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1 Introduction 
Over the past decade, the rapid development of e-
commerce has opened up new possibilities, which 
have led to dramatic changes in how firms design, 
place, and price their products. In this paper, we 
focus on a sales strategy called opaque selling, which 
has become quite popular in service industries – 
especially in the travel industry. When selling an 
opaque product, the provider conceals some aspects 
of the offered service until the transaction has been 
completed. From a monopolistic point of view, 
opaque products can basically be seen as an addi-
tional instrument of price discrimination that allows 
the supplier to provide a discount in order to attract 
additional low-value customers, but without exces-
sively cannibalizing or diluting existing demand for 
fully specified products. As an alternative to this 

market expansion, the provider could offer only a 
few discounts and raise the regular products’ prices 
in order to enhance the price discrimination of the 
existing customer base (e.g., Fay 2008). 
The usage of opaque products has been shown to be 
successful in many practical applications. Specifical-
ly in markets in which business travelers often make 
late purchases and the provider usually has to resort 
to some kind of temporal segmentation with ad-
vanced purchase restrictions, opaque products can 
help effectively segment the market until the last 
minute before service provision without too much 
buy-down behavior. Segmentation is possible due to 
business travelers’ reluctance to risk accepting the 
“randomness” inherent in opaque products (e.g., 
Jiang 2007). Indeed, opaque products are often 
regarded as a more efficient alternative to last-
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minute selling (Jerath, Netessine, and Veerara-
ghavan 2010). Examples of opaque products in 
practice include airlines that allow customers to 
book a flight from A to B on a specific date, but con-
ceal schedule information, such as the exact depar-
ture and arrival times, connections, transfers, and 
layover durations; hotel chains that conceal the 
specific hotel in which the customer will stay; and 
cruise lines that hide the cabin type or even the itin-
erary until after purchase. 
Opaque products’ popularity has been heavily driv-
en by offers from intermediaries, such as Hotwire 
and Priceline, which multiple providers share. In 
addition to the concealed information described 
above, intermediaries usually hide the service pro-
viders’ brand names (e.g., those of the airlines, rent-
al firms, hotels, or cruise lines) when selling an 
opaque product. Many service providers currently 
tend to move customers of their traditional products 
back to company-managed direct distribution 
channels as well as to streamline prices and create 
price parity across these channels. Thus, the addi-
tional usage of a completely separate, anonymous 
channel via intermediaries – which hide the provid-
er’s identity by combining different providers’ prod-
ucts into a single opaque product – allows providers 
to effectively post different prices simultaneously 
while maintaining price parity and control of full-
information-posted price channels (e.g., Anderson 
2009). Furthermore, a provider that does not pro-
duce multiple, horizontally differentiated regular 
products even needs to utilize an intermediary in 
order to successfully introduce an opaque product 
(Fay and Xie 2008). 
There has been increasing interest in opaque prod-
ucts in the academic literature in the last few years. 
Most of the research on opaque selling with posted 
prices has concentrated on analyzing the general 
economic benefits of offering opaque products in a 
static setting and discussed how prices should be set 
compared to those of traditional products, mostly 
on the basis of stylized economic models. In this 
paper, we tackle the topic from a revenue manage-
ment perspective in a dynamic setting based on 
capacity control, which is a key component of mod-
ern revenue management. Basically, capacity con-
trol is concerned with the task of optimally selling a 
network of perishable resources with a fixed capaci-
ty over time by dynamically making products de-
fined on this network available or unavailable to 
customers (e.g., Talluri and van Ryzin 2004). As 

soon as opaque products are introduced, traditional 
optimization models, which are used to perform 
automated capacity control, can no longer be ap-
plied due to the supplier-driven substitution possi-
bilities inherent in opaque products. 
Therefore, the contribution of this paper is the de-
velopment of a new approach to capacity control, 
enabling the service provider to simultaneously 
offer both, opaque products and traditional ones. 
We show that this approach outperforms other well-
known capacity control approaches adapted to the 
opaque product setting. Our approach builds on the 
well-known dynamic programming decomposition 
procedure; this procedure is not only state-of-the-
art from a theoretical point of view, but also widely 
used for standard capacity control in commercial 
revenue management systems. Therefore, the re-
sults are relevant to both research and practice. 
Moreover, service providers who already apply ad-
vanced revenue management techniques and are 
considering introducing opaque products can im-
plement this approach very easily. Based on the new 
approach, we are able to investigate some specific 
effects that arise in a dynamic setting when opaque 
products are introduced. In particular, we give ex-
amples of how the degree of opacity can influence 
the revenue performance, and that the share of 
opaque products obtained from total sales is a criti-
cal aspect with respect to overall revenue perfor-
mance. 
The paper is structured as follows: In section 2, we 
begin with a brief discussion of the existing litera-
ture on and related to our topic. We then present 
the basic network dynamic programming formula-
tion for the capacity control problem, including 
opaque products (section 3). In section 4, we analyt-
ically show how to use dynamic programming de-
composition in order to decompose the given capac-
ity control problem. Moreover, we prove that im-
portant results known from standard capacity con-
trol also hold in the opaque setting. In section 5, the 
control mechanism resulting from the decomposi-
tion is extensively investigated in a computational 
study. We consider typical airline revenue manage-
ment scenarios in order to show its practical ap-
plicability and its relative performance compared to 
other potential control approaches. In addition, we 
analyze some specific effects arising from the intro-
duction of opaque products. In section 6, we con-
clude with a summary of the paper’s main results. 
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2 Related literature 
In the scientific literature, opaque products are usu-
ally discussed from a perspective that could best be 
described as situated at the interface of economics, 
marketing, and operations management. Most of 
the work is concerned with the task of finding opti-
mal selling strategies, especially optimal prices, in 
scenarios that allow for opaque selling. In most 
cases, static settings with an unlimited capacity are 
considered and stylized economic models are devel-
oped. 
Jiang (2007) investigated a monopolist’s different 
strategies by comparing the settings solely with 
regular products, solely with opaque products, and 
both product types simultaneously. He showed that 
opaque selling can be pareto-improving for both, 
customers and provider if customers’ valuations are 
quite differentiated. Furthermore, Fay and Xie 
(2008) incorporated capacity constraints and de-
mand uncertainty. Fay (2008) investigated how 
product opacity affects the market in a competitive 
environment and analyzed a common intermedi-
ary’s impact. Whereas he assumed there are two 
service providers and one intermediary, Shapiro 
and Shi (2008) extended his setting to an arbitrary 
number of competing providers; the total number of 
providers can be regarded as a proxy for the opacity 
level of the opaque product that the common inter-
mediary offers. The authors showed that although 
the opaque product’s introduction increases compe-
tition for the low-price segment, competition for the 
market’s more lucrative segment – which the pro-
viders serve directly by means of regular products – 
decreases. Jerath, Netessine, and Veeraraghavan 
(2009, 2010) investigated a related setting but con-
sidered two subsequent periods. They specifically 
addressed the question of whether opaque products 
should be offered via the intermediary or whether 
the direct last-minute selling of regular products 
should be used in the last period. Post (2010) as well 
as Post and Spann (2011) investigated variable 
opaque products, which allow the customer to con-
figure the amount of opaqueness to a certain extent. 
However, there are only a few papers from the tradi-
tional revenue management stream of research that 
consider the impact that the introduction of opaque 
products has on established capacity control mech-
anisms. Talluri (2001) investigated an airline com-
pany whose customers are indifferent to the various 
itineraries serving the same market, as long as they 
are similar with regard to arrival/departure times 

