	0.816538	43	39.3
Normal Equ	ations			
184	596K† +	2571.3D = 1097.9	961	
251	71.3K +	4868.44D = 149.5	78²	
K :	= 0.00596	105 D = -0.0	0009037 $a_0 =$	6.4760

* $\delta = 2 \phi \operatorname{Sin}^2 \phi$, where $\phi = 90^\circ - \theta$. † $K = \frac{1}{4} a^{2_0}$, λ is incorporated into the equations.

Values of λ are based on those adopted at the conference of th X-ray Analysis Group of the Institute of Physics, London (1946) 4of the

rate. Powder samples were prepared by either filing or crushing of the brittle alloy, followed by screening at 325 mesh. The powders were then annealed at 400°C in evacuated capsules for about an hour.

X-ray photograms were taken with a Debye and a back-reflection focusing camera, using characteristic cobalt K_{α} radiation. Lattice parameters were calculated by Cohen's s method. The results of a Debye pattern and of a back-reflection pattern at 25°C are given in Tables I and II.

The lattice parameter at 25°C is 6.4760Å.

References

¹ V. M. Goldschmidt: Crystal Structure and Chemical Constitution. Trans. Faraday Soc. (1929) 25, p. 253.

² Aldo Iandelli: Sulla Struttura Dei Composti InP, InAS e InSb. Gazzetta Chimica Italiana (1941) 71, No. 1, p. 58. *M. U. Cohen: Precision Lattice Constants from

X-ray Powder Photographs. Review of Scientific Instruments (March 1935) 6, p. 68.

Journal of Scientific Instruments (1947) 24, p. 27.

T. S. LIU, Student Associate AIME, is Teaching Fellow and E. A. PERETTI, Member AIME, is Professor of Metallurgy, University of Notre Dame, Notre Dame, Ind.

TN 87E. Manuscript, May 18, 1951.