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Abstract: Magnesia (MgO) nanoparticles were produced from magnesite ore (MgCO3) using ball mill. The

crystalline size, morphology and specific SSA were characterized by X-ray diffraction analysis, transmission

electron microscopy and Brunauer-Emmett-Teller method, respectively. MgO nanoparticle-incorporated nylon

6 solutions were electrospun to produce nanofiber mats. Surface morphology and internal structure of the pre-

pared hybrid nanofiber mats were examined by scanning electron microscopy and high-resolution transmission

electron microscopy, respectively. The fire retardancy and antibacterial activity (Staphylococcus aureus and

Escherichia coli) of coated fabrics made from MgO/nylon 6 hybrid nanofiber are better than those from nylon

6 nanofiber.
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Introduction

Nanostructured materials such as nanowires,
nanorods, nanospheres, and nanofibers are gaining
popularity among polymer researchers and industri-
alists because of their excellent functional properties
in textile applications [1,2]. Nanometal oxides incor-
porated into textile fabrics can improve their multi-
functional properties such as flame retardancy, UV
protection, self-cleaning, antistatic and antimicrobial
activities [3]. Although polymeric materials used in
textile fabrics can enhance their functional properties,
polymeric nanofibers were used as a protective barrier
on the textile fabrics for many applications such as
wound dressing, air filteration, tissue scaffold, sensors,
and fire retardancy [4-7].

Nanofibers have been generally produced through
nanospider technology adapted in electrospinning tech-
nique [5]. Electrospinning is one of the simplest and
most versatile methods to fabricate nanofibers with

high specific surface area (SSA) and high porosity [5].
The electrospun nanofibers with superior properties
were obtained by controlling the diameter (100-1000
nm) and distribution of the fibers [4,5]. The complex
architectures, for example, core-shell, porous and hol-
low structures, were formed through incorporation of
nanoparticles into fibers and polymer blends [8-11]. Re-
cently, organic/inorganic hybrid materials have shown
remarkable performance in multifunctional, mechani-
cal, and physical properties for nanofibers [12,13].

Attempts have been made to incorporate nanoparti-
cles into spun fibers to enhance their properties such
as fire retardancy and antimicrobial activities. Poly-
mers, for example, polyamide (PA), polyvinyl alcohol
(PVA), polyurethane (PU), polypropylene (PPy), and
their composites had been treated to enhance the flame
retardancy of fabrics [14]. The biodegradable polyelec-
trolytic nylon 6 is one of the unique polymer materials
widely used in textile industries due to its high me-
chanical, antimicrobial, thermal, and physical proper-
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ties [15]. Extensive studies have also been carried out
to understand the physical, mechanical, and thermal
properties of PA or nylon 6 embedded with nanoparti-
cles such as MgO, SiO2, TiO2, ZnO, and ZrO2 [16,17].
Similarly, nanometal oxides were incorporated as an ad-
ditive to polymer matrix and used for multifunctional
textile applications such as flammability, UV protec-
tion, and antibacterial activities [17]. Among these
nanometal oxides, MgO nanoparticles are of great in-
terest because of their excellent thermal conductivity,
heat resistance, and antimicrobial properties. Gener-
ally, MgO nanoparticles were fabricated via chemical
methods such as sol-gel, sonication, and flame spray
pyrolysis [18-20]. Their composites with polymer ma-
trix were found to improve the mechanical strength and
stiffness of the nonwoven fabrics, etc [21].

This investigation is aimed to synthesize and char-
acterize the MgO nanoparticles from natural resource
(magnesite ore) and to incorporate the particles into
nylon 6 nanofibers. The functional properties, such as
flame retardancy, of MgO/nylon 6 hybrid nanofibers
coated on cotton fabrics, and their antibacterial activi-
ties against Staphylococcus aureus and Escherichia coli,
were explored.

Experimental section

Materials

The natural mineral of magnesite ore (MgCO3;
Salem, Tamil Nadu, India), nylon 6 ((C6H11NO)n;
Sigma 99.9%, MW: 113.16 g/mol), formic acid (Merck,
99.9%), and acetic acid (Merck, 99.9%) were used for
the production of MgO nanomaterials. The horizontal

electrospinning apparatus, which consists of a plastic
syringe positioned horizontally with its metal needle,
a specifically controlled syringe pump (Cole-Parmer,
USA), a high-voltage power supply capable of 0-50 kV
(Best Mech, India), and rotating grounded collector,
was used to produce the nanofibers.

