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Abstract: Electrospinning is a highly versatile technique to prepare continuous fibers with diameters of the

order of nanometers. The remarkable high aspect ratio and high porosity bring electrospun nanofibers highly

attractive to various nanotechnological applications such as filtration membranes, protective clothing, drug de-

livery, tissue-engineering, biosensors, catalysis, fuel cells and so on. In this review, we collectively summarized

the recent progress in developments of the electrospun ultrafine polyamide-6 based nanofibers preparation,

characterization and their applications. Information of this polyamide-6 and composites together with their

processing conditions for electrospinning of ultrafine nanofibers has been summarized in this review. The recent

developments made during last few years on these materials are addressed in this review. We are anticipating

that this review certainly drive the researchers for developing more intensive investigation for exploring in many

technological areas.
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Introduction

One-dimensional nanostructures that include fibers,
wires, rods, belts and tubes have attracted rapidly
growing interest due to their fascinating properties and
unique applications [1-5]. Electrospinning is currently
used as the unique technique that allows the fabri-
cation of continuous fibers with diameters down to a
few nanometers. It is the most famous technique for
the production of high aspect ratio nanofibers and mi-
crofibers. The equipment required for electrospinning is
simple, readily available, and inexpensive. Nanofibers
are traditionally defined as nanostructures with a di-
ameter below 1000 nm and a length-to-width ratio typ-
ically greater than 50. During electrospinning process,
a continuous strand of a polymer liquid was drawn

through a spinneret by a high electrostatic force to de-
posit randomly on a grounded collector as a mat. These
electrospun fibers possess small inter-fibrous pore size
and high surface area to volume ratio than that of the
bulk materials [6-8]. The electrospinning process is ro-
bust, and results are reproducible, although the process
controls to produce samples with high uniformity at a
specified diameter are just emerging. The performance
and applications of many nanomaterials strongly rely
on their morphological and structural properties. Pro-
cessing nanomaterials in to appropriate structures of-
ten improves their performances and can even extend
their range of applications [9,10]. In this connection,
electrospun nanofibers, the focus of the present review,
are recently emerging as important building blocks for
variety of technological applications which includes fil-
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tration membranes [11-13], solid phase extraction [14],
protective textile [15-17], sensors and biosensors [18-22],
catalysis [23, 24], photovoltaic cells [25], wound dress-
ing [26-29], scaffolds in tissue engineering [30-40], drug
delivery [41-44], fuel cells [45-48], dye-sensitized solar
cells [49,50], super capacitors [51] and some other ap-
plications [52-55].

At the present scenario it attained a new dimension
for the production of high aspect ratio fibers in sub-
nano scale in the range of 5 to 15 nm in diameters.
Recently, a variety of materials including polymers, ce-
ramics, semiconductors and metals have been electro-
spun in to high aspect ratio ultrafine nanofibers struc-
ture [56-63]. Because of these interesting morphological
features, this cutting-edge technology paves an inten-
sive research in nano-scale. The internal structure of
nanofibers can accommodate molecules, chemical reac-
tions, separated phases, and even hold large particles.
Experimental factors that affect the final diameter are
described [64-67]. Even thinner segments of fibers are
occasionally observed, and there is a strong possibility
that even single polymer molecules can be held in an
extended form by the forces associated with the electro-
spinning process. Single polymer molecules, extended
by the excess electrical charge they carry, may already
be present in the electrostatic spray methods used for
the injection of molecules into a mass spectrometer.

Recently, growing attempts were focused to control
the diameter of electrospun nanofibers to achieve de-
sired functions [68-70]. Ding et al. [71] observed this
kind of fishnet-like morphology in electrospun nylon-6
and poly (acrylic acid) (PAA) nanofibers, and they re-
ported that the formation of such kind of morphology
was due to applied voltage, relative humidity, kinds of
solvents, solution concentration and distance between
the capillary tip and the collector in the electrospinning
chamber. Nylon-6, polyurethane and poly (vinyl alco-
hol) (PVA) polymeric nanofiber mats containing spider-
net morphology have been synthesized by the addition
of metallic salt [8]. Parajuli et al. reported that a spider
netlike arrangement of fibers with an average diameter
of 18 nm by the polymerization of PAA with nylon [72].

More than 100 kinds of polymers have been used to
obtain their nanofibers by using electrospinning tech-
nology during the past two decades. Electrospinning
process of different kinds of polymers and their compos-
ite was discussed based on the variety of aspects which
include the experimental parameters, reduce the fiber
diameter, blending other composites, alignment, orien-
tation and so on [73-75]. Several polymers are combined
with other composite materials to obtain composite
nanofibers. The resultant composite nanofibers leads
to substantial improvements in terms of structural, me-
chanical, thermal, electrical, and biological properties
compared to that of pristine nanofibers. Many unique
qualities that include intrinsically high specific surface

area, extremely small diameter and high porosity as a
result of the electrospun fibers have drawn interests in
many research groups around the world [76,77]. Vari-
ety of polymer nanofibers has been recently produced
in terms of research interest because of their potential
applications in diverse fields [78-81]. Recently, Wang
et al. reported the comprehensive review of the state-
of-the-art research activities related to electrospinning
of polymer nanofibers which include their fabrication,
novel properties studies and potential applications [82].

