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Nanobiocomposite Electrochemical Biosensor

Utilizing Synergic Action of Neutral Red

Functionalized Carbon Nanotubes
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Abstract: An amperometric hydrogen peroxide biosensor using a nanobiocomposite based on neutral red

modified carbon nanotubes and co-immobilized glucose oxidase and horseradish peroxidase is reported. Modi-

fication of the nanobiocomposite electrode with neutral red resulted in a sensitive, low-cost and reliable H2O2

sensor. The use of carbon nanotubes, as the conductive part of the composite, facilitated fast electron transfer

rates. The biosensor was characterized for the influence of pH, potential and temperature. A remarkable feature

of the biosensor is the detection of H2O2 at low applied potentials where the noise level and interferences are

minimal. The sensor has a fast steady-state measuring time of 10 s with a quick response (2 s). The biosensor

showed a linear range from 15 nM to 45 mM of H2O2 and a detection limit of 5 nM. Nafion, which is used as

a binder, makes the determination free from other electroactive substances. The repeatability, reproducibility,

stability and analytical performance of the sensor are very good.
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Introduction

Nanotechnology offers the potential to increase
biosensor sensitivity, response speed and selectivity.
A wide variety of nanomaterials have been explored
for their application in biosensors due to their unique
chemical, physical, and optoelectronic properties [1,2].
For example, incorporation of carbon nanotubes (CNT)
and fullerenes has greatly increased biosensor sensitiv-
ity and response speed due to their high chemical stabil-
ity, high surface area, and unique electronic properties
[3].

The irruption of carbon nanotubes has constituted

a significant milestone in modern analytical sciences.
Their unique properties [4] have led their applications
in many fields such as electronics, medicine, aerospace
industry, etc., which has also prompted the need of an-
alytical methodologies to characterize and control the
quality of these nanomaterials. Electrode modification
with CNTs gives electrocatalytic activity towards the
electro-oxidation of molecules such as NADH or H2O2

[5]. This property led to the use of these nanomaterials
for the preparation of dehydrogenase or oxidase based
electrochemical biosensors [6-10]. Further, an increased
electrode active surface area, which gives rise to en-
hanced electrochemical response, and a demonstrated
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anti-fouling capability of electrode surface upon mod-
ification with CNTs, are other important advantages
that have promoted a large number of significant appli-
cations in electroanalytical chemistry, including electro-
chemical sensors [11-13].

Direct electron transfer between the electrode and
the redox enzyme is very important for fundamental
studies and construction of biosensors [14-16]. How-
ever, the direct electron transfer between the enzyme
and unmodified electrode is usually slow or prohibited
due to shielding of the redox active sites by the protein
shells [17, 18]. Therefore, several studies have been
made to enhance the rate of electron transfer. Me-
diators are widely used to access the redox center of
an enzyme and act as the charge carriers. Mediators
also minimize the effects of interferences by lowering
the operating potential of the electrodes, and improve
the linear response range and sensitivity of the sensor
[19].

Redox dyes of the azine, phenoxazine and phenoth-
iazine types appear to show great promise for the con-
struction of mediated amperometric biosensors due to
their excellent stability, low cost and special electrocat-
alytic processes. Among the water soluble dyes, neu-
tral red (NR) is an azine dye, which is found to be a
convenient redox mediator for electrochemical investi-
gations of biological system. NR which is similar to
other planar dyes in the chemical structure belonging
to the acridine, thazine and xanthene groups due to
the heteroatom, which is nitrogen instead of divalent
oxygen or sulfur [20]. It has a much lower redox po-
tential than analogous phenothiazine and phenoxazine
dyes. Due to significant mechanical strength, excellent
electrical conductivity and good chemical stability of
carbon nanotubes are promising platforms for immobi-
lization of these electron transfer mediators [21,22].
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Chemical structure of Neutral red

The determination of hydrogen peroxide is of prac-
tical importance in chemical, biological, clinical, and
many other fields. Extensive techniques have been de-
veloped for this purpose, amongst which enzyme elec-
trodes have been reported as the sensor for hydrogen
peroxide [23, 24]. Among these, the amperometric sen-
sors based on electron transfer between an enzyme and
the electrode [25] are promising in fabricating sensitive
and linearly responding devices. Though a direct elec-
tron transfer is possible between an electrode and a per-
oxidase catalyzing the reduction of hydrogen peroxide,

this is generally a slow process on common electrode
materials. An appropriate electron donor can mediate
the electron transfer between peroxidase and an elec-
trode [26] and hence such a mediator is expected to
improve the performance of a peroxidase-based hydro-
gen peroxide sensor.

