Skip to main content
Log in

Cellular fatty acid patterns inPseudomonas sp. CF600 during catechol and phenol degradation in media supplemented with glucose as an additional carbon source

  • Physiology and Metabolism
  • Original Articles
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Fatty acid composition inPseudomonas sp. CF600 during degradation of catechol and phenol individually and their mixture was investigated. Moreover, the influence of glucose as an additional, easily degradable carbon source on fatty acid profiling in bacteria grown on these aromatic substrates was studied. Both catechol and phenol treatments caused in bacterial cells crucial changes in the distribution of tested groups of fatty acids. The major changes included the increase of fatty acid saturation, decrease in the percentage of cyclopropane fatty acid 17:0cy and the appearance of branched and hydroxy fatty acids. Under catechol, phenol and their mixture exposure saturated/unsaturated ratio showed the value 6.5, 5.68 and 6.38 whereas in control cells this ratio reached the value 3.05. As a response to aromatic compounds bacteria formed fatty acids that were not detected in control cells growing on glucose. It has been demonstrated that the supplementation of cultured media containing single aromatic substrates or/and their mixture with glucose resulted in changes in degradation rates of catechol and phenol. It seemed that glucose influenced some metabolic pathways responsible for the assimilation of aromatic compounds. The incubation of cells in the presence of aromatic compounds and glucose rapidly led to alterations of whole-cell derived fatty acid composition. The most important changes were associated with saturation level of fatty acids and cyclopropane fatty acid contents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ali S., Fernandez-Lafuente R., Cowan D.A. (1998).Meta-pathway degradation of phenolics by thermophilicsBacilli. Enzyme Microb. Technol., 23: 462–468.

    Article  CAS  Google Scholar 

  • Alvarez P.J.J., Vogel T.M. (1991). Substrate interaction of benzene, toluene andp-xylene during microbial degradation by pure cultures and mixed culture aquifer slurries. Appl. Environ. Microbiol., 57: 2981–2985.

    CAS  PubMed  Google Scholar 

  • Ampe F., Leonard D., Lindley N.D. (1998). Repression of phenol catabolism by organic acids inRalstonia eutropha. Appl. Environ. Microbiol., 64: 1–6.

    CAS  PubMed  Google Scholar 

  • Annez Ahamad P.Y., Kunhi A.A.M. (1996). Degradation of phenol throughortho-cleavage pathway byPseudomonas stutzeri strain SPC2. Lett. Appl. Microbiol., 22: 26–29.

    Article  Google Scholar 

  • Annadurai G., Juang R.S., Lee D.J. (2002). Microbiological degradation of phenol using mixed liquors ofPseudomonas putida and activated sludge. Waste Manag., 22: 703–710.

    Article  CAS  PubMed  Google Scholar 

  • Beendorf D., Loffhagen N., Babel W. (2001). Protein synthesis patterns inAcinetobacter calcoaceticus induced by phenol and catechol show specificities of responses to chemostress. FEMS Microbiol. Lett., 200: 247–252.

    Article  Google Scholar 

  • Bradford M.M. (1976). A rapid and sensitive method for quantitation of microgram quantities of protein utilising the principle of protein-dye binding. Anal. Biochem., 72: 248–254.

    Article  CAS  PubMed  Google Scholar 

  • Chang B.V., Wu W.B., Yuan S.Y. (1997). Biodegradation of benzene, toluene, and other aromatic compounds byPseudomonas sp. D8. Chemosphere, 35: 2807–2815.

    Article  CAS  PubMed  Google Scholar 

  • Chang Y.Y., Cronan J.E. (1999). Membrane cyclopropane fatty acid content is a major factor in acid resistance ofEscherichia coli. Mol. Microbiol., 33: 249–259.

    Article  CAS  PubMed  Google Scholar 

  • Corbella M.E., Garido-Pertierra A., Puyet A. (2001). Induction of the halobenzoate catabolic pathway and cometabolism ofotho-chlorobenzoates inPseudomonas aeruginosa 142 grown on glucose-supplemented media. Biodegradation, 12: 149–157.

    Article  CAS  PubMed  Google Scholar 

  • Denich T.J., Beaudette L.A., Lee H., Trevors J.T. (2003). Effect of selected environmental and physico-chemical factors on bacterial cytoplasmatic membranes. J. Microbiol. Meth., 52: 149–182.

    Article  CAS  Google Scholar 

  • Fang J., Lovanh N., Alvarez P.J.J. (2004). The use of isotopic and lipid analysis techniques linking toluene degradation to specific microorganisms: applications and limitations. Water Res., 38: 2529–2536.

    Article  CAS  PubMed  Google Scholar 

  • Feist C.F., Hegeman G.D. (1969). Regulation of themeta cleavage pathways for benzoate oxidation byPseudomonas putida. J. Bacteriol., 100: 1121–1128.