The growing interest in the utilization of these nanos-
tructures primarily stems from their unique physical,
mechanical and electrical properties associated with
their very high surface area. These properties make
nanofibers suitable for the creation of numerous tech-
nologically advanced products within many fields of
application. With development activities related to
nanofiber technology intensifying rapidly, one can rea-
sonably project that these nanostructures will achieve
widespread commercialization within the next 5 to 10
years. Another important reason for performing this
study is to supply a review of nanofiber manufacturing
methods, to identify current technical issues, and to il-
lustrate the latest technological developments and how
they will useful for further research directions.

The diameters of polymer fibers are around nanome-
ters size, from few tens nanometers to micrometers as
example of polymer nanofibers, even though, it is still
difficult to electro spin polymer into uniform nanofibers
with diameter as small as few hundred nanometers up
to now. The high aspect ratio nanofibers are defined
as the formation of ultrafine nanostructure in between
the main nanofibers. In other words, the ultrafine
nanofibers can have the reduced diameter of one or-
der than that of the main nanofibers. Typically, the
ultrafine nanofibers consisted of regularly distributed
very fine nanofibers with diameters of about 7 to 30
nm whereas the main nanofibers are in the ranges of
100-300 nm in size. Consequently, the peculiar struc-
tural morphology of the ultrafine nanofibers made a
very deep interest among many research groups since
these kind of characteristics can be utilized for many
scientific and industrial purposes. Some of the specific
applications of these ultrafine nanofibers are of filtra-
tions, sensors, targeted drug delivery systems, and so
on.

Electrospun nanofibers are extensively studied and
their potential applications are largely demonstrated.
Today, electrospinning equipment and technological so-
lutions, and electrospun nanofiber materials are rapidly
moving to commercialization. Multifunctional capabil-
ity, flexible design, rugged, light weight construction
and self-powered operation are desired attributes for
electronics that directly interface with the human body
or with advanced robotic systems. For these applica-
tions, piezoelectric materials, in forms that offer the
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ability to bend and stretch, are attractive for pres-
sure/force sensors and mechanical energy harvesters.
A large area, flexible piezoelectric material that con-
sists of sheets of electrospun nanofibers of the polymer
poly(vinylidenefluoride-co-trifluoroethylene] have been
reported [83]. Cho et al. [84] have collectively re-
ported about the recent studies in electronic and pho-
tonic applications of electrospun organic nanofibers
which include organic light-emitting diodes, organic
photovoltaics, organics field-effect transistors, lasers
and waveguides. Further, there have been number of
review articles published which provides an insight into
the most prominent aspects of preparation, characteri-
zation of electrospun nanofibers and their applications
[1,18,85-89]. Persano et al. [90] have briefly reviewed
about the industrial up scaling of electrospinning and
applications of polymer nanofibers. And in another ar-
ticle, Luo et al. [91] have elaborately reported about
the combination interdisciplinary knowledge from the
academia and industry to facilitate technological con-
vergence and offers insight for up scaling electrospin-
ning and nanofibers production. They have also dis-
cussed about the advances in electrospinning within a
framework of large-scale fiber production as well as al-
ternative nanofibers forming methods, providing a com-
prehensive comparison of conventional and contempo-
rary fiber forming technologies.

In this review, we specifically summarize most recent
progress in developments of the ultrafine electrospun
nanofibers based on polyamide-6 and their composites.
Thus, herein we address the current developments, in-
cluding preparation, synthesis and characterization of
these nanofibers via electrospinnng process. At the
same time, we provide some potential applications asso-
ciated with polyamide-6 based electrospun nanofibers.

Synthesis of ultrafine nanofibers

In electrospinning, a strong electrical field is applied
to a droplet formed by a polymer solution or polymer
melt at the tip of a die acting as one of the electrodes.

Figure 1 shows the schematic diagram of electrospin-
ning set up and typical images of nanofibers morphol-
ogy. The charging of the fluid leads to a conical de-
formation of the droplet, the well-known Taylor cone
[92-94] and eventually to the ejection of a jet from the
tip of the cone. Taylor found that the critical field re-
quired for such deformation is strongly controlled by
the surface tension. The electric dispersion of liquids
based on this phenomenon is widely used today, for
instance in ink jet printing, for crop spraying, to pre-
pare aerosols from liquids, and to produce propellants
for rockets. The tip-to-collector distance was kept as
15 cm. Polymer solution was fed to the 5 ml syringe
with plastic micro-tip with a diameter of 0.3 mm and
10 mm length. During the electrospinning process, the
drum was rotated at a constant speed by a DC motor to
collect the developing nanofibers. When a polymer so-
lution is forced through a spinneret, the process aligns
the chain in the direction of the extrusion with a sim-
ilar alignment of the crystallites if the solid polymer
is partially crystalline [95]. The additional orientation
that is typically imposed after the spinning causes ad-
ditional alignment of the crystallites, and the stretch-
ing and alignment of the amorphous chains separating
the crystallites. In the polymer electrospinning pro-
cess�several experimental parameters such as solvents,
concentration of the polymer solution, applied voltage,
surface energy, electrical conductivity, flow rate and hu-
midity play an important role in confining the morphol-
ogy of the resultant nanofibers [64,96-98].

