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Abstract: One-dimensional (1-D) nanomaterials with superior specific capacity, higher rate capability, bet-

ter cycling peroperties have demonstrated significant advantages for high-performance Li-ion batteries and

supercapacitors. This review describes some recent developments on the rechargeable electrodes by using 1-D

nanomaterials (such as LiMn2O4 nanowires, carbon nanofibers, NiMoO4 · nH2O nanorods, V2O5 nanoribbons,

carbon nanotubes, etc.). New preparation methods and superior electrochemical properties of the 1-D nano-

materials including carbon nanotube (CNT), some oxides, transition metal compounds and polymers, and their

composites are emphatically introduced. The VGCF/LiFePO4/C triaxial nanowire cathodes for Li-ion battery

present a positive cycling performance without any degradation in almost theoretical capacity (160 mAh/g).

The Si nanowire anodes for Li-ion battery show the highest known theoretical charge capacity (4277 mAh/g),

that is about 11 times lager than that of the commercial graphite (∼372 mAh/g). The SWCNT/Ni foam elec-

trodes for supercapacitor display small equivalent series resistance (ESR, 52 mΩ) and impressive high power

density (20 kW/kg). The advantages and challenges associated with the application of these materials for en-

ergy conversion and storage devices are highlighted.
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Introduction

The greatest challenges in the twenty-first century
are unquestionably global warming and the finite na-
ture of fossil fuels. In order to meet the needs of
modern society and in response to emerging ecologi-
cal concerns, it is now essential to find and develop
rapidly new, low–cost and environmentally friendly en-
ergy conversion and storage systems. Battery sys-
tems, which are the core components of mobile elec-
tric devices, have undergone significant improvements

over the past 30 years [1]. Rechargeable Li-ion bat-
tery with high energy density, high working potential
and long cycling life has been considered as one of the
most promising power sources of portable systems and
electric vehicles. Supercapacitors, which are promis-
ing auxiliary power sources for hybrid electric vehi-
cles, have raised considerable attention over the past
decade due to high power density and long cycle life
compared to secondary batteries and high energy den-
sity vis–a–vis electrical double–layer capacitors [2]. The
performance of these electrochemical energy conversion
and storage devices depends intimately on the proper-
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ties of their active electrode materials. Nanomaterials
have attracted great interest in recent years because of
the unusual mechanical, electrical and optical proper-
ties due to the combination of bulk and surface prop-
erties to the overall behaviour [3]. Among the vari-
ous nanomaterials, 1-D nanomaterials (nanowires [4],
nanofibers, nanorods, nanoribbons, and nanotubes [5])
are attractive because of their small dimension struc-
ture, high aspect ratio, and unique device function.
To date, many synthetic strategies, such as solution or
vapor-phase approaches, solvothermal syntheses, self-

assembly methods, template–directed methods, elec-
trospinning techniques, etc., have been developed to
fabricate 1-D nanomaterials. The 1-D nanomaterials
have been proven to be efficient in electrochemical en-
ergy conversion and storage devices partially because
of their unique physical and chemical properties. In
this review, we focus on the preparation and applica-
tion of 1-D nanomaterials for rechargeable Li-ion bat-
tery and supercapacitor. Figure 1 show typical mor-
phologies of different 1-D nanomaterial in references we
cited.

Fig. 1 Different 1-D nanomaterial morphologies: SEM images of (a) LiMn2O4 nanowires (from Ref. [7]), (b) carbon
nanofibers (from Ref. [45]), (c) NiMoO4 · nH2O nanorods (from Ref. [16]), (d) V2O5 nanoribbons (from Ref. [14]), and (e)
Co3O4 nanotubes (from Ref. [23]); and (f) TEM micrograph of carbon nanotubes (from Ref. [29]).