Synthesis and characterization of MgO nanopar-

ticles

Soft aggregates of calcined (600℃) magnesia (MgO)
samples were prepared by mechanical grinding (PM100;
Retsch, Germany) in dry state (shown in Fig. 1). The
samples containing 5 g MgO microparticles were placed
in the zirconia grinding container with a protective
jacket and ground with 20 balls at 500 rpm for 3 h.
After milling, the particles were collected and dried for
1 h in vacuum.

The samples were characterized by X-ray diffraction
(XRD; X’Pert PRO; PANalytical, Almelo, the Nether-
lands) spectrometer using CuKα as a radiation source
(λ = 0.1560 nm). The average crystallite size of MgO
particles was determined by the Scherrer formula [22].
The SSA of the particles was measured on Brunauer–
Emmett–Teller (BET) SSA analyzer (Autosorb AS-
1MP; Quantachrome, Boynton Beach, FL). The sample
was degassed for 3 h at 295℃ and then performed with
N2 adsorption measurements at liquid nitrogen tem-
perature. The as-prepared MgO nanoparticles were dis-
persed in water media at a concentration of 0.1 wt% and
ultrasonic treated for 5 min. The particle size distribu-
tion was measured by dynamic light scattering tech-
nique using Particle Size Analyzer. The morphology
and primary particle size of the nanoparticles were
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Fig. 1 Scheme for MgO nanoparticle preparation.
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analyzed using transmission electron microscopy
(TEM; JEM-2100F; JEOL, USA) along with selected
area electron diffraction (SAED).

Fabric substrate

Mercerized and bleached cotton fabric was used as
the textile substrate. It has a plain woven structure
with 138.84 g/m2 of mass, 100 s of warp yarn count,
and 110 s of weft yarn count. The fabric was cut into
approximately 15 cm × 20 cm pieces and washed twice
with 1 wt% of NaOH solution and then with de-ionized
water. The cleaned cotton fabric was dried at 35℃ for
3 min.

Coating of nanofibers on cotton fabric

Nylon 6 pellets were dissolved in a mixture of formic
acid and acetic acid with a molar ratio of 3:1 at a con-
centration of 10 wt%. MgO nanoparticles (5 wt%) were
added into the prepared homogenous nylon 6 polymer
solution with continuously stirring at 400 rpm at room
temperature. Then, the solution was loaded into sy-
ringe of the electrospinning machine and placed on a
syringe pump at a constant feed rate of 0.09 mL/h to
fabricate Nylon 6 and MgO/nylon 6 hybrid functional
nanofibers, as shown in Fig. 2. During the electrospin-
ning process, the distance between Taylor cone of the
needle and collector (cylindrical drum) was fixed as 18
cm. A 0.07-mm-diameter syringe needle was positively
charged using 18-kV high-voltage power supply to spin
the fiber mats. The negative terminal connected to
the collector made up of cotton fabric-rolled cylindrical
drum to lead to the formation of long thread with ho-
mogeneity. The nanofiber-collected drum was rotated
with a constant speed of about 35 rpm at a fixed point
for uniform coating on cotton fabrics. The approximate
width of the nanofibers coated on the cotton fabric is
9 cm, which was constant throughout the experiment.
When the viscous polymer solution was ejected from the
Taylor cone because of the electrostatic force, the sol-
vent was decomposed and then evaporated. A bunch of
long thread was collected on the drum that was ground.

Similarly, MgO/nylon 6 (1:2 wt%) hybrid nanofibers
were coated on cotton fabric using the above procedure.
All the experiments were carried out at room tempera-
ture. The deposited nanofibers stick on cotton fabrics
was performed at 60℃ for 1 min under a pressure of 5
gf/cm2. Hereafter, the uncoated, nylon 6-coated, and
MgO/nylon 6-coated hybrid fabrics were respectively
termed as UC, N6C, and MN6C. The nanofiber coated
fabrics (N6C, MN6C) were used for further studies.