and price. The author suggested a deterministic 
model formulation of the problem and derived a bid 
price policy, assigning customers to specific itinerar-
ies immediately after booking. Chen, Günther, and 
Johnson (2003) investigated various approaches to 
capacity control in air cargo revenue management, 
where flexibility also emerges from different routing 
options. 
The literature on revenue management with flexible 
products is also related to our work: Flexible prod-
ucts can be seen as a generalization of opaque prod-
ucts in the sense that the provider does not have to 
determine a flexible product’s full specification im-
mediately after the sale, but can postpone this deci-
sion even further, if necessary until shortly before 
service provision. Gallego and Phillips (2004) and 
Gallego, Iyengar, Phillips, and Dubey (2004) first 
introduced and investigated the concept of flexible 
products. Petrick, Steinhardt, Gönsch, and Klein 
(2012) further analyzed flexible products’ potential 
to compensate for imprecise demand forecasts. 
Petrick, Gönsch, Steinhardt, and Klein (2010) de-
veloped several dynamic control mechanisms that 
allow for flexible products’ practical integration into 
existing capacity control systems. The idea of reve-
nue management with flexible products has been 
adapted to several fields of application (e.g., 
Bartodziej and Derigs 2004; Bartodziej, Derigs, and 
Zils 2007; Spengler, Rehkopf, and Volling 2007; 
Müller-Bungart 2007; Kimms and Müller-Bungart 
2007). 
Regarding the optimization technique used in this 
paper, the literature on dynamic programming de-
composition approaches for revenue management is 
of particular interest. Talluri and van Ryzin (2004) 
described the standard decomposition approach for 
the traditional revenue management setting, which 
is used to split the full network dynamic program 
into a number of single-leg problems that are usual-
ly much easier to solve. This technique serves as a 
basis for the approach incorporating opaque selling, 
which is developed in this paper. A number of re-
cent publications, for example, Liu and van Ryzin 
(2008), Miranda Bront, Méndez-Díaz, and Vulcano 
(2009), Zhang and Adelman (2009), Erdelyi and 
Topaloglu (2010), Kunnumkal and Topaloglu 
(2010), and Meissner and Strauss (2012) adapted 
dynamic programming decomposition to other 
settings, such as the choice-based network revenue 
management setting or overbooking settings. 
Finally, for a general introduction to the field of 
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revenue management, see the textbooks by Talluri 
and van Ryzin (2004) and Phillips (2005), as well as 
the surveys by Weatherford and Bodily (1992), 
McGill and van Ryzin (1999), as well as Chiang, 
Chen, and Xu (2007). 

3 General notation and dynamic 
programming formulation 

We rely on the standard revenue management set-
ting as introduced, for example, by Talluri and van 
Ryzin (2004), which can be stated as follows: There 
are l  resources indexed by � �� 1, ,l� � with hc  
denoting the total remaining capacity for each 
h � � . The corresponding vector is denoted by 

� �1, , lc c�c � . Furthermore, there are n  products 
defined on �  that are indexed by � �1, ,n�� � . 
The revenue obtained when selling one unit of 
product j ��  is denoted by jr . Requests for the 
products arrive throughout a common booking 
horizon, with all units of capacity remaining after its 
end being worthless. The booking horizon can be 
sufficiently discretized into T  periods, so that there 
is at most one incoming customer request for each 
period 1,...,t T� . The probability of an arrival of a 
request for a product indexed by j  in period t  is 
denoted by � �jp t  

and � � � �0 1 j
j

p t p t
�

� �	
�

 is the 

probability of there being no incoming request. The 
periods are numbered backwards in time. Thus, 

� �
1

t

jt jD p
�

�
�

� 	  is the expected aggregated de-

mand-to-come at the point in time t  for a product 
indexed by j . 

The difference resulting from the introduction of 
opaque products compared to the standard case lies 
in the definition of the resource consumption. There 
are now potentially several specification options 

j 
� �  the provider can choose from after selling 
an opaque product indexed by j �� . �
� �  is 
the index set of all products’ specification options, 
where the consumption of an option with index 
i � �  on a resource with index h � �  is expressed 
by the parameter hia . The corresponding vector is 
denoted by � �1 , ,i i lia a�a � . Note that any regular 
product indexed by 'j  can be modeled as a special 
case of an opaque product with 

'
1

j
�� . Subse-

quently, for the sake of simplicity, we refer to a re-
source indexed by h  as “resource h ”. The same 
abbreviation is used for the other index sets. 
Now, let � �,V tc  be the maximum expected reve-
nue-to-go from period t  onward, assuming that 

resource capacity c is left over. Then, the dynamic 
programming formulation of the capacity control 
problem with opaque products can be stated as the 
following Bellman equation (DP-op): 

(1)  

� � � � � ��

� �
� � � �0

, max , 1 ,

max , 1

, 1
j

j
j

j mm

V t p t V t

r V t

p t V t

�

�

� �

�

� � � 

�
� �

	c c

c a

c

�

�

 

The boundary conditions are � �, 0 0V �c  for 0�c  
and � �, 0V � ��c  otherwise, because any remain-
ing capacity at service provision is worthless and 
negative values of the remaining capacity are not 
allowed. The extension to the standard dynamic 
programming formulation (e.g., Talluri and van 
Ryzin 2004) is that we replace the revenue-to-go 
resulting from the acceptance of request j with the 
maximization term � �max , 1

j
mm

V t
�

� �c a
�

, because a 

decision has to be made regarding how to resolve 
opacity. That is, one of the specification options 
included in the set j�  is selected in a revenue-
maximizing way. The corresponding decision rule 
directly follows from the model by rearranging 
terms. An incoming request for an opaque product j 
is accepted if and only if 

(2) � � � �� �min , 1 , 1
j

j mm
r V t V t

�
� � � � �c c a

�
, 

which means that there must be at least one specifi-
cation option for which the opportunity cost does 
not exceed the revenue. In the case of acceptance, a 
potential specification *m  with minimal oppor-
tunity cost � � � �*, 1 , 1mV t V t� � � �c c a  is selected 
and capacity is reduced accordingly. The traditional 
model and its related decision rule are obviously 
special cases of (1) and (2), because, if 1

j
�� , the 

maximization and the minimization can be omitted 
in (1) and (2), respectively. 
Note that formulation (1) is more closely related to 
the standard formulation without opaque products 
than to the dynamic programming formulation 
proposed by Gallego, Iyengar, Phillips, and Dubey 
(2004) for flexible products. In particular, from a 
technical perspective, (1) is not a special case of 
these authors’ model. This is because, with flexible 
products, the state space is modeled completely 
different. It does not include current remaining 
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capacities of the resources, but only stores the 
commitments that have been made by selling prod-
ucts. Regarding these commitments, capacity is 
allocated only in the last stage of the dynamic pro-
gram by solving a linear feasibility problem. This 
inhibits the direct application of resource-based 
decomposition approaches, which is possible in our 
model for opaque products, as we demonstrate in 
the next section. 

4 Dynamic programming 
decomposition 

Similar to the dynamic program in the traditional 
setting, DP-op – as given by (1) – is not solvable for 
most realistic resource networks due to the curse of 
dimensionality. Therefore, in this section, we show 
that the well-established idea of dynamic program-
ming decomposition used in traditional network 
revenue management (e.g., Talluri and van Ryzin 
2004: Chap. 3) can be transferred to the setting with 
opaque products. The main idea of dynamic pro-
gramming decomposition can be summarized as 
follows: the network dynamic programming model 
is decomposed into a collection of single-resource 
dynamic programs, each of which is only one-
dimensional and, therefore, avoids the curse of di-
mensionality. Using these easy-to-solve dynamic 
programs, dynamic opportunity costs, which vary as 
a function of time and capacity, can be obtained and 
used for a price-based control policy. To account for 
the network structure, the decomposition uses static 
information from the optimal solution of an easier-
to-solve network model, which is usually the well-
known Deterministic Linear Program (DLP) assum-
ing deterministic demand (e.g., Talluri and van 
Ryzin 2004: Chap. 3). 