Review of recent research

Application of 1-D nanomaterials in

rechargeable Li-ion battery

Li-ion batteries, which use Li+ to transport
charge between electrodes, are promising for
rechargeable chemical energy storage due to the
high mobility and energy density of Li+. Lithium
also has a large negative reduction potential
(E0=−3.05 V) which can produce a high–voltage
output. A Li-ion battery consists of a Li-ion in-
tercalation negative electrode (generally graphite),
and a Li-ion intercalation positive electrode (gen-
erally the lithium metal oxide), these being sepa-
rated by a Li-ion conducting electrolyte. Figure 2
is a schematic illustration of the Li-ion battery. As
to Li-ion batteries, it is believed that the limitation

in the rate capabilities is caused by the slow solid-
state diffusion of Li+ ions within the electrode

Fig. 2 Schematic illustration of a Li-ion battery.
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materials. The 1-D nanomaterials could be used in
rechargeable Li-ion battery to achieve a fast solid-
state diffusion due to the short diffusion distance
of Li+ ions.

1-D Cathode materials

Among the Li-ion battery materials, LiCoO2 has
already been commercialized as a cathode mate-
rial due to its high specific energy density and
excellent cycle life. 1-D transition metal oxides
with layered structures are attractive as cathode
materials because of their ability to intercalate
ions in a wide range of sites. Gu et al. pre-
pared polycrystalline LiCoO2 fibers by the sol-gel
assisted electrospinning technique. The LiCoO2

fibers as cathode materials offer a higher initial
discharge capacity of 182 mAh/g compared with
ca. 140 mAh/g of conventional powder and film
electrodes [6]. The spinel LiMn2O4 is a low-cost,
nontoxic, and highly abundant cathode material
for Li-ion battery. Hosono et al. synthesized
single crystalline cubic spinel LiMn2O4 nanowires
using Na0.44MnO2 nanowires as a self-template.
As cathode materials, LiMn2O4 nanowires show
higher specific capacity, better high-rate capabil-
ity and cycle stability than comparable nanopar-
ticles [7]. Yang et al. obtained single-crystalline
LiMn2O4 and Al-doped LiMn2O4 nanorods by a
two-step method that combines hydrothermal syn-
thesis of single-crystalline β-MnO2 nanorods and
a solid state reaction to convert them to LiMn2O4

nanorods. LiMn2O4 nanorods have a high charge
storage capacity at high power rates compared
with commercially available powders. Al dopants
reduce the dissolution of Mn3+ ions significantly
and make the Al-doped LiMn2O4 nanorods much
more stable than LiMn2O4 in Li-ion cycling perfor-
mance tests [8]. Phospho–olivine LiFePO4 phase
with the optimization of the environmentally be-
nign and low-cost displays a theoretical capacity
of 170 mAh/g [9]. Hosono et al. synthesized a tri-
axial LiFePO4 nanowire with a vapor-grown car-
bon fiber (VGCF) core and an amorphous car-
bon shell by the electrospinning method. The car-
bon fiber core oriented in the direction of the wire
plays an important role in the conduction of elec-
trons, whereas the outer amorphous carbon shell
suppresses the oxidation of Fe2+ [10]. Murugan
et al. used a microwave irradiated solvothermal

method to prepare single crystalline lithium metal
phosphates LiMPO4(M = Mn, Fe, Co, and Ni)
with nano-thumblike shapes. The lithium diffusion
along the shorter dimension is particularly benefi-
cial to achieve high-power capability. They also
prepared LiMPO4/multi-walled carbon nanotube
(MWCNT) nanocomposites by a simple solution-
based mixing method to overcome the electronic
conductivity limitations [11].