The viscosities and ionic conductivities of the pre-
pared nylon 6 and MgO/nylon 6 solutions were mea-
sured using viscometer (SNB-4;hinotek, Korea) and
conductivity meter (Orion 5-Star, Thermo Scientific,
USA), respectively. The surface morphology and ele-
mental analysis of nanofibers were studied using scan-
ning electron microscopy (SEM; JED-2300; JEOL,
Japan) coupled with energy dispersive spectroscopy
(EDS). The diameter of nanofiber was measured us-
ing a digital image analysis software (ImageJ; NIH,
Bethesda, MD, USA). To obtain the TEM image of
spun nanofiber, the fiber was deposited onto copper
grid using the electrospinning technique. The deposited
fibers on copper grid were dried and observed by high-
resolution TEM (HRTEM; JEM-2100; JEOL, USA) im-
age. Air permeability (Premier, India) of nanofibers
was measured according to IS:11056-1984 and DIN
53887 standards. Tear strength was measured using the
falling pendulum-type (Elmendorf) apparatus for ac-
ceptance testing machine (ETY001; Texcare, India) ac-
cording to the ASTM D1424:2007. Tensile strength was
measured using the strip method for taking test ma-
chine (E091; Eureka, India) in accordance with ASTM
D76-99. The fire resistance property of uncoated and
coated fabrics was analyzed using flame tester (Auto
Flame I; Premier) at an angle of 45◦ in accordance with
ASTM D1230-97.

Antibacterial activity

Test bacteria, E. coli (ATCC 9677) and S. aureus

(ATCC 6538P) obtained from the National Collec-
tion of Industrial Microorganisms (NCIM) of National
Chemical Laboratory in India, were maintained in
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Fig. 2 Scheme for Electrospinning set-up.

48



Nano-Micro Lett. 6(1), 46-54 (2014)/ http://dx.doi.org/10.5101/nml.v6i1.p46-54

nutrient agar (HiMedia, Mumbai, India) slants at 310
K for 24 h. Antimicrobial activity was screened follow-
ing Kirby–Bauer method (1966) using Mueller–Hinton
agar (MHA) medium (HiMedia). The MHA plates were
prepared by pouring 15 mL molten media into sterile
petri plates. The plates were allowed to solidify for
about 5 min and a 0.1 mL inoculum was swabbed uni-
formly over the agar till becoming invisible. UC, N6C,
and MN6C fabrics were loaded over the plate followed
by incubation at 310 K for 24 h. At the end of incuba-
tion, plates were observed for inhibition zones around
the mat. Then, the inhibition zone was measured us-
ing transparent ruler (in millimeter). The study was
performed in triplicates.

To evaluate the influence of MgO in nylon 6
nanofibers, we carried out quantitative analysis of an-
timicrobial activity based on the AATCC test 100-207
(AATCC 2007). The colony-forming unit (CFU) was
evaluated by colony counter. Nutrient broth (100 mL)
was prepared, and the samples named UC, N6C and
MN6C were introduced. Then, the cultured S. aureus

and E. coli were inoculated in the above nutrient broth
followed by incubation at 37℃ for 2 h. After the incu-
bation period, the inoculums from treated broth tubes
were inoculated in freshly prepared nutrient agar plates
followed by incubation at 37℃ for 24 h and were mea-

sured using CFU [23].

Result and discussion

Figure 3(a) shows the powder XRD pattern of the
as-prepared MgO nanoparticles obtained after calcina-
tions at 600℃. The patterns are in good agreement
with the standard diffraction data of MgO nanopar-
ticles (JCPDS file No. 89-7746). The broaden peaks
observed at (111), (200), (220), (311) and (222) diffrac-
tion planes reveal the cubic phase of MgO nanoparti-
cles. The crystallite size of 13.56 nm was estimated
using Scherer equation.

Figure 3(b) shows the particle size distribution of the
MgO nanoparticles in the range of 22 (d10) to 158 nm
(d90) and a mean diameter was about 58 nm (d50). The
particle size with short flake-like morphology was also
confirmed by TEM image (Fig. 3(c)). The SAED pat-
tern shows the concentric ring in the diffraction pat-
tern indicating a polycrystalline structure. BET plot
of MgO nanoparticles shown in Fig. 3(d) confirms that
the SSA of MgO nanoparticles is 124.3 ± 6.05 m2/g.

The ionic conductivity and viscosity of nylon 6 and
MgO/nylon 6 solutions were measured at room temper-
ature. The obtained results indicate that the viscosity
of nylon 6 solution (107 ± 5 cP) was higher than
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BET plot.
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that of the MgO/nylon 6 solutions (103 ± 5 cP). More-
over, the ionic conductivity of nylon 6 solution was in-
creased from 3.5 to 3.8 ± 0.1 with addition of MgO
nanoparticles (5 wt%). Generally, both ionic conduc-
tivity and viscosity parameters of the polymeric solu-
tion are helpful in determining the formation of homo-
geneous nanofibers with controlled size [24].