4.1 Derivation 
Following the generic idea of dynamic programming 
decomposition (e.g., Liu and van Ryzin 2008), we 
approximate DP-op at a given resource h �  by: 

(3) � � � �
� �\

, ,h h h h
h h

V t V c t c�� �
��

� � 	c
�

 

� �,h hV c t� �  is a dynamic, time- and capacity-
dependent approximation of the value of capacity of 
resource h �  and 

� �\
h h

h h

c�
��

	
�

 is a static linear ap-

proximation of the other resources’ capacity. In our 
setting, we propose to obtain the values of h�  from 

a generalization of the DLP that, to the best of our 
knowledge, was first presented by Talluri (2001) in 
the context of passenger routing (see section 2). In 
this model, as opposed to the standard DLP, the 
decision variables jmx  have two indices, as they 
denote the number of expected future requests for 
opaque products that should be assigned to each of 
the specification options jm �� . The optimization 
problem can then be formulated as follows (DLP-
op): 

(4) � �, max
j

DLP
j jm

j m

V t r x
� �

� 	 	c
� �

 

subject to 

(5) 
j

hm jm h
j m

a x c
� �

�	 	
� �

 for all h � �  

(6) 
j

jm jt
m

x D
�

�	
�

 for all j ��  

(7) 0jmx �   for all j �� , jm ��  

Compared to the traditional DLP model, in the ob-
jective function (4), in the capacity constraints (5), 
and in the demand constraints (6) it is now neces-
sary to additionally sum up over all specification 
options for each product. Again, the traditional 
setting is obviously a special case. Similar to the 
traditional decomposition approach, each h�  is 
taken from the optimal solution of DLP-op and 
corresponds to the dual variable, that is, the bid 
price associated with the capacity constraint for 
each resource h .  
Substituting the approximation (3) into the Bellman 
equation (1), we obtain 

(8)

 

� �
� �

� � � ��

� �
� ��

� �
� �

� � � �
� �

\

\

\

0
\

,

max , 1

,max , 1

, 1

j

h h h h
h h

j h h
j

h h j h h h mm
h h

h h hm
h h

h h h h
h h

V c t c

p t V c t

c r V c a t

c a

p t V c t c

�

�

�

�

� �
��

� �
�

� � ��
��

��

� �
��

�

� �

� � � �

��





� � � 
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with the boundary conditions � �, 0 0h hV c� � �  for 
0hc � �  and � �, 0hV c � � ��  otherwise. After some 

minor rearrangements, we have the following dy-
namic program, which is one-dimensional with 
respect to capacity: 

(9) 

� �
� � � ��

� �
� �

� � � �
\

0

,

max , 1 ,

max , 1

, 1

j

h h

j h h
j

j h hm h h h mm
h h

h h

V c t

p t V c t

r a V c a t

p t V c t

�

� �

� �
�

� � ��
��

� �

�

�

�� �

� 

� 

� � � �� 

� 

� 


� ��
� �

	

	

�

�
�

 

with the same boundary conditions as before.  
It can be shown that two of the most prominent 
results known from standard capacity control im-
mediately carry over to the extended setting. In 
particular, we have  

Proposition 1. 

 � � � �
� �\

, ,h h h h
h h

V t V c t c�� �
��

� � 	c
�

 

 for all , 1,..., ,t T h �� � �c 0 �  

as well as  

Proposition 2. 

 � �
� �

� �
\

, ,DLP
h h h h

h h

V c t c V t�� �
��

� �	 c
�

  

 for all , 1,..., ,t T h �� � �c 0 �  

The proofs for Propositions 1 and 2 are given in 
Appendix A1 and A2, respectively. Proposition 1 
means that the dynamic programming decomposi-
tion – applied at a single resource h �  while the val-
ues of the remaining resources are approximated by 
the duals of DLP-op – provides an upper bound on 
the network dynamic programming model. This 
result has been shown analytically for other specific 
revenue management models (e.g., Zhang and 
Adelman (2009) for the derivation in choice-based 
revenue management) and holds in settings with 
opaque products as well. From Propositions 1 and 2, 
it follows that the dynamic programming decompo-
sition leads to a tighter upper bound than the one 
obtained when simply using DLP-op. 

4.2 Discussion 
The result of the derivation of the dynamic pro-
gramming decomposition approach for opaque 
products shows two specific and intuitive aspects of 
how opacity has to be taken into consideration.  
First, similar to the standard approach, which only 
considers regular products, dual values from the 
solution of the corresponding deterministic model 
are used to capture network effects; they are incor-
porated by subtracting the value of capacity used 
elsewhere in the network from each product’s reve-
nue. What is new in the setting with opaque prod-
ucts is that the dual values from the DLP-op solu-
tion are also used to obtain specification-dependent 
adjusted revenues, which is intuitive because the 
specification, which is chosen by the provider after 
sale, determines the capacity used elsewhere in the 
network. 
Second, interestingly, it turns out that the decision 
problem on how to resolve opacity remains included 
in each of the resulting one-dimensional dynamic 
programs. Even though only a single resource h �  is 
considered explicitly, all specification options are 
taken into consideration, whether they require ca-
pacity on h �  or not. This is reflected by the inner 
term 

� �
� �

\

max , 1
j
j h hm h h h mm

h h

r a V c a t� � � ��
��

� �
� 
� 
� � � �� 
� 
� 
� �
	

�
�

 in 

(9). More specifically, there can even be specifica-
tion options for opaque products that do not require 
the current resource at all. Consequently, their se-
lection in the single-resource dynamic program will 
not lead to any changes in remaining capacity hc � . 
Instead, the required resources’ static bid prices h�  
capture the capacity consumption implied by the 
selection of such an option. Thus, in contrast to the 
standard decomposition, the static bid prices from 
the deterministic network model are not only incor-
porated in an “AND”-fashion, reflecting the usage of 
multiple resources by a product, but also in an 
“OR”-fashion, reflecting the different specification 
options a product can use. This is illustrated in de-
tail by the example given in Appendix A3. 

4.3 Control mechanism 
In line with the mechanism for the standard case, a 
control mechanism can be constructed based on the 
dynamic programming decomposition outlined 
above. Bid prices h�  are derived by solving DLP-op 
up-front. The approximation is then repeated at 
each resource h �  of the network, obtaining a set of 
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one-dimensional value functions � �, ,h hV c t h� �
� ��  

(see (9)). In the value function at resource h � , the 
products’ revenues are reduced by the bid prices h�  
of resources h h ��  used elsewhere in the network, 
depending on the specification option. The re-
source-specific value functions are then aggregated 
to form a dynamic approximation of the network 
value function � � � �, ,h h

h

V t V c t� �
��

� 	c
�

. This implies 

that the opportunity cost of accepting a request for 
the opaque product j and selecting a specification 
option m  is approximated by 

� � � �� �, 1 , 1h h h h hm
h

V c t V c a t
�

� � � �	
�

. In this con-

text, the used resource-specific value functions (9) 
can be further simplified by only considering those 
products that need capacity from the resource h �  in 
at least one specification option. This leads to the 
following reformulation: 

(10) 

� �
� � � ��

� �
� �

� � � �

: 0

\

: 0

,

max , 1 ,

max , 1

1 , 1

j
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j h h

j m aj h m
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j hm h h h h mm

h h
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j h h

j m aj h m
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p t V c t

r a V c a t

p t V c t
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� �
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�� �
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� 
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� �

�
�

� �

 

Considering the definition of opportunity cost based 
on (9) and (10), respectively, it is easy to see that 

� � � � � �, 1 , 1 , 1res res
h h h h hm h hV c t V c a t V c t� � � � � �

� �, 1 ,
h h hm j
V c a t j m� � � � � �� �  holds. Then, 

throughout the booking horizon, the decision to 
accept requests is made in a similar way as outlined 
in section 3 for the original dynamic program by 
condition (2). The only modification is that oppor-
tunity costs are obtained from the value functions 

� �,res
h hV c t  instead of the original dynamic program, 

leading to  

(11) � � � �� �min , 1 , 1
j

res res
j h h h h hmm

h

r V c t V c a t
�

�

� � � � �	
�

�

. 