The 1-D cathode nanomaterials have the advan-
tages of accommodating volume changes and sup-
porting high rates. Sun et al. synthesized vana-
dium oxide nanorolls through a ligand-assisted
templating method. The well-ordered nanorolls
show responses similar to those seen in crys-
talline orthorhombic V2O5, while the defect-rich
vanadium oxide nanorolls behave electrochemi-
cally more like sol-gel-prepared vanadium oxide
materials [12]. Takahashi and co-workers pre-
pared Ni/V2O5 · nH2O core-shell nanocable ar-
rays via formation of Ni nanorod arrays through
the template based electrochemical deposition, fol-
lowed by coating of V2O5 · nH2O on Ni nanorods
through electrophoretic deposition. Both energy
density and power density of such nanocable-array
electrodes are higher than those of single-crystal
V2O5 nanorod array and sol-gel-derived V2O5 film.
Such significant improvement in electrochemical
performance is due to the large surface area and
short diffusion lengths offered by the V2O5 ·nH2O
shell [13]. Chou et al. reported V2O5 nano-
materials including nanoribbons, nanowires, and
microflakes by an ultrasonic assisted hydrother-
mal method. The rechargeable Li-ion battery us-
ing V2O5 nanoribbons as cathode material and
room temperature ionic liquid (RTIL) as elec-
trolyte presents superior capacity, improved cycla-
bility, good high-rate capability, and enhanced ki-
netics [14]. Figure 3 compared the cyclability of
different V2O5 materials [14]. West et al. pre-
pared manganese oxide nanowire arrays by elec-
trodepositing into anodized alumina membranes.
The nanowire arrays fabricated as cathodes offer
a maximum specific capacity of 300 mAh/g [15].
Xiao et al. synthesized AMoO4 · nH2O (A=Ni,
Co) nanorods by a facile hydrothermal method and
presented that the dehydrated AMoO4 nanorods
can be used as cathode materials for Li-ion bat-
teries [16]. Table 1 summarizes the electrochemi-
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cal properties of 1-D nanomaterials used as active
materials of Li-ion battery cathodes.
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Fig. 3 Cycle life of V2O5 nanoribbon (solid squares),
nanowire (solid circles), microflake (solid triangles), and
commercial-powder (solid stars) electrode using RTIL as
electrolytes; V2O5 nanoribbon electrode using conventional
electrolytes (CE, 1 M LiPF6-EC/DMC (1:1, v/v), hol-
low square) at 25 oC. Current densities are all 0.1 C
(C=437 mAh/g) (from Ref. [14]).

1-D Anode materials

The main difference between anode and cath-
ode materials is the voltage at which they reduce
lithium. 1-D anode nanomaterials, in contrast
to nanoparticle and thin film materials, should
in principle maximize the electrode surface area
while maintaining good electrical connections to
the current collector [17]. Recently, there are many
reports on the electrospinning polymer fibers for
polymer electrolyte and the carbon or metal oxide
fibers for anode materials. The fiber anode ma-
terials reveal superior physical and electrochemi-
cal properties compared with the powder materi-
als. Yoon et al. reported carbon nanofibers of
high graphitization extent prepared by a catalytic
CVD process. The graphitized carbon nanofibers
(CNFs) show a maximum capacity of 367 mAh/g
as anode in Li-ion secondary battery [18]. Li-ion
battery anodes derived from oxides of tin can store

Table 1 Electrochemical properties of 1-D nanomaterials used as active materials of Li-ion battery cathodes.
(EC: ethylene carbonate, DEC: diethylene carbonate, DMC: dimethyl carbonate, PC: propylene carbonate)

Material Electrolyte
solution

Discharge
Capacity in
first cycle
(mAh/g)

Discharge
Capacity in

n cycle
(mAh/g)

Current
density/rate

Reference

LiCoO2 fibers 1M LiPF6-EC/DEC 182 123 (20) 20 mA/g 6

LiMn2O4 nanowires 1M LiClO4-EC/DEC 108 100 (100) 5 A/g 7

Al-doped LiMn2O4 nanorods 1M LiPF6-EC/DEC 100 96 (100) 1C 8

VGCF/LiFePO4/C
core-shell nanowire

1M LiClO4-EC/DEC 160 160 (20) 0.01 A/g 10

LiFePO4

nanothumb/MWCNTs
1M LiPF6-EC/DEC 128 – 10C 11

vanadium oxide nanorolls 1M LiClO4-EC/DMC 240-340 – 60 mA/g 12

Ni/V2O5· nH2O
core-shell nanocable arrays

1M LiClO4-PC 465 – 1.6 A/g 13

V2O5 nanoribbons 1 M LiNTf2-[C3mpyr][NTf2] 430 270 (50) 0.1 C 14

manganese oxide nanowire arrays 1M LiPF6-PC 300 – 37.6 μA/(cm2) 15

NiMoO4 nanorods 1M LiPF6-EC/DEC 275 100 (70) 50 mA/g 16

over twice as much Li+ as graphite. However,
when Li+ is inserted and removed from these Sn-
based materials, large volume changes occur, and
this causes internal damage resulting in loss of ca-
pacity and rechargability. Li et al. fabriated a
Li-ion battery anode consist of monodisperse SnO2