The XRD patterns of UC, N6C, and MN6C fabrics
are shown in Fig. 4. The diffraction peaks observed
at 16.52◦, 22.82◦ and 34.58◦ represent the presence of
cellulose on UC (Fig. 4(a)), N6C and MN6C fabrics,
respectively (JCPDS file No. 3-0226) [25]. The crys-
talline peaks at 21.02◦ and 24.07◦ reveals existence of
N6C fabrics (Fig. 4(b)) [26]. In Fig. 4(c) the diffraction
peaks at 36.8◦, 42.8◦, 62.7◦ and 78.7◦, corresponding
to crystal planes of (111), (200), (220) and (222) with a
cubic structure of MgO (JCPDS file no. 89-7746), con-
firm the existence of MgO nanoparticle after coating on
the cotton fabrics.
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Fig. 4 XRD analysis of (a) UC fabric; (b) N6C fabrics; and
(c) MN6C fabrics.

Figure 5 shows the FTIR–ATR spectra of UC, N6C
and MN6C fabrics. The peaks observed at 3342, 2883
and 1458 cm−1 correspond to the stretching modes of
O–H and CH2. The peak at 1642 cm−1 reveals the
bending mode of water molecules (H–O–H) in all the
fabrics. The band at 1107 cm−1 corresponds to the
asymmetric stretching of glucose ring, whereas, the
bands at 1026 and 1166 cm−1 correspond to the C–
O stretching mode of cellulose [27]. In this study, the
above observations are the same in uncoated and coated
fabrics. However, the strong hydrogen bond formation
of nylon 6 nanofibers and some ionic groups in cotton
fabrics are confirmed from the FTIR spectra. Figure
5(b) and 5(c) show that the CH2 bond along with amide
I and III peaks take respectively place at 1652 (amide
I), 1202, 1271 and 1363 cm−1 in N6C fabrics [6]. The
peaks at 486 cm−1 in Fig. 5(c) reveal the existence of
MgO nanoparticles in MN6C fabrics.
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Fig. 5 FTIR-ATR analysis of (a) UC fabric; (b) N6C fab-
rics; and (c) MN6C fabrics.

Figure 6 shows the SEM images, size distributions
and EDS patterns of nylon 6 and MgO/nylon 6 hybrid
nanofibers, respectively. The fibers of nylon 6 is uni-
formity with an average diameter of 210 nm, whereas,
it is 220 nm for MgO/nylon 6 hybrid nanofibers. The
diameter and homogeneity of the fibers are almost unaf-
fected with increasing MgO nanoparticle concentration.
The TEM images of nylon 6 nanofibers and MgO/nylon
6 hybrid nanofibers are shown in Fig. 7. It was found
that MgO/nylon 6 nanofibers had a core-shell structure
and MgO nanoparticles existed inside the cylindrical
nanofibers.

Air permeability is one of the important parameters
when spun nanofiber mats are used for protective appli-
cations. Generally, the fabric thickness and its porosity
play a virtual role to determine the air permeability of
the textile fabrics [28]. The cross-section view of N6C
and MN6C fabrics is shown in Fig. 8. The air perme-
ability values of UC, N6C and MN6C fabrics are given
in Table 1 for comparison. It can be seen that the air
permeability values of MN6C fabrics are slightly less
than those for N6C fabrics. However, a considerable
reduction is observed in MN6C compared with UC fab-
rics. Normally, the air permeability of the cotton fabric
decreases with increasing the thickness of the coating
on fabric surface, which are in agreement with the lit-
erature report [28,29].

Table 1 Physical properties of UC, N6C and MN6C

fabric

Sample

name

Tear

strength (gf)*

Tensile strength

(pounds)# Air permeability$

(cc/sec/cm2)
warp

yarn

weft

yarn

warp

yarn

weft

yarn

UC 440.6 358.8 92.8 88.6 84.513

N6C 458.8 364.2 96.8 93.4 53.428

MN6C 462.3 366.4 110.4 98.2 50.624

∗#error: ± 0.1, $error: ± 0.003
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Fig. 7 TEM images shows the comparison of complex internal structure of nanofibers.