Choice of system and parameters

Effect of applied voltage

In the electrospinning process, sub-nano diameter
polymer fibers can be produced when a high potential
difference is applied to a polymer drop suspended at
the tip of a capillary. The electrospinning process is af-
fected by a wide range of parameters, because of which
controlling the properties of the fibers is difficult.

Negative

Fiber

Syringe tip

Collector

Positive

Power supply

V

(b)(a) (c)(b) (c)

Fig. 1 Nanofiberous structures obtained by Electrospinning process. (a) Schematic diagram of electrospinning set up, (b)
FE-SEM and (c) HR-TEM image of high aspect ratio nanofibers. (Reprinted from [65] with the permission from Elsevier).
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Typically the polymer solution is taken in a capillary
and a high voltage power source is connected to gener-
ate an electric field between the tip of the capillary and
a grounded collector. The drop is held at the tip of the
capillary because of surface tension. As the voltage is
increased, the viscoelastic forces are overcome by elec-
tric forces because of which the droplet gets distorted.

The formation of ultrafine polyamide-6 nanofibers
were investigated by Nirmala et al. [65] by vary-
ing the applied voltages. They observed the web-like
nanofibers morphology of the electrospun polyamide-6
nanofibers at a certain applied voltage. As the applied
voltage was increased to 22 kV, more amount of surface
area to volume ratio nanofibers was well formed. The
formation of high aspect ratio nanofibers was strongly
bound in between the main fibers. High voltage is able
to generate more charges to the solution or droplet sur-
face located at the tip of the needle as well as larger
electrostatic forces, both of which stretch the jets fully
for the favorable formation of the ultrafine nanofibers
and completely split nano-nets. At the same time, too
high applied voltage, the formation of high aspect ratio
nanofibers was reduced and somewhat loosely bound to
the main fibers. Therefore, the applied voltage plays an
important role in forming the uniform fiber mats. Very
clear arrangements of ultrafine fibers strongly bound
with the main fibers were observed. The diameter of
the polyamide-6 nanofibers were observed to be in the
range of 75 to 110 nm, whereas the high aspect ratio
structures consisted of regularly distributed very fine
nanofibers with diameters of about 9 to 28 nm (Fig. 2).

To further support their claim, the presence of elec-
trically induced double layer in the micro-tip solution

was directly evidenced by the TEM observation which
further split-up in the formation ultrafine fibers in be-
tween the main fibers (Fig. 3). Generally, the poly-
mers bearing reactive functional groups may yield re-
actions of chemical exchange when they are mixed
with solvent, leading to the formation of block, seg-
mented, or random copolymers [99]. Formic acid, a
polar protic solvent with high dielectric constant and
low polarity is capable of attacking the lactam to pro-
duce a series of short chain oligomers, —CONH2−

+

and formate ions (HCOO−) [96]. The primary step
involves the hydrolysis of caprolactam to the amino
acid [H2N(CH2)5COOH]. The further reaction involves
either a direct ring-opening attack of amino acid on
caprolactam or a process in which the amino acid zwit-
terions, H3N

+(CH2)5COO−, undergoes a ring-opening
attack on the cyclic monomer [101]. Therefore, the
poly-electrolytic (for example, anionic, cationic and
zwitterionic products) polyamide-6 in formic acid was
attributed to the partial ionization of the amide groups
along the polymer chains. Furthermore, the electro-
spinning of polymer from highly polar solvents leads to
smaller fiber diameters. Consequently, the applied elec-
trostatic field can facilitate an increased mass through-
put of the solution from the spinneret. The results indi-
cated that the polyamide-6 showed an optimal balance
of interaction with the solvent and electrical conductiv-
ity of the polymer solution, ultimately resulting in high
aspect ratio nanofibers.

Further, to better understand the formation of this
peculiar morphology in between the main fibers with a
probable mechanism (Fig. 4). Too low applied voltage
(less than 12 kV) could not sufficiently ionize the

(a) (b)

(c) (d) (e)

Fig. 2 FE-SEM images of electrospun polyamide-6 produced with different applied voltages of (a) 15; (b) 17; (c) 19; (d) 22
and (e) 25 kV. (Reprinted from [65] with the permission from Elsevier).
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Fig. 3 High-resolution FE-SEM of electrospun polyamide-6 nanofibers ((a),(b)) and the HR-TEM images showing (c)
the high aspect ratio nanofibers formation during electrospinning process and (d) the magnified region of the double layer.
(Reprinted from [65] with the permission from Elsevier).