nanofibers protruding from a current-collector sur-
face via the template method. The dramatically-

improved rate and cycling performance of the elec-
trode is related to the small size of the nanofibers
[19]. Park et al. synthesized SnO2 nanowires
with tetragonal structure by a thermal evapora-
tion method without metal catalysts. The SnO2

nanowires show improved specific capacity for
lithium insertion as compared to nanoparticle an-
odes [20].
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As a new class of anode materials for Li-ion bat-
teries, transition metal oxides can in principle de-
liver as high as three times the capacity of cur-
rently used graphite (<372 mAh/g) [21]. How-
ever, they usually suffer from poor capacity re-
tention upon cycling and poor rate capability,
partly attributed to the large volume changes dur-
ing repeated lithium uptake and removal reactions.
Armstrong et al. reported the TiO2-B nanotubes
or wires (a polymorph of titania with a more open
lattice structure than anatase and rutile) as an-
odes in both liquid and polymer electrolyte cells.
The 1-D TiO2-B polymorph can reduce Li+ at a
much higher potential than lithium metal, with
excellent capacity retention on cycling and a su-
perior rate capability to nanoparticulate anatase
and bulk TiO2-B [22]. Lou et al. used a one-step
self-supported topotactic transformation approach
to synthesize Co3O4 needlelike nanotubes. As an-
ode active material, Co3O4 nanotubes show man-
ifest ultrahigh Li storage capacity with improved
cycle life and high rate capability [23]. Taberna
et al. reported the electrochemically assisted tem-
plate growth of vertically aligned Cu nanorod ar-
rays which used as supports for electrochemical
plated polycrystalline Fe3O4 shells. Such Fe3O4-
based Cu nanorod arrays as anodes display a fac-
tor of six improvement in power density over the

Fe3O4-based Cu planar electrodes while maintain-
ing the same total discharge time [24].

Silicon is an attractive anode material for Li-
ion batteries because it has a low discharge po-
tential and the highest known theoretical charge
capacity (4200 mAh/g). However silicon’s volume
changes by 400% upon insertion and extraction of
lithium which causes pulverization of silicon ma-
terials and capacity fading. Chan et al. reported
vapor-liquid-solid (VLS) grown silicon nanowires
on a stainless steel current collector which can
accommodate large strain without pulverization.
The silicon anodes show the theoretical charge ca-
pacity and maintain a discharge capacity close to
75% of this maximum, with little fading during cy-
cling [25]. Designing nanoscale hierarchical struc-
tures is another approach to address the issues as-
sociated with the large volume changes. Cui and
co-workers prepared crystalline silicon/amorphous
silicon (a-Si) core-shell nanowire and CNFs/a-Si
core-shell nanowires grown by the VLS mechanism
for anodes. Due to the difference of their lithiation
potentials, the a-Si shells store Li+ ions, and the
crystalline Si or CNFs core serves as a stable me-
chanical support and efficient electrical conduct-
ing pathway [26]. Table 2 summarizes the electro-
chemical properties of 1-D nanomaterials used as
active materials of Li-ion battery anodes.

Table 2 Electrochemical properties of 1-D nanomaterials used as active materials of Li-ion battery anodes.
(GPE: gel-polymer electrolyte)

Material Electrolyte
solution

Discharge
Capacity in
first cycle
(mAh/g)

Coulombic
efficiency in
first cycle

Discharge
Capacity in

n cycle
(mAh/g)