In the case of acceptance, a potential specification 
* jm ��  with minimal opportunity cost 

� � � �� �, 1 , 1res res
h h h h hm

h

V c t V c a t
�

� � � �	
�

 is selected  

and capacity is reduced accordingly. 

5 Computational results 
In this section, we perform a simulation study to 
investigate revenue management settings that in-
clude opaque products. Our study is based on two 
basic network structures that are introduced in sec-
tion 5.1. Structures of this kind occur directly or as a 
substructure in common airline networks. The 
structure of the second network has been adapted 
from the literature. In section 5.2, we investigate the 
performance of the dynamic programming decom-
position approach proposed in section 4. Having 
shown that the approach is a reasonable method of 
capacity control, we are able to investigate several 
specific aspects and effects that result from integrat-
ing opaque products into a capacity control setting 
in detail in sections 5.3 and 5.4. In particular, in 
section 5.3, we analyze the effect of systematically 
varying the share of opaque products. In section 5.4, 
we describe how the inherent flexibility, that is, the 
degree of opacity drives the obtainable revenue 
performance. 

5.1 Simulation experiment design 
The numerical experiments we conduct are based 
on two example airline networks. 
Network 1 consists of three parallel flights with 
capacities of 40, 30, and 35 seats each. There are 
four booking classes on each flight (Y, M, B, and Q) 
and one opaque product, producing 13 products in 
total. The fares are 500, 417.50, 335, and 250, de-
pending on the booking class. Any of the three 
flights can be assigned to a customer of the opaque 
product, but he pays only 150. On each flight, 10%, 
20%, 20%, and 30% of expected demand is for 
booking class Y, M, B, and Q, respectively; the re-
maining 20% of customers request the opaque 
product. 
Network 2 is taken from the literature and was orig-
inally proposed by Liu and van Ryzin (2008: §7.2). 
There are four cities A, B, C, and H, which are con-
nected by seven flight legs with capacities of be-
tween 80 and 150 seats (see Figure 1). We consider 
two booking classes Y and Q, producing a total of 27 
regular and opaque products. The long-haul leg A-B 
can be booked for 900 and 540 in class Y and Q, 
respectively. The other single-leg flights are consid-
ered short-haul and cost 500 in Y and 300 in Q. 
Four connecting itineraries are available from A via 
the hub H, priced at 800 and 480 in the two book- 
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Figure 1: Network 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ing classes. In addition, five opaque products are 
offered in this network. There are three short-haul 
opaque products at a cost of 220 from A to H, H to 
B, and H to C, guaranteeing transportation on one 
of two possible itineraries, either in the morning or 
afternoon. Furthermore, there are two long-haul 
opaque products offering transportation from A to B 
and A to C that can be bought for 352. With respect 
to opacity in these products’ definition, besides the 
two connecting itineraries, customers flying from A 
to B can also be assigned to the direct flight. In case 
that, in total, expected demand equals the capacity 
on all flights, expected demand is calculated as fol-
lows: demand for each connecting itinerary equals 
30% of its total capacity and demand for the direct 
flights is set equal to the remaining capacity. On 
each itinerary, 30% of demand is for class Y, 40% 
for class Q, and 30% for an opaque product with the 
demand distributed evenly if there are multiple 
opaque products. Demand information is addition-
ally given in tabular form in Appendix A4. 
In our study, we assume the booking process to be 
time-homogeneous and the arrival rate is calculated 
accordingly from the expected demand value. Fur-
thermore, in line with our model assumptions from 
section 3, the booking process is discretized into T  
periods, so that there is at most one incoming cus-
tomer request in each period (e.g., Subramanian, 
Stidham Jr., and Lautenbacher 1999: section 3.2.1 
for the discretization procedure). The resulting 
number of periods is 250 and 1500 in Network 1 
and Network 2, respectively. We fix the number of 

simulation runs, each of them representing a stream 
of product requests, for all considered scenarios to 
100, and, depending on the matter of interest, re-
port resulting aggregated performance indicators 
along with the corresponding confidence levels. If 
different control methods are compared, we use the 
same set of 100 streams of product requests for all 
of them. Furthermore, in both networks, we gener-
ate additional scenarios by varying the demand 
intensity in advance in order to simulate different 
load factors. Therefore, we scale the expected de-
mand using a parameter � �0.9,1.0,...,1.5� � , 
where 1� �  corresponds to the case that expected 
demand equals capacity on all flights, as described 
above. 

5.2 Performance evaluation of the 
dynamic programming decom-
position 

The purpose of this subsection is to indicate wheth-
er the practical application of the proposed dynamic 
programming decomposition is reasonable in terms 
of relative performance compared to other typical 
model-based capacity control methods when gener-
alized to the opaque product setting, as well as in 
terms of computational runtime. 
For Network 1, Figure 2 shows the revenue perfor-
mance of all control methods tested relative to the 
perfect hindsight optimal revenue obtained with full 
information on demand (EXPOST). DP is the con-
trol mechanism given by condition (2) based on the 
network dynamic programming model (1). The
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Figure 2: Performance of the control methods relative to EXPOST (Network 1) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
DECOMP#-variants implement the dynamic pro-
gramming decomposition approach developed in 
section 4. The next four methods are immediate 
applications of DLP-op given by (4)-(7). CEC bases 
the acceptance of a request on the comparison of 
two optimal solutions of the model – one accepting 
the request and one rejecting it (see Bertsimas and 
Popescu (2003) for CEC in the standard setting). 
DLP# uses the dual variables from DLP-op as bid 
prices to implement standard bid price controls 
(e.g., Talluri and van Ryzin 2004: Chap. 3.3.1). A 
request is accepted if and only if its revenue is not 
less than the sum of the relevant bid prices in at 
least one specification option. FCFS is a simple first-
come-first-served control, which accepts requests as 
long as they can be served with the remaining ca-
pacity. In DECOMP# and DLP#, the number # 

indicates how often the linear program is solved 
throughout the booking horizon. Within the control 
methods DECOMP1 and DLP1, the deterministic 
linear program is solved only once at the beginning. 
The dual variables associated with the capacity con-
straints are then used to estimate the marginal value 
of capacity throughout the entire booking horizon. 
In methods DECOMP3 and DLP3, we partition the 
booking horizon into three evenly split periods and 
resolve the problem at the beginning of each period, 
using the remaining time, capacity, and estimated 
demand-to-come as input parameters. In DE-
COMP10 and DLP10, 10 equal-sized periods are 
used. 
First of all, Figure 2 clearly shows that the DECOMP 
approaches consistently produce almost the same 
revenues as DP. The number of reoptimizations has  
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Figure 3: Performance of the control methods relative to EXPOST (Network 2) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
no visible effect and the lines representing DP, DE-
COMP1, DECOMP3, and DECOMP10 are so close 
that it is hard to distinguish between them. This is 
quite an impressive result since DP’s control deci-
sions are perfect in the sense that they maximize 
expected revenue, given the available demand fore-
cast. DECOMP1 is only significantly below DP at the 
99% level of confidence for 1.1� � ; however, the 
difference is only 0.5 percentage points. Further-
more, it turns out that DECOMP1 performs signifi-
cantly better than CEC, regardless of the demand 
intensity considered. Compared to the methods 
mentioned above, DLP10 trails about 1% behind. 
DLP3 is much less stable and about 2%-5% behind. 
DLP1 shows very high fluctuations: If the load factor 
is low ( 1.2� � ), it yields exactly the same low reve-
nue as FCFS in all demand streams. This is because, 
although the total demand may exceed capacity, 
there is a positive contingent in the DLP model’s 