Nafion encapsulation of enzyme is a common practice
to prepare biosensors. Nafion is a sulfonated tetraflu-
orethylene copolymer that has been widely used as a
proton conductor for proton exchange membrane, in
fuel cells [27, 28] and biosensor applications [29]. The
main advantages of Nafion in biosensor applications are
its biocompatibility, excellent thermal and mechanical
stability and antifouling properties. Pioneering work
by Wang, et al. showed that Nafion was an effective
solubilizing agent for carbon nanotubes that yielded
CNT-based biosensors exhibiting both the efficient elec-
trocatalytic action of CNT toward hydrogen peroxide
and the antifouling/discriminative properties of Nafion
films.

The aim of the present work is the development and
characterization of improved electrochemical biosen-
sors for hydrogen peroxide by using a bienzymatic
strategy with neutral red functionalized carbon nan-
otubes for bioanalytical application. The sensor em-
ploys NR functionalized multiwalled carbon nanotubes
(MWNTs) as electrocatalyst, and GOx and HRP as
bio-electrocatalysts. By the combination of NR func-
tionalized MWNTs, Glucose oxidase, HRP and Nafion,
a nanobiocomposite film was produced by simple sol-
vent casting process. This system serve to “electri-
cally wire” the enzyme, facilitating an easy flow of elec-
trons from the enzyme to the electrode. The biosensor
showed high sensitivity and good stability and also ex-
hibited good analytical performance towards the quan-
tification of hydrogen peroxide.

Experimental

Materials and Reagents

MWNTs were produced by a chemical vapour depo-
sition method by the catalytic decomposition of acety-
lene over a Ni/Cr hydrotalcite-type anionic clay cat-
alyst [30] and the purity of the MWNTs sample was
about 95%. MWNTs samples are usually 10∼25 nm in
diameter and many micrometres in length, but they are
entangled together in the solid state to form a dense,
robust, network structure which is difficult to disperse
in organic or polar media. Before the MWNTs sample
was used, it was further purified according to the lit-
erature [31]. GOx (E.C.1.1.3.4, activity 250 EU.mg−1,
from Aspergillus niger) and HRP (E.C.1.11.1.7, activ-
ity 90 EU/mg) were from Sigma Chemical Co. (St.
Louis, MO), and were used without further purifica-
tion. 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide
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hydrochloride (EDAC) and N-hydroxy sulfosuccinimide
(sulfo-NHS) were obtained from Himedia and neutral
red was from SD-fine chemicals. H2O2 (30% w/v so-
lution) was purchased from Merck. Nafion (5 wt% in
ethanol) was purchased from Aldrich. Phosphate buffer
solutions (PBS, 0.1 M) with various pHs were pre-
pared by mixing stock standard solutions of K2HPO4

and KH2PO4 and adjusting the pH with H3PO4 or
NaOH. H2O2 solutions were calibrated by titration with
KMnO4 solution and fresh solutions of H2O2 were pre-
pared daily. All other chemicals were of analytical grade
and were used without further purification. All solu-
tions were made up with doubly distilled water.

Instrumentation

All electrochemical measurements were performed
with a CHI 660B electrochemical workstation (CH In-
struments, USA). Electrochemical experiments were
carried out using a conventional three-electrode sys-
tem with a GCE (φ=3 mm) as the working electrode,
a Pt wire as the auxiliary electrode, and saturated
calomel electrode (SCE) as the reference electrode. All
experiments were performed at room temperature in
a conventional electrochemical cell. Electrochemical
impedance spectra (EIS) measurements were performed
in 0.1 M phosphate buffer solution containing 5 mM
[Fe(CN)6]

3−/4− and plotted in the form of complex
plane diagrams (Nyquist plots) with a frequency range
of 0.1 Hz to 100 kHz. The amplitude of the applied
sine wave potential was 5 mV, whereas the formal po-
tential of the system was set at -0.35 V. CV experiments
were carried out in quiescent solution at a scan rate of
20 mV/s. The current–time curves were recorded in a
stirred cell with successive addition of glucose standard
solution to the cell at an operating potential of −0.35
V.