Current
density/rate

Reference

graphitized CNFs 1M LiClO4-EC/DEC 367 69% – 30 mA/g 18

SnO2 nanofibers 1M LiClO4-EC/DEC >700 97% – 0.32 mA/(cm2) 19

SnO2 nanowires 1M LiPF6-EC/DMC 1134 31.01% 300 (50) 100 mA/g 20

TiO2-B nanowires GPE (LiPF6/EC/PC-PVdF) 225 – – C/5 22

Co3O4 nanotubes 1M LiPF6-EC/DEC 950 – 918 (30) 50 mA/g 23

Si nanowire – 3124 73% – C/20 25

CNF/a-Si
core-shell nanowires

– 2000 90% 1300 (47) C/5 26

Application of 1-D nanomaterials in su-

percapacitor

Supercapacitor, also called electrochemical ca-
pacitor, golden capacitor or ultracapacitor, is

a new type of energy storage device that has
seen great improvement in recent years. Since
1978, when NEC first introduced the trade name
SupercapacitorTM , the technology has evolved
from first generation products with low energy
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density for memory protection applications to cre-
ate megajoule-size capacitors for transportation
and power quality applications [1]. There are
two general categories of supercapacitors: elec-
tric double-layer capacitors (EDLC) and electro-
chemical pseudocapacitors (EPCs). The capaci-
tance of EDLCs is based on charge separation at
the electrode/electrolyte interface, whereas the ca-
pacitance of EPCs arises from fast and reversible
faradic redox reactions occurring within the elec-
troactive materials [2]. Figure 4 is a schematic
illustration of the supercapacitor.

Power Supply

Fig. 4 Schematic illustration of a supercapacitor.

1-D carbon materials

1-D carbon materials, such as carbon nanotubes
(CNTs), are widely used for supercapacitor elec-
trode materials because of their unique morphol-
ogy, exceptional electrical conductivity, mechani-
cal properties and versatile existing forms [27,28].
In 1997, Niu et al. prepared an entangled-CNT
sheet electrode from catalytically grown CNTs of
narrow diameter distribution (∼8 nm) for high
power performance EDLCs (>8 kW/kg) [29]. An
et al. reported a single-walled carbon nanotube
(SWCNT)/Ni foam electrode with small equiva-
lent series resistance (ESR) and improved power
density [30]. The specific capacitance of the CNT
electrodes is not very high because of their low
specific surface area compared to activated carbon.
Wang et al. fabricated a carbon cloth electrode de-
posited with partially-exfoliated MWCNTs. The
enhanced capacitance (in a range of 130-165 F/g
at 5-0.5 A/g) comparable to graphene could be

attributed to improved effective surface area and
increased defect density of the exfoliated tubular
structure [31]. Usually, vertically aligned CNT ar-
rays (CNTA) are grown either by using thin cat-
alyst layers predeposited on substrates or through
vapour-phase catalyst delivery. Using the latter
method, Talapatra et al. reported CNTA grown on
Inconel 600 (a metallic alloy). The CNTA/Inconel
600 electrode for EDLCs showed lower contact re-
sistance and higher rate capability over previously
designed CNT electrodes [32].

1-D Transition metal oxides

Pseudo-capacitive materials, which bulk under-
goes a fast redox reaction to provide the capaci-
tive response, exhibit superior specific energies to
the carbon-based supercapacitor materials. The
commercial application of RuO2 is limited by its
high cost and toxicity. Alternative transition metal
oxides are attractive in view of their low cost
and excellent capacitive performance in the aque-
ous electrolytes. Wang et al. synthesized MnO2

nanowires and microrods through a simply hy-
drothermal route. The MnO2 microrods show bet-
ter capacitive performance than other MnO2 ma-
terials they obtained [33]. Tang et al. reported
manganese oxide nanobelt bundles with layered
structure by hydrothermally treating K-type lay-
ered manganese oxide precursor. The manganese
oxide nanobelt bundles display good capacitive be-
havior with a specific capacitance of 268 F/g and
cycling stability in a neutral electrolyte system
[34]. Xu et al. synthesized Co3O4 nanotubes by
chemically depositing cobalt hydroxide in anodic
aluminum oxide (AAO) templates and thermally
annealing at 500℃. The Co3O4 nanotubes exhibit
good capacitive behavior with a specific capaci-
tance of 574 F/g at a current density of 0.1 A/g
and good specific capacitance retention [35]. Ra-
jeswari et al. prepared MoO2 nanorods by ther-
mal decomposition of tetrabutylammonium hex-
amolybdate ([(C4H9)4N]2Mo6O19) in an inert at-
mosphere. The MoO2 nanorods show good ca-
pacitive behaviour with a specific capacitance of
140 F/g [36].

