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Abstract: A new approach for producing polymer nanoparticles made of bovine serum albumin-poly(methyl

methacrylate) conjugate by precipitating in supercritical CO2 is reported. The nanoparticles were loaded

with the anti-tumor drug camptothecin. With albumin serving as a nutrient to cells, the drug-encapsulated

nanoparticle shows an enhanced ability to kill cancer cells compared to that of the free drug in solution both

in vitro and in vivo.
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Introduction

Polymeric nanoparticles have much medical promise
with a large number of therapeutic nanoparticles
presently in clinical trials or approved for clinical
use [1-4]. Ge et al. [5] developed a new type
of protein-polymer hybrid nanoparticles made of hy-
drophilic denatured bovine serum albumin (BSA) co-
valently bonded to hydrophobic poly(methyl methacry-
late) (PMMA).

Based on their study, here we report a new approach
for producing such nanoparticles made of bovine serum
albumin-poly(methyl methacrylate) conjugate by pre-
cipitating in supercritical CO2. BSA-PMMA nanopar-
ticles can be prepared with hydrophobic drugs being en-
capsulated by a simple precipitation using supercritical
carbon dioxide (SC-CO2) as an anti-solvent. SC-CO2

is also non-toxic, non-flammable, and FDA approved.
Such a process can readily be scaled to kilogram quan-
tities, and represents a new approach with great po-
tential to produce dry polymeric nanoparticles for sus-

tained drug delivery [6]. In this work we use the solu-
tion enhanced dispersion by supercritical fluids (SEDS)
method to produce camptothecin (CPT)-encapsulated
BSA-PMMA nanoparticles. The nanoparticle shows an
enhanced ability to kill cancer cells compared to that
of the free drug in solution both in vitro and in vivo.

The BSA-PMMA conjugate was synthesized by the
method described by Ge et al. previously [5]. In a typ-
ical experiment, BSA (lyophilized powder, from Sigma-
Aldrich) was dissolved in dimethyl sulfoxide (DMSO)
at 50℃ at a concentration of 2 mg/mL, followed by
addition of acrylic acid N-hydroxysuccinimide ester
(NAS) (in DMSO at a concentration of 20 mg/mL)
with a molar ratio of NAS to BSA of 130:1. Af-
ter reaction at 25℃ for 5 hours, methyl methacry-
late (MMA) was added, followed by addition of 2,2’-
azobis(2-methylpropionitrile) (AIBN) (8 mM) to ini-
tiate the polymerization at 70℃. The conjugate was
collected by precipitation in a methanol/ethyl ether
(1:8, v/v) mixture. The BSA:PMMA weight ratio in
the conjugate was determined as ∼4:1 by 1H-NMR.
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Then, 2 mg/mL of BSA-PMMA conjugate and 0.25
mg/mL of CPT were dissolved in chloroform, followed
by subjecting to the SEDS process. Briefly, the solu-
tion was injected (1 mL/min) through a nozzle with
250 μm internal diameter into a SC-CO2 (150 g/min)
at 40℃ and 100 bar. CPT is used for treating a
wide range of tumors [7]. However, it is poorly solu-
ble in water [8]. After preparing the CPT-encapsulated
BSA-PMMA nanoparticles by precipitating in SC-CO2

(Fig. 1(a)), we estimated the yield of our SEDS process
to be ∼88%. The scanning electron microcopy (SEM)
image (Fig. 1(b)) shows the nanoparticles have an aver-
age size around 200∼300 nm. The size of CPT-loaded
BSA-PMMA nanoparticles dispersed in PBS (pH 7.4)
at a concentration of 7 mg/mL was measured to be 310
nm (PDI = 0.121) by dynamic light scattering (mean
size: 310 nm, size distribution: ±27 nm).
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Fig. 1 (a) Preparation of drug-loaded nanoparticles by
precipitation in SC-CO2; (b) SEM image of BSA-PMMA
nanparticles.

The drug loading was determined as 12.5 wt% in the
BSA-PMMA nanoparticles. The drug release profile
was studied by dispersing the CPT-loaded nanoparti-
cles in a release medium (PBS, pH 7.4 containing 2%
(w/v) Tween 80) [9]. As shown in Fig. 2(a), at the
drug loading ratio of 12.5 wt%, the encapsulated CPT
was released from the nanoparticles over a period of 48

hours with a low initial burst. And the encapsulation
ratio was determined to be ∼10 wt%. At the early stage
of drug release, the diffusion of CPT from nanoparti-
cles probably played an important role and resulted in
a burst release. At the late stage, the degradation of
BSA-PMMA nanoparticles caused more drug molecules
to gradually be released.
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Fig. 2 (a) Sustained release of CPT from nanoparticles;
(b) In vitro anti-cancer activities of free CPT and CPT
nanoparticles.