The tensile and tear strengths of UC, N6C and MN6C
fabrics shown in Table 1 are both in longitudinal and
transverse directions. The interstices (warp and weft
yarn) values of MN6C fabrics are increased compared
with those of N6C and UC fabrics. The observation
is in line with our earlier studies in which the tensile
and tear strengths of the nanofiber-coated cotton fab-
rics increased gradually due to the reduced mobility of
nanofibers [30].

Average flammability test of five specimens is used
to find out the flammability of UC, N6C and MN6C
fabrics (shown in Fig. 9). The burning time for MN6C
fabrics (18.5 s) is higher than that for N6C (15.4 s)
and UC (6.3 s) fabrics. The increase in burning time
for MN6C fabric may be due to the addition of MgO
nanoparticles. In Fig. 9(a), some residual carbon was
observed on MN6C fabrics even after testing the flame
for 18.5 s. This result confirms that addition of MgO

nanoparticles to MN6C fabrics can enhance the flame
retardancy. This observation is in line with our earlier
studies that the overall flame retardancy performance
of coated fabrics is higher than that of the UC fabrics
[16,31]. Although N6C fabrics showed an increase in
flame retardancy compared with UC fabrics, the ob-
served burning time is less than that of MgO-coated
nanofabrics (MN6C).

The antimicrobial activity of UC, N6C and MN6C
fabrics is determined by the inhibition zone formed on
agar plate, which is shown in Fig. 10. A significant re-
duction in the bacterial growth is found in MN6C fab-
rics than in N6C and UC fabrics by the Kirby–Bauer
method [32]. The control sample of UC fabric shows no
antibacterial activity (the presence of colonies is seen on
the surface, thus indicating bacterial growth) against E.

coli and S. aureus. The N6C and MN6C cotton fabrics
placed on the bacteria-inoculated surfaces killed all the
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bacteria under and around the region of the fabric. It
also shows the distinct zone of inhibition around N6C
and MN6C fabric samples for both E. coli and S. au-

reus. The higher antibacterial activity is attained in
hybrid nanofibers (MN6C) with an inhibition zone of
18 mm against S. aureus, whereas, N6C fabrics show
an inhibition zone of 12 mm. Similarly, a large inhibi-
tion zone is formed by MN6C fabrics with a diameter
of 15 mm against E. coli. Hence, the incorporation of
MgO nanoparticles in nylon 6 nanofiber causes better
antibacterial activity against both E. coli and S. aureus.

Moreover, the quantitative bacterial reduction of UC,
N6C and MN6C fabrics is also studied. The observed
results are calculated by the AATCC 100 method and
are tabulated in Table 2. These results (after 24 h)
clearly show that the UC fabric has no reduction in
the bacterial growth. The MN6C fabric shows greater
bacterial reduction percentage when compared to the
N6C fabric. N6C fabric shows 41% and 38% for both
S. aureus and E. coli. The MN6C fabric shows 67% re-
duction against S. aureus and 63% reduction against E.

coli. Among the coated fabrics, it is clearly noted that
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MN6C fiber has enhanced surface-protective properties
through antibacterial activity. Thus, the broad range
of antimicrobial effect is exerted by the fabrics coated
with MgO/nylon 6 hybrid nanofibers.

Table 2 Antibacterial activity results of UC, N6C

and MN6C fabric

Bactria
Sample

name

No. of colonies

Reduction

(%)
At ‘0’ time

contact

After 24 h

time contact

Staphylococcus

aureus

(Gram +ve)

UC 0 141 ± 0.4 0

N6C 0 82 ± 0.2 41

MN6C 0 46 ± 0.1 67

Escherichia coli

(Gram-ve)

UC 0 136 ± 0.3 0

N6C 0 84 ± 0.2 38

MN6C 0 51 ± 0.1 63

Conclusion

The incorporation of MgO nanoparticles on Nylon
6 matrix was successfully carried out by an electro-
spinning process. The physical and functional proper-
ties of MN6C fabrics were explored and compared with
those of N6C and UC fabrics. This study confirms that
MN6C fabrics have good flame resistance and antibac-
terial activity against Gram-negative E. coli and Gram-
positive S. aureus pathogens. The antimicrobial effects
of MN6C fabrics for S. aureus are better than those
for E. coli. Therefore, an enhanced flame resistance,
an increased antibacterial activity, and an appropriate
physical property lead to a choice of MgO-based nylon
6 hybrid nanofibers coated on cotton fabrics for protec-
tive clothing for soldiers.
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