Functionalization of MWNTs with NR

Purification of MWNTs was done by heating the as
prepared MWNTs (50 mg) at 400℃ for 30 mins and
then dispersed in conc. HCl for 1 h under ultrasonic
agitation, centrifuged, washed until the pH of the su-
pernatant was neutral and then dried in air at room
temperature. The MWNTs sample was then treated
with HNO3 (12.8 M) and refluxed for 12 h. Then the
mixture was diluted with water to about three times
of its original volume and subjected to high-speed cen-
trifugal sedimentation to separate the oxidized MWNTs
powder. The powder was washed with distilled water
until no residual acid was present and then dried in a
vacuum oven at 80℃ for 4 h [31].

The resulting MWNTs-COOH was added to a freshly
prepared 100 ml aqueous solution of EDC (10 mg/ml)
and 300 mg of NHS, and allowed to react, for 2 h under
stirring, at room temperature, and then, for another

22 h at room temperature. Finally, 50 mg of NR was
added and allowed to react further for 2 h, at room
temperature and then the MWNTs were washed thor-
oughly with water and filtered to remove the excess NR
[32].

Also, a blank reaction was performed in the absence
of EDC and NHS to verify if the NR is adsorbed on the
MWCNTs-COOH backbone.

Preparation of the bienzyme nanobiocomposite

The GOx/HRP bienzyme nanobiocomposite was pre-
pared as follows: 4 mg of GOx and 3 mg of HRP were
dissolved in 0.3 ml of phosphate buffer (pH=7.0). En-
zyme immobilization with NR-functionalized MWNTs
(1 mg) was achieved by immobilizing with 20 μl of the
enzyme mixture by stirring. The enzyme-MWNTs mix-
ture was then dispersed in 1ml of 0.5 wt% Nafion so-
lution with the aid of ultrasonic agitation for 5 min
to form a homogeneous nanobiocomposite colloidal so-
lution. For comparison, the bienzyme electrode with
mere MWNTs was also prepared.

Fabrication of MWNTs/NR/GOx/HRP/Nf

nanobiocomposite biosensor

To prepare the biosensor, a GCE was polished with
emery paper followed by alumina (0.1 and 0.5 m)
and then thoroughly washed with double-distilled wa-
ter. Then the electrode was placed in 1:1 nitric acid
solution, alcohol and redistilled water, sequentially,
and subjected to sonication to remove adsorbed parti-
cles. Bienzyme nanobiocomposite electrodes were pre-
pared by casting 10 μl of MWNT/NR/GOx/HRP/Nf
or MWNT/GOx/HRP/Nf nanobiocomposite colloidal
solutions on the surface of GC electrode followed by air
drying for about 2-3 h, rinsed with water several times
before use. When not in use all the modified electrodes
were stored at 4℃. Before utilization, the electrodes
were soaked into the solution, at room temperature for
30 min, to restore the enzyme activity.

Results and discussion

Structural and morphological characterizations

of the nanobiocomposite

The SEM image of the MWNTs/NR/GOx/HRP/Nf
nanobiocomposite is given in Fig. 1(a) and the en-
zyme immobilized NR/MWNTs were confirmed with
Fourier transform infrared spectroscopy (FTIR) spec-
tra (Fig. 1(b)).

EIS characterization

EIS measurements give information on the
impedance changes of the electrode surface. The high-
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Fig. 1 (a) SEM image of MWNT/NR/GOx/HRP/Nf nanobiocomposite. (b) FTIR spectra of NR functionalized MWNTs
immobilized with GOD and HRP.

frequency region contains information of kinetics of the
faradaic process, while the low-frequency region gives
information concerning the diffusion of species to elec-
trode surface [33]. The semicircle diameter of well con-
ducting substrates equals the electron transfer resis-
tance, Rct. If the surface is covered by a film with some
ohmic resistance, Rf , the diameter of the semicircle will
be dependent on that resistance. The EIS behaviors of
the modified surfaces prepared in this study are shown
in Fig. 2. The larger semicircle in the high-frequency re-
gion of MWNTs/Nf represents slower electron-transfer
kinetics and more blocking behavior for the redox cou-
ple (curve b) due to the presence of COO− group on
the surface, whereas the bare GC electrode (curve a)
exhibits an almost straight line that is characteristic of
a diffusion limiting electron-transfer process. Upon co-
valent attachment of NR with MWNTs (curve c), the
Rct decreased dramatically due to the decrease in the
negative charges, making it easier for the electron trans-
fer to take place. With further immobilization of mo-
noenzymes, GOx and HRP (curve d and e) separately
over the surface of the MWNTs, which provides a hy-
drophobic insulating layer on the electrode surface, in-
troduces a barrier to the electron transfer and hence
the resistance increases. With bienzyme electrode, the
enzymes with negative charges also blocked the access
of the probe molecules to the electrode surface, result-
ing in further increase of the electron transfer resistance
(curve f). However, the value of Rct was less than that
of MWNTs/Nf modified electrode. These results show
that presence of GOx and HRP blocked the electron
transfer at the electrode surface. Therefore, it can be
concluded that MWNTs/NR/GOx/HRP/Nf nanobio-
composite has successfully been adsorbed on the surface
of GC electrode and formed a tunable kinetic barrier.