The CPT-encapsulated BSA-PMMA nanoparticles
were analyzed for their ability to retard the prolifer-
ation of tumor cells. Human colorectal cancer cells
HCT116 were plated in 96-well microplates at 5.0 ×

103 cells per well in 190.0 μL of complete medium and
allowed to adhere under incubation at 37℃ and 5%
CO2. Twenty-four hours later, HCT116 cells were ex-
posed to CPT in a 10% v/v DMSO solution containing
CPT or CPT-encapsulated nanoparticles with the same
drug concentration. The final concentration of DMSO
in the cell culture medium was 0.5% (v/v), which had
no measurable effect on cell viability. Empty nanopar-
ticles were used as a control. The viability of cell popu-
lations was then assessed by the MTT method [10] at 72
h. As shown in Fig. 2(b), the dose-dependent cytotoxic
effect of the CPT solution was evident cumulating in
more than 50% HCT116 survival at 62.5 ng/mL after
72 h. The encapsulation of CPT into the nanoparticles
resulted in marked improvements of the anti-tumor ac-
tivities. After 72 h, less than 10% survival was observed
at the CPT concentration above 250 ng/mL. Calculated
from the experiment, the IC50 for free CPT was around
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87.5 ng/mL, while the IC50 for CPT in nanoparticles
was only around 23.5 ng/mL. The empty nanoparticles
showed excellent biocompatibility. Around 100% cell
survival was observed for cells treated with different
concentrations of empty nanoparticles.

We tested the in vivo anti-tumor efficiency of CPT-
encapsulated BSA-PMMA nanoparticles by i.v. injec-
tion into mice with subcutaneous colon cancer tumors.
NOG (NOD/LtSz-scid IL2Rγnull) mice (15-16 weeks
old) were injected s.c. with 2 × 107 HCT116 colon
cancer cells approximately 10-18 days before dosing.
Tumor sizes were measured for the duration of the ex-
periment. Treatment was initialized when the mean
tumor size reached approximately 300-500 mm3 (day
1). The animals were sorted into 2 groups, each group
having six mice. For group one, as the positive con-
trol, free CPT was administered by intraperitoneal in-
jection (i.p. injection). The dose of CPT (9 mg/kg)
was based on the literature [11]. CPT is very insoluble
in aqueous solution and is acutely lethal when given
to mice by i.v. injection at 9 mg/kg (0.18 mg/20 g
mouse) due to the particulate matter in the drug sus-
pension. Thus, we followed the previous protocol [11]
for the administration of free CPT. In the experiment,
the CPT was suspended in a vehicle of 0.5% methyl-
cellulose and 0.1% Tween 80 and administered by i.p.
injection as an attempt to maximize its efficiency. Mice
were given CPT at 9 mg/kg once daily on day 1 and 7
with a dosing volume of 200 μL. For group two, mice
were treated with CPT nanoparticles. The dry pow-
der of CPT nanoparticles was suspended in PBS (pH
7.4) at a concentration of 7 mg/mL with the assistance
of probe sonication. The nanoparticles showed excel-
lent dispersability in aqueous solution because of the
hydrophilic shell of BSA on the nanoparticles. The
treatment was administered intravenously by tail vein
injection (i.v. injection) once daily on day 1 and 7 at 9
mg of CPT/kg. The small size and narrow size distri-
bution of the nanoparticles in PBS (pH 7.4) made this
formulation very suitable for i.v. injection. As shown in
Fig. 3, the tumor volume in CPT nanoparticle-treated
mice was significantly smaller than that of mice treated
with free CPT. At day 30, the median tumor volume of
the CPT nanoparticle-treated mice is 448 mm3, which
is almost the same compared with the tumor volume at
day 1 (437 mm3). However, for free CPT-treated group,
at day 30, the median tumor volume 3515 mm3, which
is 7 times increased compared with the tumor volume at
day 1. Thus, a significant prohibition of tumor growth
was observed when using CPT encapsulated nanopar-
ticles compared with free CPT.

PMMA is biocompatible but not biodegradable in
vivo. In our study, we choose the PMMA as the hy-
drophobic core of the BSA-PMMA nanoparitcle is be-
cause of its good biocompatibility and the hydropho-
bicity which could be used to encapsulate hydrophobic
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Fig. 3 In vivo anti-tumor efficiency of free CPT and CPT-
encapsulated BSA-PMMA nanoparticles.

drugs. A number of studies have tried to develop
PMMA-based nanoparticles for drug delivery [12]. No
obvious toxicity was observed by i.v. injection of
PMMA nanoparticles in vivo [13]. In our study we uti-
lized the BSA which is biodegradable to copolymerize
with PMMA. One BSA molecule was covalently bound
with about 49 PMMA chains. Each single PMMA chain
attached only has 5-7 of repeating units (MMA) in the
BSA-PMMA conjugate we used for in vivo study. Af-
ter the degradation of BSA in vivo, only oligomers of
MMA (5-7 of repeating units with 500-700 Da in molec-
ular weight) would exist. In the in vitro and in vivo
study, we observed that empty BSA-PMMA nanoparti-
cles have good biocompatibility and no toxicity to cells
or mice.

In summary, we have developed a new method to
produce protein-polymer hybrid nanoparticles for anti-
cancer drug delivery. We have demonstrated that the
hybrid nanoparticles prepared by precipitating in SC-
CO2 have excellent biocompatibility and efficient cell
uptake. The preparation process is simple and easy to
scale up. As an example of this type of drug deliv-
ery vehicles, compared with free drug formulation, the
camptothecin-encapsulated BSA-PMMA nanoparticles
shows enhanced anti-tumor activity both in vitro and
in animals.
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