1-D carbon material composites

Another group of interesting materials for su-
percapacitors described in this review are 1-D car-

67



Nano-Micro Lett. 3 (1), 62-71 (2011)/ http://dx.doi.org/10.3786/nml.v3i1.p62-71

bon material composites. Takamura et al. modi-
fied the surface of activated CNFs by coating the
thin film of the oxides of Ag, Cu, Pd, and Sn.
The transition metal oxides effectively enhance
the capacitance and high rate charge/discharge
performance of the composites which might be
used as negative electrode materials for Li-ion hy-
brid supercapacitor [37]. Ye et al. prepared a
RuO2/MWCNT electrode by magnetic-sputtering
Ru in Ar/O2 atmosphere onto CVD-synthesized
MWCNTs. The capacitance of the MWCNT
electrodes is significantly increased from 0.35 to
16.94 mF/(cm2) by modification with RuO2 [38].
On the other hand, it appears that CNTs is a
perfect conducting additive and/or support for in-
expensive transition metal oxides of poor electri-
cal conductivity. Raymundo-Piñero et al. pre-
pared a α-MnO2 ·nH2O/MWCNT nanocomposite
by chemical co-precipitation of Mn7+ and Mn2+ in
water medium which contained a predetermined
amount of MWCNTs. The α-MnO2/MWCNT
electrode shows an improved specific capacitance
of 140 F/g with good cyclability and high dy-
namic of charge propagation [39]. Cui et al. de-
signed a Mn3O4/CNTA composite electrode by
dip-casting method for high performance area-
limited supercapacitor. The maximum specific ca-
pacitance of the Mn3O4/CNTA composite elec-
trode is found to be 143 F/g while the specific
capacitance for as-grown CNTA electrode is only
1-2 F/g [40]. Zhang et al. reported manganese
oxide nanoflower/CNTA/Ta foil composite elec-
trodes prepared by combining CVD method and
potentiodynamic electrodeposition technique [41].
Fan et al. prepared a γ-MnO2/ACNT/graphite
substrate composite electrode by combining CVD
method and electrochemically induced deposi-
tion technology [42]. Recently, we fabricated a
MnOx/MWCNT/Ni foam composite electrode by
combining CVD method and cathodic electrodepo-
sition technique. Figure 5 showed TEM images of
individual MnOx/CNT composites with different
magnifications [43]. These binder-free supercapac-
itor electrodes display low ESR, excellent power
characteristics, high specific capacitance, and su-
perior long-term cycle stability.

1-D polymers and their composites

Conducting polymers, namely, polyaniline (PAni),

Fig. 5 TEM images of individual MnOx/CNT composites
with low (inset) and high magnification (from Ref. [43]).