Electrochemical performance of biosensor to-

wards hydrogen peroxide

The electrocatalytic activity of biosensor toward
H2O2 means that it can provide a signal transduction

in the fabrication of biosensors because H2O2 is a prod-
uct of a number of oxidase-based enzyme reactions. To
evaluate the catalytic effect of the nanobiocomposite on
the enzymatic reaction between HRP and H2O2, the
reduction of H2O2 by nanobiocomposite biosensor was
examined by cyclic voltammetry.
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Fig. 2 Nyquist diagram (Z′ vs Z′′) for the Electro-
chemical impedance measurements in the presence of 5
mM [Fe(CN)6]

3−/4− after the different steps of modifi-
cation: (a) bare GC electrode, (b) MWNT-Nf modified
(c) MWNT-NR-Nf modified (d) MWNT-NR-GOx-Nf mod-
ified (e) MWNT-NR-HRP-Nf modified and (f) MWNT-
NR-GOx-HRP-Nf modified GC electrodes. All data were
recorded in 0.1 M PB, pH 7.4. The electrode potential was
−0.35 V vs SCE. The inset is the Randles equivalent circuit
for the modified electrodes.

The cyclic voltammograms of MWNTs/NR/GOx/
HRP/Nf nanobiocomposite before and after addition
of H2O2 are shown in Fig. 3. Without hydrogen perox-
ide two typical reversible redox waves are observed for
the biosensor (Fig. 3 (curve a)). Nevertheless, the addi-
tion of hydrogen peroxide to the solution brings about
a significant increase in the cathodic peak current and
an almost complete disappearance of the anodic peak
(curve b). Comparison of the voltammograms with and
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without hydrogen peroxide indicates that NR incorpo-
rated with MWNTs effectively enhances electron trans-
fer between immobilized enzymes and the glassy carbon
electrode.
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Fig. 3 Cyclic voltammograms of bare GCE (a) with-
out H2O2 (b) with 3.0 μM H2O2 and (c, d, e, f)
MWNTs/NR/GOx/HRP/Nf modified GCE in 0.1 M 7.4
PBS containing 0, 1.0, 2.0 and 3.0 M H2O2 at 0.20 V/s.

The cyclic voltammograms of a mediatorless biosen-
sor with and without hydrogen peroxide was also stud-
ied (the figure not shown here). In the absence of
H2O2 the mediatorless biosensor was observed. There
was a small increase in cathodic current at the me-
diatorless biosensor upon addition of hydrogen perox-
ide which indicates that direct electron transfer from
a glassy carbon electrode to the enzyme occurs only
to a small extent. Comparison of the NR mediated
biosensor with the mediatorless one shows that the NR
mediated biosensor displays 500-fold higher sensitivity
to hydrogen peroxide than the mediatorless one, which
indicates that electron transfer via NR functionalized
MWNTs is more efficient in the bioelectrocatalytic re-
duction of hydrogen peroxide. The mechanism of the
bioelectrocatalytic reaction between hydrogen peroxide
and HRP has been widely studied [34-36]. In a first two
electron step, hydrogen peroxide is involved in the oxi-
dation of the ferriheme prosthetic group of HRP (Fe3+),
producing an unstable intermediate HRP-I consisting
of a π cation radical of heme with Fe(IV) to which an
oxygen atom is co-ordinated ([Fe(IV)=O]):

HRP(Fe3+) + H2O2 −→ HRP-I + H2O (1)

The reduction of HRP-I to HRP (Fe3+) can be
achieved through two successive one-electron steps via
an electron transfer mediator or by direct electron
transfer from the electrode to the heme site of the HRP
in intimate contact to the conducting surface [34]:

HRP-I + NRred(or e−) −→ HRP-II + NRox (2)

HRP-II + NRred(or e−) −→ HRP (Fe
3+

) + NRox (3)

where HRP-II, an intermediate state, possesses a heme
with Fe (IV) to which OH is coordinated ([Fe (IV) OH]).
NRox and NRred represent oxidized and reduced forms
of neutral red, respectively. Oxidized mediator (NRox)
is reduced at the electrode, bringing about a reduction
current.