optimal solution, even for low-value products. This 
leads to bid prices that allow for the acceptance of 
all requests, although the contingent in the solution 
may be very small. However, when the demand is 
stronger, DLP’s revenue sharply increases as it be-
gins to reject some requests. Analyzing the benefit of 
the reoptimizations in detail confirms our observa-
tion from Figure 2 that the effect of reoptimizing is 
negligible for DECOMP, as the confidence intervals 
comparing DECOMP1, DECOMP3, and DE-
COMP10 are almost centered around 0. The corre-
sponding results for 1.4� �  and confidence levels 
are given in Appendix A5. 
Likewise, Figure 3 shows the performance of the 
control methods for Network 2 relative to EXPOST. 
Note that the values for DP cannot be reported here, 
because the high dimensionality and size of the state 
space make its application impossible. The DE-
COMP approaches usually produce the highest rev-
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enues, yielding over 99% of EXPOST’s revenue, and 
significantly outperform CEC. The impact of reop-
timizing for the DLP approaches is much bigger for 
Network 2 than for Network 1. Regarding DECOMP, 
there is no significant advantage. However, our 
results (see also Appendix A5) indicate that reopti-
mizations can – at least to a very small extent – help 
further improve the revenue. These figures suggest 
that, especially for DLP10, the revenue could be 
increased even more by further raising the number 
of reoptimizations. Nevertheless, it is important to 
note that regardless of the number of reoptimiza-
tions, DLP will never outperform CEC in expecta-
tion, because CEC can be regarded as resolving the 
linear program for every single customer and direct-
ly deciding on the requests without being con-
strained to additive bid prices. As DECOMP signifi-
cantly dominates CEC, no reoptimization strategy 
will ever enable DLP to get close to DECOMP. The 
only exception is for 1.1� � . Here, the initial dual 
values of the DLP model that are used to calculate 
the adjusted revenues used in DECOMP1 are quite 
bad. In this case, the adjusted revenues are valid for 
only very few units of capacity, which leads to a 
revenue of 0.4% below that of CEC. However, when 
the adjusted revenues are updated during the book-
ing horizon by resolving the linear program, reve-
nue increases and the gap between DECOMP and 
CEC can be reduced to 0.17%. 
Overall, our results regarding the relative perfor-
mance of the approaches are, by and large, in line 
with what is known from traditional revenue man-
agement without opaque products. Even without 
reoptimizations, our decomposition approach con-
sidering opaque products performs quite well. Its 
revenues are comparable to those obtained by DP 

and it considerably outperforms the other methods, 
including CEC. 
Table 1 shows computational time statistics for both 
networks for 1.4� � . With respect to DP-based 
methods, that is, DP, DECOMP1, DECOMP3, and 
DECOMP10, the column “V” shows the average 
time required for calculating the value function for 
all states. With regard to the latter three, this also 
includes the time to calculate the displacement-
adjusted revenues; that is, the time required to solve 
the dual of the corresponding DLP-op. In case of 
CEC, nothing is computed in advance, as DLP-op 
needs to be resolved twice for every incoming re-
quest. For DLP1, DLP3, and DLP10, the column “V” 
gives total computation times needed to solve DLP-
op. For each method, the column “Control” refers to 
the time necessary to handle all the customer re-
quests from one demand stream. 
Table 1 shows that, although DP is still applicable in 
Network 1, calculating the value function is very 
time consuming. All other methods are computa-
tionally feasible for both networks. The computa-
tional behavior of the decomposition approaches is 
identical to what is known from the standard setting 
without opaque products. The values from the col-
umn “V” show that the DECOMP-variants are of 
course more time consuming than the DLP-op-
based methods. However, as the resulting dynamic 
programs’ state space is one-dimensional with re-
spect to capacity, computation time scales up linear-
ly with the network size. Furthermore, as our inves-
tigation from before suggests, it often seems unnec-
essary to resolve the DECOMP approaches over 
time with respect to revenue performance. In this 
case, the value function of the DECOMP approaches 
could be completely pre-calculated. The times re- 

Table 1: Computation times (Network 1 & 2, 1.4�� ) 

Method 
 Network 1, �=1.4  Network 2, �=1.4 

 V [mm:ss] Control [s]  V [hh:mm:ss] Control [mm:ss] 

DP  15:15.907 0.312  - - 

DECOMP10  15.024 0.186  1:00:11.438 3.201 

DECOMP3  6.720 0.190  24:14.272 3.124 

DECOMP1  2.277 0.187  17:08.249 3.135 

CEC  - 3.104  - 4:44.764 

DLP10  0.233 0.172  3.806 1.120 

DLP3  0.115 0.165  2.511 1.082 

DLP1  0.064 0.170  2.199 1.090 
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quired to handle a request are rather similar and 
negligible for all methods, except, of course, CEC. 
Overall, from our investigation in this subsection, 
we can conclude that, for our example, the proposed 
decomposition approach performs particularly well 
in terms of realized revenue while, at the same time, 
our experiments demonstrate practical feasibility 
with respect to runtime. Therefore, with the decom-
position, we seem to have found a reasonable meth-
od to consider opaque products in a revenue man-
agement capacity control process. On this basis, we 
are now able to investigate several specific effects of 
opaque products in the following subsections. It is 
of course important to note that the results cannot 
be generalized with certainty and clearly depend on 
the setting. However, the results from this section 
regarding the relative performance of the various 
approaches are obviously in line with the results 
known to be valid for their counterparts in the 
standard setting. Therefore, we think that our re-
sults are at least somewhat representative. 

5.3 Share of opaque products 
In this subsection, we analyze the effects of different 
shares of opaque products. As a point of departure, 
we use the products, prices, and demand shares 
from Network 1 with a demand intensity of 1.1� � . 
We use this intermediate demand intensity because, 
with it, capacity is scarce and, at the same time, it is 
optimal to accept quite a few opaque products. We 
now first remove the opaque products in order to 
construct a base case without any opacity. We then 
mimic the demand-side effects decision makers 
would potentially experience when deciding to in-
troduce opaque products. First, the introduction of 
opaque products can lead to additional low-value 
demand from customers who had not purchased 
any of the offered products before (demand induc-
tion). Second, customers who originally intended to 
buy a regular product could change their purchase 
behaviour and decide to buy the cheaper flexible 
product (cannibalization). In practice, the impact of 
demand induction and cannibalization is industry-
specific and strongly depends on aspects, such as 
the products’ (relative) prices and the attractiveness 
of the opaque products. 
Figure 4 shows the revenues obtained with DP and 
DECOMP1 relative to the base case. In the graphs to 
the left, on one of the axes, we vary the level of de-
mand induction and denote it relative to the num-
ber of opaque product requests in the original set-

ting from section 5.1. More precisely, a value of zero 
refers to the base case without any opaque product 
requests, while a value of 0.5, for example, results in 
only half of the original opaque product demand. 
On the other axis, we vary the degree of cannibaliza-
tion independently of induction. In this example, we 
assume that cannibalization always refers to only 
the cheapest regular product defined on the net-
work, that is, class Q. A factor of zero means that 
there are no class Q-customers changing their de-
mand behavior, while a value of 1 means that all 
original class Q-customers switch to the opaque 
product. The resulting cannibalized demand for the 
opaque product is added to the demand generated 
by demand induction. Note that, with a cannibaliza-
tion of 0 and a demand induction of 1, we have the 
original setting that was investigated in section 5.2. 
The graphs on the right side in Figure 4 show the 
horizontal cross-section of the corresponding graph 
on the left, indicating the ranges of the values of 
cannibalization and induction for which the intro-
duction of opaque products leads to a revenue im-
provement (+) and those for which they lead to a 
loss (–). 
We can observe from the results of DP in Figure 4 
that a higher degree of demand induction leads to a 
better revenue performance, which is intuitive. 
However, the relationship is concave, as with a high 
number of induced opaque requests, capacity be-
comes scarcer. On the other hand, a high cannibali-
zation has a negative effect, as the opaque product is 
priced at 150 instead of 250 for the regular product. 
As DP would not be solvable for larger instances, it 
is important to get an idea of whether the decompo-
sition, which we have identified as the best applica-
ble approach in the previous subsection, leads to 
comparable results. The results for DECOMP1 in 
Figure 4 show that the dependency on induction 
and cannibalization is similar to DP in general. For 
example, the obtainable gain with a maximum in-
duction rate or for a low induction and a high can-
nibalization rate are in a comparable range. Moreo-
ver, the monotonicity properties are similar, except 
for the case of high cannibalization, where DE-
COMP1 is not monotone in induction. This results 
from a disadvantageous set of bid prices from DLP-
op used within DECOMP1, an effect that has already 
been discussed in section 5.2 and that can be miti-
gated by applying reoptimizations. Overall, the re-
sults from this example show that for a wide range 
of induction and cannibalization rates leading
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Figure 4: Revenue depending on demand induction and cannibalization (upper row: 
DECOMP1, lower row: DP, Network 1) 