NH
CO

Micro-tip

Positive supply

Fig. 4 Schematic diagram showing the mechanism of elec-
trical double layer for the high aspect ratio nanofibers for-
mation in polyamide-6 (Reprinted from [65] with the per-
mission from Elsevier).

molecules, which was attributed to the generation of
bulk and elongated beads within the fiber mat. This
is because only a small proportion of the polymer
molecules (for example, CO and NH groups’ reaction
with free ions) can interact in the low applied voltage.
In other words, the solution was not sufficiently ion-
ized. Further increase in applied voltage (19 kV) can
just to initiate the splitting up of sub-nanofibers in be-
tween the main fibers. At an applied voltage of 22 kV,
the solution can be completely ionized. Although the
solution retains its overall electrical neutrality, the dis-
tributed charges inside the solution were subjected to

a spatially dependent electric field that may give rise
to electrical stresses [102]. The critical applied voltage
causes the formation of an electric double layer next
to the solid surface due to the poly-electrolytic behav-
ior of polyamide-6. Furthermore, the induced surface
charges can attract the counter ions from the solution.
At this stage, the ions in the double layer migrate and
drive further ionized solution. Thus, the electric dou-
ble layer become thinner and then the ionized solution
can be aligned as high aspect ratio structures in be-
tween the main fibers by relaxing the electrical stress.
The ions in the electric double layer interact with the
applied voltage, resulting in a nonlinear electro-osmotic
flow. This proposed mechanism is directly evidenced by
the TEM results in which the formation of double layer
and then split-up into ultrafine fibers (Fig. 3). At an
applied voltage greater than 22 kV, the solution can be
ionized more strongly and became electrically unstable
state. At this stage, these highly ionized particles could
not retain in between the main fibers to form the high
aspect ratio nanofibers. Rather, it detached and simply
escaped from the main fibers due to very high ionized
state. When we further increased the applied voltage,
we observed sparks due to uncontrollable generation of
ionized particles from the solutions.

Effect of inorganic salt

Recently, Barakat et al. [8] reported that the use of
inorganic salt and polymers to properly study the influ-
ence of salt nature, polymer solution and stirring time
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on the internal morphology of the electrospun nanofiber
mats. They have elaborately studied the effect of in-
organic salts (sodium chloride and calcium chloride)
addition on nylon 6, poly. (vinyl alcohol) (PVA) and
polyurethane. The salts of these metals might be uti-
lized to improve the general characteristics of the elec-
trospun polymer nanofiber mats by modification of the
internal structure. It was observed that the addition of
the inorganic salts resulted in the formation of multi-
layers spider-network morphology in nylon 6 and PVA
within the electrospun nanofibers mats. The metal-
lic acid (hydrogen hexacholorplatinate solution) led to
form trivial spider-nets within both of nylon 6 and PVA
nanofibers. On the other hand, for polyurethane, few
spider-nets were formed after salt addition due to the
low polarity of the utilized solvents (Tetrahydrofuran
and N,N-dimethylformamide).

The nature of sol–gel/polymer solution which has
been utilized by many researchers to produce metal
oxides nanofibers (Fig. 5(A)). The produced polymeric
nanofibers embed the ionically balanced sol–gel parti-
cles which were formed due to hydrolyzing and polycon-
densation of the utilized precursor, no spider-net had
been observed within the electrospun nanofiber mats of
such solutions (Fig. 5(B)). Therefore, calcination of the

electrospun nanofiber mat leads to complete elimina-
tion of the polymer and decomposition of the conden-
sate precursor to metal oxide in good nanofibrous shape
as so many researchers have concluded [103]. However,
it is expected that the utilized salt/polymer solution in
the present study might have the semblance (Fig. 5(C)).
With long mixing time, the ions randomly spread in
the solution and might attach with the polymer chains.
Therefore, electrospinning of such solutions can be in-
terpreted (Fig. 5(D)). As aforementioned, the instantly
formed nanofibers at the tip end would contain solvent,
and it is expected that these nanofibers are not ion-
ically balanced. Consequently, one can say that the
different charges tinny electric poles which are gener-
ated in the nanofibers led to synthesize joints between
each two different charge poles (Fig. 5(D)). The elec-
tric poles can also present in the recently formed joints
which results in creating other connections between
these new joints. The low- and high-magnified FE-
SEM images of the resultant inorganic salt incorporated
nylon-6 nanofibers are shown in Fig. 5(b) and 5(c), re-
spectively. The synthesized joints finally shape the ob-
served spider-network within the electrospun nanofiber
mats (Fig. 6). This hypothesis can be supported by
TEM results.

Sol-gel
network

A

(a)

(b) (c)

B

C D

Polymer solution Tip end

Salt ions

Spider-net fibers

Main fibers

(b) (c)

500 nm 100 nm

Fig. 5 Schematic diagram showing the mechanism of inorganic salt addition for the spider-net nanofibers (a) and the
FE-SEM images of nylon-6 with H2PtCl6 salt ((b),(c)). (Reprinted from [8] with the permission from Elsevier).
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100 nm

(a) (b)

100 nm

Fig. 6 HR-TEM images of ultrafine nanofibers with NaCl salt. (Reprinted from [8] with the permission from Elsevier).