polypyrrole (PPy), polythiophene (PTh) and
poly (3,4-ethylenedioxythiophene) (PEDOT), are
pseudo-capacitive materials [44]. In general, con-
ducting polymers have greater power capability
than the inorganic battery materials but poor
cycle-life compared with carbon-based materials.
Supercapacitor electrodes that utilise 1-D con-
ducting polymers materials as well as composites
with CNTs and inorganic battery materials are
attractive because of their high power capability
and improved specific energy density. Kim et al.
reported the Polyacrylonitrile (PAN)-based acti-
vated CNF web as electrode material for EDLC.
PAN solutions in dimethylformamide (DMF) were
electrospun into webs consisting of 300 nm ultra-
fine fibers, and then activated to prepare high-
surface area PAN-based activated CNF webs.
The PAN-based activated CNF webs activated at
800℃ with steam for 60 min exhibit the highest
specific capacitance of 134 F/g [45]. Niu et al.
prepared polyvinylpyrrolidone (PVP)/PAN blend
nanofibers by conventional electrospinning and
PVP/PAN side-by-side bicomponent nanofibers by
bicomponent electrospinning. The CNFs pro-
duced from the side-by-side polymer nanofibers
by a direct pyrolysis treatment show better fiber-
interconnections and carbon crystalline struc-
ture and higher electrochemical capacitance than
those from the polymer blend nanofibers [46].
Guan et al. reported PAni nanofibers by in-
terfacial polymerization in the presence of para-
phenylenediamine (PPD) for high-rate superca-
pacitors. The PAni nanofibers display a specific
capacitance value of 548 F/g, a specific power
value of 0.127 kW/kg and a specific energy value
of 36 Wh/kg at a constant discharge current den-
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sity of 0.18 A/g [47]. Khomenko et al. fabricated
an asymmetric capacitor with PPy/MWCNTs as
negative electrode and PAni/MWCNTs as pos-
itive electrode, giving specific capacitance val-
ues of 200 F/g for PPy/MWCNTs and 360 F/g
for PAni/MWCNTs, respectively. The well con-
ducting properties and available mesoporosity of
MWCNTs allow good charge propagation in the

composites [48]. Mujawar et al. investigated facile
growth of vertically aligned PAni nanotubes on a
titanium nanotube (TNT) template using electro-
chemical polymerization and obtained a specific
capacitance value of 740 F/g at charge discharge
rate of 3 A/g [49]. Table 3 summarizes the electro-
chemical properties of 1-D nanomaterials applica-
tion for supercapacitor electrodes.

Table 3 Electrochemical properties of 1-D nanomaterials application for supercapacitor electrodes.

Material Electrolyte
solution

Maximum
specific

capacitance

Current
density/

sweep rate

Power
density

(kW/kg)

Electric
resistance

(Ω)
Reference

PAN-based CNFs 6M KOH 134 F/g 1 mA/(cm2) – – 45

MWCNTs 38 wt% H2SO4 104 F/g – >8 0.094 Ω (ESR) 29

SWCNTs 7.5N KOH 180 F/g 1 mA/(cm2) 20 52 mΩ (ESR) 30

exfoliated MWCNTs 3M NaOH 165 F/g 0.5 A/g – – 31

CNTA 6M NaOH 18 F/g 2 mA 7 – 32

manganese
oxide nanobelts

1M Na2SO4 268 F/g 5 mV/s – – 34

Co3O4 nanotubes 6M KOH 574 F/g 0.1 A/g – 0.4 Ω 35

MoO2 nanorods 1M H2SO4 140 F/g 1 mA/(cm2) – – 36

PAni nanofibers 1M H2SO4 548 F/g 0.18 A/g 0.127 0.76 Ω 47

RuO2/MWCNT 1M H2SO4 16.94 mF/(cm2) 0.2 mA – – 38

A-MnO2 · nH2O/
MWCNT

1M Na2SO4 141 F/g 2 mV/s – 3.5 Ω/(cm2) 39

manganese
oxide/CNTA – 144 F/g 500 A/g – 1.66 Ω (ESR) 41

PAni/MWCNTs 1M H2SO4 360 F/g 2 mA – 0.48 Ω/(cm2)

PPy/MWCNTs 200 F/g 0.86 Ω/(cm2) 48

PAni nanotube/TNT 1M H2SO4 740 F/g 3 A/g 3 – 49

Conclusion

The proliferation of personal electronics and
commercialization of electric and hybrid electric
vehicles has popularized the need for recharge-
able Li-ion batteries. Supercapacitors are crucial
in supporting the voltage of a system during in-
creased loads. To develop advanced energy con-
version and storage devices, active electrode ma-
terials with superior electrochemical performance
are essential. Moving from bulk materials to the
nanoscale can significantly change electrode and
electrolyte properties, and consequently their elec-
trochemical performance. In particular, 1-D nano-
materials have demonstrated significant improve-
ments over conventional electrode materials with
superior specific capacities, higher rate capabili-
ties, better cycling performances. In the future,
much attention should be devoted to new, low-
cost and environmentally friendly 1-D nanomate-

rials obtained by facile preparation processes.
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