 

 
 
 
to a specific share of opaque products, the introduc-
tion of opaque products is advantageous in terms of 
revenue achieved. The range is similar but slightly 
smaller for DECOMP1 than for DP. However, these 
values are of course specific to our example and 
cannot be generalized. 
In Figure 5, we perform a similar analysis for Net-
work 2, in which DP is, however, no longer tracta-
ble. The results for DECOMP now show strict mon-
otonicity in the parameters, as the influence of indi-
vidual bid prices from DLP-op seems to be smaller. 
The possible overall gain of opaque products is big-
ger than in Network 1. In particular, it is now always 
positive for high induction levels. As the relative 

price difference compared to the cheapest regular 
product is smaller and the network is more com-
plex, flexibility is obviously more valuable in this 
setting. 

5.4 Degree of opacity 
In this subsection, we investigate the degree of 
opacity’s influence on the revenues obtained. There-
fore, we compare settings that differ only in the 
degree of flexibility inherent in their opaque prod-
ucts. To construct the scenarios for this experiment, 
similar to section 5.3, we use the products, prices, 
and demand shares from Network 1 with a demand
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Figure 5: Revenue depending on demand induction and cannibalization (DECOMP1, 
Network 2) 

 
 
intensity of 1.1� � . To consider different degrees 
of flexibility, we now vary the number of flights 
between one and six with an identical per-flight 
capacity of ten seats and a constant number of 100 
periods, allowing us to also calculate DP for most of 
the scenarios. Demand is generated exactly as de-
scribed for Network 1 for each experiment. For ex-
ample, when considering two flights, 20% of de-
mand is for the opaque product and can be assigned 
to either flight. The remaining demand is flight-
specific in booking classes Y, M, B, and Q for the two 
flights. When considering only one flight, demand is 
still generated as described for Network 1. As overall 
capacity is half of that compared to two flights, 
overall demand is half of that, too. From this de-
mand, 80% is still flight-specific in Y, M, B, and Q. A 
total of 20% is still for the opaque product, which no 
longer really be considered opaque, as it can only be 
assigned to the sole flight. Comparing average per-
leg revenues, the settings now only differ in the 
number of legs to which the opaque requests can be 
assigned. 
Figure 6 shows the revenues obtained with DP and 
DECOMP1 as well as the benchmarks FCFS and 
EXPOST relative to the revenues obtained with the 
respective method in the one-flight case. Thus, all 
methods “start” at 100% (1.00) for one flight. While 
FCFS’s revenue decreases to about 97% for six 
flights, we observe that the other methods’ revenues 
increase to 103.5% for EXPOST and 102% for DE-

COMP1 for six flights. DP attains about 102.5% for 
five flights, but is computationally intractable for 
more. For the latter three methods, increases in 
revenue are the strongest for one to three flights; 
DECOMP1 even levels off and stays more or less 
constant for more than three flights. 
These observations can be explained as follows. 
FCFS is the only method whose revenues decrease 
with the number of flights, that is, when flexibility 
increases. This is due to FCFS’s general shortcoming 
of accepting too many low-value requests – in fact, 
accepting all it can. This shortcoming becomes even 
more severe with more flights, because the in-
creased flexibility of opaque products means it can, 
and actually does, accept even more opaque re-
quests. Thus, revenue decreases with increasing 
flexibility. This is a general property of FCFS; non-
increasing revenues in the level of flexibility would 
show up in every setting where the opaque product 
is the cheapest one. In contrast, DP as the optimal 
control is – in expectation – never hurt by addition-
al flexibility and revenues increase with the degree 
of flexibility as the opaque requests are used to miti-
gate different levels of scarcity on the legs stemming 
from stochastic demand. Similarly, EXPOST’s reve-
nues increase with the degree of flexibility as well. 
As this is the perfect hindsight control, this increase 
is not only in expectation, because no single in-
stance can be constructed where EXPOST would 
make use of the flexibility although it should not.
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Figure 6: Revenue depending on number of parallel flights (one flight = 1.00) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The picture for DECOMP1 is more differentiated; 
two overlaying effects have to be distinguished here: 
On the one hand, an increased flexibility allows for 
better mitigating stochastic demand as explained 
above for EXPOST and DP. On the other hand, the 
more flights and, thus, the higher the degree of flex-
ibility, the more alternative specification options 
have to be compared in the inner maximization of 
(9). Most of these specification options are only 
described approximately with the help of shadow 
prices from DLP-op. In our example, DECOMP1 is 
in fact identical to DP in the single-flight scenario. 
While the first effect increases revenue with flexibil-
ity, the latter decreases the quality of the approxi-
mation. Which effect prevails clearly depends on the 
scenario considered. Here, the first one seems to be 
stronger up to three flights; for more flights they 
cancel each other out. However, defining such a 
high degree of opacity would anyway cause a cus-
tomer’s reaction in terms of demand induction and 
cannibalization as it was analyzed in section 5.3. 
Such effects have not been considered in this exam-
ple as they are very much related to the specific 
industry setting. Nevertheless, it is likely that a very 
high degree of opacity would lead to a negative im-
pact on revenue due to a much smaller demand 
induction. 

Figure 7 shows the total computation time needed 
for processing one customer stream with DP and 
DECOMP1 in this experiment, depending on the 
number of flights. Note that the vertical axis has a 
logarithmic scale. In this graph, DP’s runtime is a 
straight line for two to five legs. This result clearly 
reflects the exponential growth of the DP’s number 
of states, and, thus, of the runtime as the number of 
flights increases. The slightly higher-than-expected 
runtime for one flight might be due to overheads, 
such as deciding on request acceptance. We consid-
er measurement noise less likely, as the runtime 
closely matches that of DECOMP1 for one flight. 
Considering more flights, DECOMP1’s advantages 
are obvious: Although its runtime should theoreti-
cally increase linearly in the number of flights as 
more of the single-leg dynamic programs have to be 
calculated, being less than a second, the runtime is 
so short that this effect is overshadowed by meas-
urement noise. Therefore, no clear trend can be 
seen. Note that although DP’s runtime would not 
prevent application to six flights – as can be seen in 
the figure by extrapolating its line – its memory 
requirements also grow linearly with the exponen-
tially growing number of states. Thus, the amount of 
physical RAM available prevents us from using DP 
with more than five flights. 
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Figure 7: Computation time [hh:mm:ss] for 1-6 flights, logarithmic scale 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
6 Conclusions 
In this paper, we consider revenue management 
with opaque products. Opaque selling is an addi-
tional instrument of price discrimination that helps 
segment a market. However, the supplier-driven 
substitution inherent in these products must be 
reflected in the revenue management process as 
well. As the exact dynamic program describing ca-
pacity control with opaque products is usually not 
applicable to problems of real-world size due to its 
multi-dimensional state space, we propose a quite 
intuitive approach for capacity control with opaque 
products. It is based on traditional dynamic pro-
gramming decomposition heuristics widely used in 
theory and practice. We formally derive the ap-
proach and analyze the resulting single-resource 
dynamic programs. It turns out that the decision 
problem of how to resolve opacity is still included in 
each program. However, the resulting cost of ca-
pacity consumption for specification options that do 
not concern the current resource are completely 
approximated by the bid prices calculated by the 
corresponding linear program. We then show that 
our approximation implies a tighter upper bound on 
the optimal expected revenue than the well-known 