Effects of solvents

To investigate the electrospinnability and the for-
mation of high aspect ratio nanofibers in polyamide-
6, various solvents have been employed in the form
of single and double solvent systems. The formation
of ultrafine polyamide-6 nanofibers were extensively
analyzed using various solvents including formic acid,
dichloromethane, acetic acid, chlorophenol, hexafluo-
roisopropanol and trifluoroacetic acid via single and
mixed solvent system. Generally, the polymers bear-
ing reactive functional groups may yield reactions of
chemical exchange when they are mixed with solvent,
leading to the formation of block, segmented, or ran-
dom copolymers [99]. The electrospinning of polymer
from highly polar solvents leads to smaller fiber diam-
eters. Formic acid has high dielectric constant which
can be reflected in the polarity of the molecule. Con-
sequently, the applied electrostatic field can facilitate
an increased mass throughput of the solution from the
spinneret. The electrical conductivity was dramatically
increased when the polyamide-6 was mixed with formic
acid demonstrating that enhanced amounts of free ions
in the solution. Well-aligned uniform shaped electro-
spun polyamide-6 nanofibers were formed with formic
acid. This high surface to volume ratio nanofibers was
achieved with the use of a new solvent system that in-
volves an acid base reaction to produce weak complexes
which serves to increase the conductivity of the poly-
mer solution. Additionally, the weak complex formed
dissociates easily and evaporates along with the solvent
during the electrospinning process [104].

The electrospun nanofibers of 22 wt% polyamide-6
produced with formic acid and dichloromethane. It was
observed that ribbon shaped fibers along with cylindri-
cal fibers. The diameter of ribbon shaped fiber was
higher than that of the cylindrical fibers. The reason
for the formation of this ribbon shaped fibers is due to
the fast evaporation of the solvent during the electro-
spinning process [105], resulting in the formation of a
solid skin that shrinks and collapses upon the evapora-
tion of the remaining solvent.

Electrospinning with two different ratios 3:2 and 4:1
of formic acid and acetic acid, respectively, to check for

the high aspect ratio nanofibers (Fig. 7). The resulting
electrospun fibers were uniform in dimension and had
a smooth surface morphology. The high aspect ratio
fibers were not strongly bonded with the main fibers. A
possible explanation may be due to the lower dielectric
constant and surface tension with those of formic acid.
Both solvent systems were successfully able to produce
electrospun composites. However, the uniformity of the
fiber was improved and the size of the fiber was slightly
increased in the solvent combination of formic acid and
acetic acid.

Electrospun nanofibers of 22 wt% polyamide-6 pro-
duced with formic acid and chlorophenol can also
be produced very less amount of high aspect ratio
nanofibers. The diameter of the main fibers was slightly
increased than that in the previous cases. However, the
chlorophenol single solvent system can also be used as
good solvent for polyamide-6. However, this solvent
system did not produce high aspect ratio nanofibers in
polyamide-6 owing to the very low conductivity (0.042
mS/m). It is possible to obtain uniform nanofibers
by adjusting experimental parameters such as the so-
lution concentration, applied voltage, etc. Hexafluo-
roisopropanol is an acidic alcohol and due to its strong
hydrogen bonding properties it can be used as a sol-
vent for many different kinds of polymers. Using this
solvent, though it was electrospinnable, the resulting
polyamide-6 fibers were observed to be thicker. This
result is attributed to the high density of this solvent,
which tend to a high viscosity and, consequently, the
electrospun fibers showed the highest diameter values.
The electrospun polyamide-6 nanofibers from hexaflu-
oroisopropanol solvent system had more point-bonded
junctions. We could not obtain the high aspect ra-
tio nanofibers for this solvent system. Trifluoroacetic
acid is the simplest stable perfluorinated carboxylic acid
chemical compound. It is a strong carboxylic acid due
to the influence of the electronegative trifluoromethyl
group. Trifluoroacetic acid is more acidic than acetic
acid. Surprisingly, we did not observe any nanofibers
using this solvent. A likely explanation may be due
to the strong acidic nature of trifluoroacetic acid that
caused a drastic reduction in the molecular weights
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(a1) (a2)

(b1) (b2)

(c1) (c2)

Fig. 7 FE-SEM images of electrospun polyamide-6 nanofibers produced with (a) formic acid + dichloromethane (3:2), (b)
formic acid + acetic acid (3:2) and (c) formic acid + acetic acid (4:1); (1) low magnification and (2) high magnification.
(Reprinted from [64] with the permission from Springer).