NRox + 2H + 2e− −→ NRred(at the electrode) (4)

Therefore, the detection of hydrogen peroxide via a
NR functionalized MWNTs mediated biosensor is based
on the measurement of the amperometric response due
to the electrochemical reduction of the NRox ion gener-
ated from the enzymatic reaction at −0.35 V (vs. SCE).

Condition optimization for H2O2 sensing

Various experimental parameters which affect the
amperometric determination of H2O2 such as the pH
of the solution, temperature and applied potential were
studied. Because the activities of GOx/HRP and the
stability of MWNT-NR are pH-dependent, the influ-
ence of pH is very important to the sensitivity of the
biosensors [37, 38]. Figure 4 (curve a) shows the ef-
fect of the pH on the detection of 1.0 M H2O2 solu-
tion. The optimum response was achieved in the pH
range 6.5∼7.5, which is close to the optimum pH 7.4
observed for free GOx and HRP and which is also near
the physiological environment [39, 40]. To ensure bet-
ter sensitivity and stability of the biosensor, 0.1 M PBS
(pH=7.4) was chosen for the determination of H2O2.
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Fig. 4 Amperometric response of the MWNT-NR-GOx-
HRP-Nf modified GCE for 1.0 M H2O2 solution (a) at dif-
ferent pHs and (b) at different temperatures.

It is well known that the analytical performance of
the enzyme-immobilized materials is highly sensitive
to variations of temperature. The study of the effect
of the temperature on bienzyme biosensor experiments
were carried out over the temperature range 15∼70℃.
Curve b of Fig. 4 shows the effect of temperature on the
MWNT/NR/GOx/HRP/Nf modified electrode. The
immobilized enzymes showed activity even at 60℃ and
beyond this temperature, the response dropped sharply.
Although the response of the sensor was highest at 60℃,
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for practical reasons room temperature is recommended
in order to simplify the experimental procedure and
prolong the lifetime of the biosensor.

The amperometric response of the sensor depends
on the applied potential. Cyclic voltammograms were
recorded at MWNT/NR/GOx/HRP/Nf biosensor in
the presence of various concentrations of H2O2 (as
shown in Fig. 3(d)-(f)). MWNT/NR/GOx/HRP/Nf
biosensor exhibits significant electrocatalysis to the re-
duction of H2O2 starting around −0.2 V. In order to
optimize potential for the biosensor operation, hydro-
dynamic voltammetric studies were carried out in 0.1
M PBS (pH=7.4). The potential of the working elec-
trode was varied between 0 and 0.7 V and the cur-
rents were noted. Figure 5 compares the HDVs of (a)
bare GC electrode (b) MWNT/GOx/HRP/Nf modi-
fied and (c) MWNT/NR/GOx/HRP/Nf modified GC
electrode in the presence of 3.0 M H2O2. As ex-
pected no response was observed at the bare GC elec-
trode in the entire potential range studied. For the
MWNT/GOx/HRP/Nf modified electrode the reduc-
tion started at −0.3 V, then the current increased
slowly until −0.45 V. In contrast the voltammetric re-
sponse of the MWNT/NR/GOx/HRP/Nf modified GC
in the presence of 3.0 M H2O2, the electrode showed
a sharp increase around −0.2 V and leveled off above
−0.35 V. Such a potential dependence profile is in
agreement with the cyclic voltammogram results shown
in Fig. 3. An operating potential of −0.35 V (vs. SCE)
was chosen for further experiments to demonstrate the
applicability of the biosensor electrode towards the de-
tection of H2O2.
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0.1 M phosphate buffer solution (pH=7.4) at (a) unmodified
(b) MWCNT-GOx-HRP-Nf modified and (c) MWCNT-NR-
GOx-HRP-Nf modified GC electrodes.