DLP model adapted to the opaque product setting – 
an important result that is also known from the 
traditional setting without opacity. 
In a numerical investigation, we further analyze the 
performance of our decomposition approach in the 
context of airline revenue management and com-
pare it with traditional control mechanisms adapted 
to opaque selling. It shows that the decomposition 
approach’s revenue is comparable to that obtained 
by the full network dynamic program and signifi-
cantly outperforms other approaches, such as DLP-
based bid prices and certainty equivalent control. 
While DLP-based bid prices have to be frequently 
updated by resolving the linear program to adapt to 
demand and capacity utilization, solving the linear 
program underlying the decomposition only once 
up-front is sufficient. Reoptimizations slightly im-
prove the revenue in only a few cases. With respect 
to memory and computation time, the decomposi-
tion is comparable to the traditional decomposition 
approach without opacity and can thus be used for 
large networks. 
Having identified the decomposition approach as 
the best applicable capacity control approach in 
opaque product settings so far, we use the approach 
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to investigate some aspects that are particularly 
related to opaque products. In particular, we first 
investigate how the overall share of opaque products 
influences the results. When introducing opaque 
products, this share is mainly driven by demand 
induction as well as cannibalization effects. The 
results are meaningful in the sense that they basical-
ly correspond to what can be expected. In general, 
we see a positive influence of induction and a nega-
tive one of cannibalization with a few exceptions in 
our parallel flight settings arising from the heuristic 
nature of the control procedure. However, in the 
network setting, these heuristic effects do not show 
up. Overall, the experiment shows that the benefits 
of introducing opaque products in a capacity control 
setting strongly depend on the specific parameters 
of demand behavior. Second, we investigate how the 
degree of opacity drives the obtained results. In our 
examples, it turns out that the degree of opacity – 
modeled by the number of parallel resources that 
can be used to fulfill opaque requests – has a strong 
positive influence on revenue for moderate levels. 
However, for high levels of opacity, there are set-
tings where the reverse effects arising from the heu-
ristic nature of the decomposition compensate for 
the positive effect of an additional specification 
option. 
We believe that the results presented in this paper 
are highly relevant for revenue management in 
practice. As opaque products are increasingly of-
fered by companies that traditionally make use of 
revenue management, there is an urgent need to 
consider these innovative products in the capacity 
control methods used. This is important because 
only integrated methods, such as the decomposition 
approach presented, enable the supplier to fully 
benefit from the advantages of opaque selling. From 
our experiments, we conclude that in revenue man-
agement settings, the introduction of opaque prod-
ucts in an existing product portfolio followed by the 
application of the proposed decomposition ap-
proach can be quite beneficial. However, it is im-
portant to have an idea of what rates of demand 
induction and cannibalization can be expected as 
these were shown to be crucial for the success of 
opaque products. In this context, it is particularly 
important not to define a degree of opacity that is 
too high, as this may lead to a loss in revenue com-
pared to a lower degree of opacity. This can be due 
to both the heuristic nature of the decomposition 

approaches as well as to the quite likely and disad-
vantageous reduction of the demand induction rate 
when the degree of opacity is too high. 

Appendix 

A1 Proof of Proposition 1 
We make use of a decision vector � �u � �0,1, ...,

n
 

for each remaining capacity c , indicating whether a 
request arriving in the current period would be ac-
cepted. The vector components indicate the provid-
er’s acceptance decision as well as the specification 
to select after sale. That is, a request for product j  is 
denied if 0ju �  and accepted and specified as 

� �ju  if 1ju � . To be feasible with remaining 
capacity c , the vector must satisfy 

(12)
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u c u u
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���� � � ���� 
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�� �

� �

� �

0,1,...,

0
j

n

j j j uu u j .

 

With this set of feasible decision vectors � �c� , the 
dynamic programming model can be reformulated 
as a linear program with decision variables 
� �, 0 ,V t t� �c c  (e.g., Adelman 2007):  

(13) � �cmin ,V t    

subject to 
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   for all � �, ,t �c u c� . 

Likewise, the dynamic program that approximates 
the revenue at resource h �  as given by (9) is formu-
lated as a linear program, using decision variables 

� �, 0 ,h h hV c t c t� � �� � : 

(15) � �� �min ,h hV c t    

subject to 
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(16)
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   for all � �, , h ht c� ��c u � . 

We now perform induction over t . For 1t � , we 
obtain from (16) that 

(17) � � � �
� �\0

,1 1
j
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h h j j h hu
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   for all � �, h hc� ��c u � . 

Since this holds for all � �h hc� ��u �  and 
� � � �h hc� � " �c c� � , we have 

(18) 
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where the last equality follows from the fact that 
there are conditions (14) for all � ��u c�  in the 
model (13)-(14). Thus, the result holds for 1t � .  
Let us now assume it holds for 1t � . We show that 

it then will hold for t  as well. Adding 
� �\

h h
h h

c�
��

	
�

 to 

(16) and using the induction hypothesis, we obtain 

(19)
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Using � � � �h hc� � " �c c� �  and (13)-(14), we can 
conclude that the approximation at every resource 
h �  (9) provides an upper bound on the network DP 
model. In particular, we have  

(20) � � � �
� �\

, ,h h h h
h h

V t V c t c�� �
��

� � 	c
�

 for all ,t c . 
� 

A2 Proof of Proposition 2 
We first consider the optimal solution of DLP-op. 
We choose a fixed resource h �  and relax the con-
straints (5) for all the other resources � �\h h �� �  
by associating the dual multipliers h� , that is, the 
values of the dual variables associated with the ca-
pacity constraint (5). As a result of linear program-
ming duality, the obtained formulation has the same 
optimal objective value as DLP-op. After some mi-
nor rearrangements, the objective function can be 
formulated as 

(21)
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The constraints (5)-(7) remain unchanged, except 
for the relaxed capacity constraints (5) that are elim-
inated. Only the constraint for resource h �  remains: 

(22) 
j

h m jm h
j m

a x c� �
� �

�	 	
� �

   

If we ignore the constant term 
� ���

	
�\

h h
h h

c�  in the 

objective function, DLP-op and the formulation (21)
-(22) with (6)-(7) are obviously very similar. In par-
ticular, the latter can be interpreted as the DLP-op 
formulation for a modified capacity control problem 
with revenues  

� �\
j hm h

h h

r a �
��

� 	
�

 and capacity only 

constrained for resource h �  (see Kunnumkal and 
Topaloglu 2010 for a similar discussion regarding a 
different problem). With the objective function of 
this modified problem given by � �mod ,DLPV t� c , we 
can rewrite (21) as 

� � � �
� �

mod

\

, ,DLP DLP
h h

h h

V t V t c��

��

� � 	c c
�

. 
 