Table 1 Properties of electrospun ultrafine polymer nanofibers

Materials Solvent Key Factor
Ultrafine Nanofiber

Diameter (nm)
Reference

Polyamide 6 Formic acid Applied voltage 8-40 65

Polyamide 6 Formic acid + Dichloro Methane (3:2) Solvent 13-34 64

Polyamide 6 Formic acid + acetic acid (3:2) Solvent 8-38 64

Polyamide 6 Formic acid + acetic acid (4:1) Solvent 8-32 64

Polyamide 6 Formic acid + Chlorophenol (1:1) Solvent 8-30 64

Polyamide 6/Chitosan Formic acid Solvent 20-40 64

Polyamide 6/Lecithin Formic acid Solvent 10-30 64

PAN/nylon 6 Formic acid + acetic acid (4:1) Monomer 20 108

PAA/Nylon 6 Formic acid Monomer 19 72

Nylon 6 Formic acid + acetic acid (4:1) Inorganic salt 10-30 8

PU THF+DMF Inorganic salt 10-30 8

PVA Water Inorganic salt 10-30 8

PAA Water + ethanol Humidity, applied voltage 10-20 71

Nylon 6 Formic acid Humidity, applied voltage 10-20 71

PVA/ZnO Water + zinc acetate solution Metal oxide 25-50 71

Nylon 6/TiO2 Formic acid + acetic acid (4:1) Metal oxide 30-50 109

Abbreviation in Table 4: PAN (poly acrylonitrile); PAA (polyacrylic acid); PU (polyurethane); PVA (poly vinyl alcohol); THF
(tetrahydrofuran); DMF (N,N-dimethylformamide); ZnO (zinc oxide).
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owing to the rapid increase of viscosity in the solu-
tion [96]. As a result of that the electrospinnability of
polyamide-6 with trifluoroacetic acid was not possible
which led to the formation of thin film like structure.

Table 1 summarizes the role of process parameters
on the formation of ultrafine polymeric nanofibers.
From these results, it is interesting to note that well-
aligned uniform electrospun nanofibers and high as-
pect ratio nanofibers (diameters in the range from 8 to
35 nm) of polyamide-6 can be produced from formic
acid and its mixture solutions. However, the other
single solvent system (namely, chlorophenol and hex-
afluoroisopropanol) except trifluoroacetic acid can also
be used as solvents for polyamide-6, in which the ex-
pected high aspect ratio nanofibers were not produced.
It is believed that the formation of high aspect ratio
nanofibers in polyamide-6 can strongly depend on the
poly-electrolytic behavior in the solvent. As a result,
the electrical conductivity of the polymer solution was
increased due to the formation of enormous free ions.
By changing the polymer concentration and solvent ra-
tio one can obtain high aspect ratio nanofibers with
uniform diameters.

Effect of humidity

Bin Ding et al. [71] have recently reported that the
formation of the nanowebs of poly(acrylic acid) (PAA)
and nylon-6 is considered to be due to the electrically
forced fast phase separation of the charged droplets
which move at high speed between the capillary tip
and the collector. During electrospinning process, the
forces acting on the charged droplet during the high
speed flight in the electric field. The forces include
electrostatic force, drag force, gravity, Coulombic repul-
sion force, surface tension and viscoelastic force. The
electrostatic force carried the charged droplet from the
capillary tip to the collector. The drag force acted
on the surrounding air and charged droplet moving at
high speed. Also, the deformation of the droplets into
films was attributed to the drag force. The Coulom-
bic repulsion force tried to expand the droplet. The
surface tension and viscoelastic forces led to the con-
traction of the charged droplet [106]. The electric field
could be increased by increasing the applied voltage
at a constant distance. Consequently, the electrostatic
and Coulombic repulsion forces of the charged droplet
were reinforced with increase in the strength of the elec-
tric field. The increased electrostatic force further ac-
celerated the movement of the charged droplet, which
led to an increased drag force. The distortion and ex-
pansion of charged droplet from a spherical-like to a
spindle-like structure in the electric field during elec-
trospraying was reported by Grimm and Beauchamp
[107]. The additional expansion could have happened
when the Coulombic repulsion and drag forces increased
along with the electric field from droplets. Moreover,

the increased radial charge repulsion force also had a
tendency to expand the charged films. As a result, the
deformation of charged droplet was strongly affected by
the electric field.

Effect of monomer

Parajuli and coworkers [72] have synthesized
poly(acrylic acid) monomer in a viscous supporting ny-
lon solution was polymerized and fabricated simultane-
ously via an electrospinning process (Scheme 1). The
acrylic acid polymerization is achieved via formic acid
reduction during the electrospinning process. Typi-
cally, formic acid loses a proton in the acrylic acid
solution because of the high acidity. Deprotonated
formic acid splits into CO2 and a hydride ion, which
works as a reducing agent [108,109]. If the hydride
ion attacks a β carbon of an α, β unsaturated car-
bonyl monomer (acrylic acid), group-transfer polymer-
ization can be initiated [110]. In the performance of
polymerization via electrospinning, it is difficult to con-
trol all parameters, such as the pressure, temperature,
and concentration; however, there is sufficient control
to allow for the investigation of structural, chemical,
and physical modifications of electrospun mats. In an
another study, Park et al. [111] have reported that
the poly(acrylonitrile) (PAN) nanofiber web interpene-
trated nylon-6 nanofiber supporters by electrospinning
of an acrylonitrile (AN)/nylon-6 solution.