Amperometric determination of H2O2 with the

biosenor

Figure 6 shows the amperometric responses of
MWNT/NR/GOx/HRP/Nf modified electrode at
−0.35 V (vs. SCE) for the successive 0.1 M addi-
tion of H2O2. The time required to reach 95% of

the maximum steady-state current was 2 s. The elec-
trode exhibits a rapid and sensitive current response
for the changes of H2O2 concentration and indicates
the excellent electrocatalytic behavior of the electrode
A linear response to current is noticed for a wider
concentration range of H2O2 (15 nM to 45 mM) at
MWNT/NR/GOx/HRP/Nf biosensor. The linear re-
gression equation was I(A) = 0.5326[H2O2] +4.9947
(A is the correlation coefficient of 0.9994). The lower
detection limit, 5 nM, was calculated as the H2O2 con-
centration giving a signal equal to the blank signal yB
(intercept) plus three standard deviations of y-residuals
sy/x.
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Fig. 6 (a) Amperometric response of MWCNT-NR-GOx-
HRP-Nf biocomposite electrode (a-j) for the successive ad-
dition of 0.1 M H2O2 in 0.1 M PB (pH=7.4); Inset shows
the linear calibration plot. (b) Differential pulse voltam-
mograms of nanobiocomposite biosensor (a-e) at successive
addition 1.0 M H2O2.

Differential pulse voltammetric experiments were also
carried out for the determination by varying H2O2 con-
centrations (Fig. 6(b)). The sensor showed a linear re-
lationship for H2O2 from 15 nM to 45 mM.

Selectivity and stability

The practical usefulness of an amperometric biosen-
sor often rests upon the selectivity, in another word,
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the interference level from electroactive species. This
aspect is of particular concern in the present case since
it is known that carbon nanotubes show catalytic prop-
erty for electrochemical oxidation of ascorbic acid (AA),
uric acid (UA) and acetaminophen (AP), which are the
common interferents in hydrogen peroxide determina-
tion [41]. The effect of the possible interfering sub-
stances on the response of the biosensor was evaluated
at the operation potential of −0.35 V. It was discov-
ered that the addition of 0.4 mM UA and 0.2 mM AP
to 1 M H2O2 solution caused no interference on the re-
sponse of the biosensor. H2O2 could be determined in
the presence of a 1:10 molar ratio of sodium chloride,
potassium bromide, potassium iodide, sodium sulfate
and nicotinamide which is shown in Fig. 7.
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Fig. 7 Influence of electroactive interferences in 1.0 M H2O2

determination.

The operational and long-term stability (shelf life-
time) of the bienzymatic biosensor were studied.
The MWNT/NR/GOx/HRP/Nf electrode was incor-
porated in the electrochemical cell stirring with 5 M
H2O2 solution to study its operation stability under
continuous use for 10 h. The response decreased by
about 1% within the first 3 h, and about 3% within 10
h, which indicated that the bienzymatic biosensor has
a good operational stability and can be used continu-
ously. The storage stability of the bienzymatic biosen-
sor was also investigated by performing triplicate mea-
surements with 5 M H2O2 solution in phosphate buffer
daily. No significant change in the current response
was observed over the 6 months period study, when
biosensors were stored and desiccated at 4℃ when not
in use. The highly stable nature of this system was
attributed to the strong interaction between NR im-
mobilized MWNTs and the enzymes which are not af-
fected by the changes of pH and temperature. Finally,
the good biocompatibility of NR immobilized MWNTs
maintains the biological activity of the enzymes immo-
bilized on the electrode.

Sample analysis

To assess the possible application to the assay of hy-
drogen peroxide, the proposed biosensor was applied to
pharmaceutical formulations. The results showed an
acceptable correlation between the claimed and mea-
sured values. The acceptable quantitative recoveries
from 98.9 to 102.8% were obtained when a known
amount of hydrogen peroxide was added to the sam-
ple.

Conclusions

A new simple and reliable method was demonstrated
for building a CNT-based amperometric biosensor using
a bienzymes consisting of GOx and HRP using neutral
red functionalized MWNTs for hydrogen peroxide. The
enzymes were well immobilized within the electrode ma-
trices and retained satisfactory enzymatic catalytic ac-
tivities. The functionalized CNTs markedly influenced
the interfacial property of the modified electrode and
played an important role in the biosensor response. The
proposed method where a mediator transfers electrons
between the enzyme and electrode reduced the problem
of interferences by other electroactive species. It shows
high performance characteristics with a broad detection
range, a short measuring time, and a simple operation.
Thus, we provide a new analytical approach for the de-
termination of hydrogen peroxide that is specific, sen-
sitive and fast and the immobilization platform is very
promising. The method presented here can be easily
extended to other biosensor devices by using other en-
zymes and proteins.
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