For the modified problem, a corresponding dynamic 
program can be straightforwardly constructed as  
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(23) 
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with the boundary conditions � �, 0 0hV � �c  for 
0�c  and � �, 0hV � � ��c  otherwise. That is, if a 

resource other than h �  – which is thus considered 
unrestricted – is to be used by a product, its bid 
price is subtracted from the product’s revenue in 
both (21)-(22) with (6)-(7) and the Bellman equation 
(23). Since the DLP formulation is an upper bound 
for expected revenue, we obtain  

(24) 
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   for all ,t c    

regarding the approximation at every resource h � . 
This proves that the upper bound obtained by our 
approach is tighter than the one obtained by simply 
applying DLP-op.    � 

A3 Illustrative example of the decomposit-
ion approach 
We consider a network with four resources indexed 
by � �1, , 4�� � . There is a product k ��  with the 
specification options � �1,2, 3k �� , which for the 
sake of simplicity are denoted by numbers. The first 
specification option requires one unit of capacity on 
the resources 1h �  and 2h �  (that is, 1 1ha �  for 

1,2h �  and 1 0ha �  for 3,4h � ), the second on 
the resources 2h �  and 3h �  (that is, 2 1ha �  for 

2,3h �  and 2 0ha �  for 1,4h � ), and the third on 
the resources 3h �  and 4h �  (that is, 3 1ha �  for 

3,4h �  and 3 0ha �  for 1,2h � ). 
We subsequently consider the single-leg dynamic 
program (9) for resource ' 2h �  that results from 
applying the decomposition approach. In this dy-
namic program, any consumption of a unit from 
resource 2 is modeled explicitly, that is, 2 1c � , 
while the consumption from the resources 
1,3,4r �  comes at the (static) per unit costs, re-

spectively, 1� , 3� , and 4�  (see Figure 8). Now, if a 

request for product k is going to be accepted, the 
specification is determined by solving 

� � �� 1 2 2 3 2 2
max 1, 1 , 1,

j j
r V c t r V c� �� � � � � � �
� �3 4
1 ,

j
t r � �� � � , which is the inner maximiza-
tion term of (9), specifying the obtainable sum of 
current and future revenue. The corresponding 
decision rule analogous to (2) is as follows: A re-
quest is accepted if

� � � �� �� 1 2 2 2 2min , 1 1, 1 ,jr V c t V c t�� � � � � �

� � � �� � �3 2 2 2 2 3 4, 1 1, 1 ,V c t V c t� � �� � � � � � . 
In specification options 1 and 2, the consumption 
from resource 1 and resource 3 is charged by the 
corresponding static bid price, respectively ( 1�  or 

3� ), while consumption from resource � � 2h  is 
modeled explicitly by calculating the opportunity 
cost of reducing capacity in the revenue-to-go func-
tion, that is, using � � � �2 2 2 2, 1 1, 1V c t V c t� � � � . 
In contrast, in specification option 3, the capacity is 
not considered at all in order to calculate the total 
opportunity cost. However, acceptance comes at the 
cost of the sum of the needed resources’ bid prices 
( 3�  and 4� ). 

A4 Detailed demand information for 
Networks 1 & 2 
Tables 2 and 3 contain detailed demand infor-
mation for Network 1 and Network 2, respectively. 

Table 2: Demand details (Network 1) 
Booking 

class 
Fare Legs used Exp. demand 

(� = 1.0) 

Y 500.00 1 4.00 

Y 500.00 2 3.00 

Y 500.00 3 3.50 

M 417.50 1 8.00 

M 417.50 2 6.00 

M 417.50 3 7.00 

B 335.00 1 8.00 

B 335.00 2 6.00 

B 335.00 3 7.00 

Q 250.00 1 12.00 

Q 250.00 2 9.00 

Q 250.00 3 10.50 

opaque 150.00 1 or 2 or 3 21.00 
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Figure 8: Illustration of the single-leg dynamic program for resource 2h � �  resulting from 
the decomposition approach for opaque products 

Table 3: Demand details (Network 2)
 

Booking 
class 

Origin 
& dest. 

Fare Legs used Exp. demand 
(� = 1.0) 

Y A-B 900 1 30.00 

Q A-B 540 1 40.00 

Y A-B 800 2 & 4 13.50 

Q A-B 480 2 & 4 18.00 

Y A-B 800 3 & 5 13.50 

Q A-B 480 3 & 5 18.00 

opaque A-B 352 
1 or 2 & 4 

or 3 & 5 57.00 

Y A-C 800 2 & 6 7.20 

Q A-C 480 2 & 6 9.60 

Y A-C 800 3 & 7 7.20 

Q A-C 480 3 & 7 9.60 

opaque A-C 352 
2 & 6 

 or 3 & 7 14.40 

Y A-H 500 2 24.30 

 

Booking 
class 

Origin 
& dest. 

Fare Legs used Exp. demand 
(� = 1.0) 

Q A-H 300 2 32.40 

Y A-H 500 3 24.30 

Q A-H 300 3 32.40 

opaque A-H 220 2 or 3 48.60 

Y H-B 500 4 31.50 

Q H-B 300 4 42.00 

Y H-B 500 5 31.50 

Q H-B 300 5 42.00 

opaque H-B 220 4 or 5 63.00 

Y H-C 500 6 16.80 

Q H-C 300 6 22.40 

Y H-C 500 7 16.80 

Q H-C 300 7 22.40 

opaque H-C 220 6 or 7 33.60 

 
A5 Detailed performance results 
In this Appendix, we present detailed relative per-
formance results of all mechanisms for 1.4� � . 
Table 4 shows the relative performance results for 
Network 1. For example, the CEC column contains 
the percentual revenue gain over CEC. To avoid 
redundancy, only values for mechanisms that are 
usually superior to CEC are reported here. If, for 
example, DLP1 and CEC are to be compared, the 
fifth line of the DLP1 column contains the revenue  

gain of CEC over DLP1. Compared to Figure 2, the 
table allows us to gain more precise insights into 
how the mechanisms perform relative to each other, 
along with the corresponding 99% confidence inter-
vals related to the resulting gains. Note that, in or-
der to obtain valid confidence intervals, we use the 
same set of demand streams for all scenarios in the 
table. Likewise, Table 5 summarizes the relative 
performance for Network 2 with 1.4� � . 

product k 

mode 1 mode 2 

� 

mode 3 

� � � 

specification 
possibilities 

resource 3 resource 4 resource 1 resource 2 

4�3�1� 2 1c �
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Table 4: Relative performance of reoptimizing control methods at the 99% confidence level 
(Network 1, 1.4�� ) 

% over FCFS DLP1 DLP3 DLP10 CEC DECOMP1 DECOMP3 DECOMP10 

DP 15.90 ±0.86 2.95 ±0.49 3.86 ±0.67 1.82 ±0.39 0.53 ±0.21 0.02 ±0.08 0.01 ±0.08 0.01 ±0.08 

DECOMP10 15.88 ±0.86 2.94 ±0.49 3.85 ±0.68 1.81 ±0.39 0.51 ±0.22 0.01 ±0.02 0.00 ±0.01   

DECOMP3 15.88 ±0.86 2.94 ±0.49 3.84 ±0.68 1.81 ±0.39 0.51 ±0.22 0.01 ±0.02     

DECOMP1 15.87 ±0.86 2.93 ±0.49 3.84 ±0.68 1.80 ±0.40 0.51 ±0.22       

CEC 15.29 ±0.81 2.41 ±0.51 3.31 ±0.66 1.29 ±0.36         

DLP10 13.82 ±0.74 1.11 ±0.56 2.00 ±0.55           

DLP3 11.59 ±0.85 -0.87 ±0.74             

DLP1 12.58 ±1.00               

Table 5: Relative performance of reoptimizing control methods at the 99% confidence level 
(Network 2, 1.4�� ) 

% over FCFS DLP1 DLP3 DLP10 CEC DECOMP1 DECOMP3 

DECOMP10 15.16 ±0.41 11.59 ±0.33 6.59 ±0.37 2.33 ±0.19 0.76 ±0.11 0.06 ±0.05 0.02 ±0.03 

DECOMP3 15.14 ±0.41 11.57 ±0.34 6.57 ±0.37 2.31 ±0.19 0.74 ±0.11 0.04 ±0.04   

DECOMP1 15.09 ±0.41 11.52 ±0.33 6.53 ±0.37 2.27 ±0.19 0.70 ±0.11     

CEC 14.29 ±0.36 10.74 ±0.28 5.79 ±0.33 1.56 ±0.13       

DLP10 12.54 ±0.35 9.05 ±0.28 4.16 ±0.31         

DLP3 8.04 ±0.33 4.69 ±0.27           

DLP1 3.21 ±0.23             
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