Effect of metal oxide

Mixing of two materials at the nanoscale can form
a unique and effective multifunctional nanocomposite
material. It was reported that the TiO2 nanoparticles
can form spider-net like electrospun nylon-6 fiber mats,
which can lead to a remarkable increase in the number
of reactive sites with a corresponding improvement in
hydrophilicity, photocatalytic and antimicrobial activ-
ity [112,113]. It was also reported that the preparation
of a novel nylon- 6/TiO2 organic–inorganic nanocom-
posite material in the form of an electrospun mat, con-
taining two distinct types of fibers (nano and sub nano-
sized) loaded with TiO2 nanoparticles, with superior
mechanical strength, high hydrophilicity, and good an-
timicrobial as well as UV blocking ability. This spider-
net like nano-structure mat with antimicrobial and
hydrophilic properties (antifouling effect) would have
great potentiality for water filter applications. Fur-
thermore, the good UV blocking capacity and improved
mechanical strength of electrospun mat is highly ben-
eficial for different kinds of protective clothing. More-
over, our research group have recently reported that
the electrical characterization of the polyamide-6/TiO2

composite nanofibers showed a pure resistive behavior
of the conductive nanofibers and a good stability of the
as-spun nanostructures [114,115]. This significant
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Scheme 1 Synthesis of poly(acrylic acid) monomer (Reprinted from [72] with the permission from ACS)

enhancement of electrical properties of these
polyamide-6 composite nanofibers can be utilized
for quite promising future nanotechnological appli-
cations. This observation will continue to drive re-
searchers toward developing future organic based nano-
devices.

In another study, it was describe that a novel method
to prepare superhydrophobic ZnO surfaces by the com-
bination of electrospinning technique and a wet chem-
ical route, which is simple and straightforward [68]. It
shows a very good experimental reproducibility and can
produce nanostructured surfaces at a large scale. Here,
the fabrication of super-hydrophobic ZnO surfaces is
composed of two steps. First, the ZnO nanostructured
surface was formed by the calcination of composite
nanofibrous films which obtained via electrospinning.
Then the as-prepared rough surface was modified by
fluoroalkylsilane coating to obtain a super-hydrophobic
surface. Additionally, the wettability of pure polymer
and composite nanofibrous film surfaces was also inves-
tigated.

Application of ultrafine polyamide-6

nanofiber membranes

Nanostructures are attractive materials for
nanoscience studies as well as nanotechnological ap-

plications. The unique feature of elestrospun ultrafine
nanofiber, compared to other low dimensional systems,
are that have very small diameters, extremely long
length, large surface area per unit mass and small pore
size. The attractive properties of 1D system arise from
their unique chemistry and physics. Nanostructured
nanofibers systems are promising for diverse applica-
tions, such as the transport and targeted release of
drugs and active agents in organisms, tissue engineer-
ing, the surface modification of implants, and wound
healing.

Presently, most patents on electrospinning are fo-
cused on applications rather than on new materials or
on new processes. Commercialized applications were
accomplished by several companies worldwide in spe-
cialty filters (air filtration, coalescence filters) with an
increasing market in the coming years. Tissue engineer-
ing is going to be another successful field of applications
for electrospun biodegradable nanofibers (e.g., PLA)
because cells including stem cells grow well on these
nanofibers. An additional plus is the large potential for
loading of electrospun nanofibers by biologically active
agents ranging from salts to drugs and proteins. Pro-
tective clothing, in particular in combination with spe-
cial reagents, is expected to enhance the performance of
military protective clothing. The main focus here is on
trapping of aerosols of chemical and biological warfare
agents.
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Sensors

The remarkable high surface area-to-volume ratio,
small diameter and high porosity bring electrospun
nanofibers highly attractive to ultrasensitive sensors
and increasing importance in many technological appli-
cations. The formation of denser ultrafine nanofibers
with addition of chitosan content showed a great im-
provement in I-V characteristics [70]. For example, the
excess chitosan possibly enveloped the ultrafine fiber
networks in between polyamide-6/chitosan composite
nanofibers with different concentration of chitosan can
be enhanced the electrical pathways (Fig. 8). Further,
a significant enhancement of the electrical conductance
was observed for the samples of composite nanofibers
than that of the pristine polyamide-6 nanofibers. This
observation can be explained by the charge compen-
sation of the major charge carriers in the composite
nanofibers. Consequently, the electrical conductivity
of the polyamide-6/chitosan composite nanofibers was
prepared with 2 wt% chitosan exhibited the maximum

current of 0.4 pA. It is also believed that the enhanced
porosity of these composite nanofibers can be utilized
for the biosensor applications with improved perfor-
mance and sensitivity.

Recently, Wang et al. [116] have demonstrated a sim-
ple and straightforward strategy of depositing a nanos-
tructured complex, based on a polyethyleneimine func-
tionalized polyamide-6 nanofibers, on a quartz crys-
tal microbalance sensor for humidity detection (Fig. 9).
The polyamide-6 nanofiber substrate, comprising com-
mon electrospun nanofibers and spider-web-like nano-
nets fabricated by a versatile electrospinning process,
exhibits several fundamental characteristics, such as
a remarkable specific surface area, high open porosity
and good interconnectivity. The frequency changes by
approximately three orders of magnitude with relative
humidity varying from 2% to 95%. Finally, they pre-
sented the polyethyleneimine functionalized polyamide-
6nanofibers with relatively small hysteresis and long-
term stability.
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Cell culture scaffolds

Polyamide-6 is commercially important, and one of
the prominent members of the polyamides which has
polymorphic, biodegradable, biocompatible and syn-
thetic polymeric material with good mechanical and
physical properties. Recently, we have reported one
step synthesis of polyamide-6/lecithin homogenously
blended nanofibers via electrospinning for osteoblas-
tic cell culture applications [117]. These as-spun
polyamide-6/lecithin nanofibers exhibited a smooth
surface and uniform diameters along their lengths. The
fine nanofiber structure resulted in a large surface area-
to-volume ratio and interconnected porosity (Fig. 10).
Human osteoblast cells were utilized for this analy-
sis. The cells spread over the scaffold fibers, linked
with fibers by cytoplasmic extensions (Fig. 11). In tis-
sue culture, cell-based tissue engineering is one of the
principle research areas. The ability of the cell to re-
generate bone was developed by in vitro cell expan-
sion method (Fig. 12). These results suggested the
polyamide-6/lecithin composite nanofibers can be uti-
lized for bone regeneration if we increase the mechanical
strength of the scaffold by layer-by-layer deposition of
polymer fibers. However, these polyamide-6/lecithin

composite nanofibers can be used to engineer living
tissue in vitro for subsequent transplantation to the
defect sites. In an another study, the same authors
have reported that the formation of high aspect ratio
nanofibers in polyamide-6/chitosan composites and the
in vitro cytotoxic analysis based on the peculiar spider-
net like structures [118].

Photocatalytic membranes

The efficiency of free TiO2 nanoparticles in a polymer
matrix is almost same, which confirms that the surface
area of the TiO2 nanoparticles does not significantly
decrease upon the incorporation of the nanoparticles
into the polymer fiber [112]. For this purpose, a used
fiber mat was kept in water for 7 days and reused after
washing five times with distilled water. Then the photo
degradation of methylene blue dye was carried out un-
der the same conditions as before. The efficiency of
the reused mat is nearly similar to that of the initially
used mat. A slight decrease in the photocatalytic effi-
ciency of the reused mat was observed, which may be
due to the deposition of byproduct particles on the sur-
faces of the NPs. Initially, the efficiency of the reused
nanofibers was less than the initially used one, but after
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some time it was nearly equal, which indicates the pres-
ence of some foreign particles in the used mat. More-
over, the change in shape of the Ag nanoparticles due
to the intense solar radiation may be the cause of de-
creased photocatalytic efficiency.

Multi-component textile material

The mixing of these two materials at the nanoscale
can form a unique and effective multifunctional
nanocomposite textile material. It is expected that the
TiO2 nanoparticles can form spider-net like electrospun
nylon-6 fiber mats, which can lead to a remarkable

increase in the number of reactive sites with a corre-
sponding improvement in hydrophilicity, photocatalytic
and antimicrobial activity. This spider-net like nano-
structure mat with antimicrobial and hydrophilic prop-
erties (antifouling effect) would have great potential-
ity for water filter applications [113]. Furthermore, the
good UV blocking capacity and improved mechanical
strength of electrospun mat is highly beneficial for dif-
ferent kinds of protective clothing.

Concluding remarks

Polymer nanofibers with high aspect ratio structure

(a) (b)

(c) (d)

Fig. 10 FE-SEM images of electrospun polyamide-6/lecithin nanofibers with different wt.% of lecithin (a) 0; (b) 1; (c) 3
and (d) 5 wt%. (Reprinted from [117] with the permission from Elsevier).

(a) (b)

(c) (d)

Fig. 11 SEM image of the cell growth on electrospun polyamide-6/lecithin nanofibers containing different concentration of
lecithin with (a) 0; (b) 1; (c) 3 and (d) 5 wt%. (Reprinted from [117] with the permission from Elsevier).
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were successfully produced by electrospinning tech-
nique. Electrospinning has potential advantages in
cost, simplicity and innovation in preparing polymer
nanofibers with controllable nanostructures for the in-
dustrial and biological applications. The large sur-
face area to volume ratio polyamide-6 and their com-
posite nanofibers with diameters less than 50 nm can
be achieved. This review collectively summarizes the
process feasibility for the formation of ultrafine poly-
meric nanofibers with variety of parameters such as
with and without additives. Further, we explored the
prominent application point of view with these ultrafine
polyamide-6 based nanofibers. We believe that this top-
ical review will definitely open new directions as per the
nanotechnological applications are concerned. We an-
ticipate that the continuous research activities on these
ultrafine polymeric nanofibers can significantly progress
towards the rapid improvements based on the next gen-
eration nano-device applications.
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