    CAS  PubMed  Google Scholar 

  • Gibson D.T., Subramanian V. (1984). Microbial degradation of aromatic hydrocarbons. In: Gibson D., Ed., Microbial Degradation of Organic Compounds. Marcel Dekker, New York, pp. 181–218.

    Google Scholar 

  • Gibson D.T., Parales R.E. (2000). Aromatic hydrocarbon dioxygenases in environmental biotechnology. Curr. Opin. Biotechnol., 11: 236–243.

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez J.A., Nichols P., Couperwhite I. (1999). Changes in whole cell-derived fatty acids induced by benzene and occurence of the unsual 16:1ω6c inRhodococcus sp. 33. FEMS Microbiol. Lett., 176: 213–218.

    Google Scholar 

  • Hamed T.A., Bayraktar E., Mehmetoğlu T., Mehmetoğlu U. (2003). Substrate interactions during the biodegradation of benzene, toluene and phenol mixtures. Proc. Biochem., 39: 27–35.

    Article  CAS  Google Scholar 

  • Härtig C., Loffhagen N., Harms H. (2005). Formation oftrans fatty acids is not involved in growth-linked membrane adaptation ofPseudomonas putida. Appl. Environ. Microbiol., 71: 1915–1922.

    Article  PubMed  CAS  Google Scholar 

  • Heesche-Wagner K., Schwarz T., Kaufmann M. (1999). Phenol degradation by an enterobacterium: aKlebsiella strain carries a TOL-like plasmid and a gene encoding phenol hydroxylase. Can. J. Microbiol., 45: 162–171.

    Article  CAS  PubMed  Google Scholar 

  • Heipieper H.J., Dieffenbach R., Keweloh H. (1992). Conversion ofcis unsaturated fatty acids totrans, a possible mechanism for the protection of phenol-degradingPseudomonas putida P8 from substrate toxicity. Appl. Environ. Microbiol., 58: 1847–1852.

    CAS  PubMed  Google Scholar 

  • Heipieper H.J., Weber F.J., Sikkema J., Keweloh H., de Bont J.A.M. (1994). Mechanisms of resistance of whole cells to toxic organic solvents. Trends Biotechnol., 12: 409–415.

    Article  CAS  Google Scholar 

  • Kar S., Swaminathan T., Baradarajan A. (1997). Biodegradation of phenol and cresol isomer mixtures byArthrobacter. World J. Microbiol. Biotechnol., 13: 659–663.

    Article  CAS  Google Scholar 

  • Keweloh H., Weyrauh G., Rehm H.J. (1990). Phenol-induced membrane changes in free and immobilizedEscherichia coli. Appl. Environ. Biotechnol., 33: 66–71.

    CAS  Google Scholar 

  • Kim I.S., Lee H., Trevors J.T. (2001). Effects of 2,2′,5,5′-tetrachlorobiphenyl and biphenyl on cell membranes ofRalstonia eutropha H850. FEMS Microbiol. Lett., 200: 17–24.

    CAS  PubMed  Google Scholar 

  • Kojima Y., Itada N., Hayaishi O. (1961). Merapyrocatechase a new catechol cleaving enzyme. J. Biol. Chem., 236: 2223–2231.

    CAS  PubMed  Google Scholar 

  • Lee K., Park J.W., Ahn I.S. (2003). Effect of additional carbon source on naphthalene biodegradation byPseudomonas putida G7. J. Hazard. Mater., 105: 157–167.

    Article  CAS  PubMed  Google Scholar 

  • Loh K.C., Wang S.J. (1998). Enhancement of biodegradation of phenol and a nongrowth substrate 4-chlorophenol by medium augmentation with conventional carbon sources. Biodegradation, 8: 329–338.

    Article  CAS  Google Scholar 

  • Lurie J., Rybnikova I. (1968). Chemical analysis of industrial sewages. Gaschmizdat, Moskwa (in Russian).

    Google Scholar 

  • Morales G., Linares J.F., Beloso A., Albar J.B., Martinez J.L., Rojo F. (2004). ThePseudomonas putida Crc global regulator controls the expression of genes from several chromosomal catabolic pathways for aromatic compounds. J. Bacteriol., 186: 1337–1344.

    Article  CAS  PubMed  Google Scholar 

  • Mrozik A., Labużek S. (2002). A comparison of biodegradation of phenol and homologous compounds byPseudomonas vesicularis andStaphylococcus sciuri strains. Acta Microbiol. Polon., 51: 367–378.

    CAS  Google Scholar 

  • Mrozik A., Piotrowska-Seget Z., Łabużek S. (2004a). Cytoplasmatic bacterial mambrane responses to environmental perturbations. Pol. J. Environ. Stud., 13: 487–494.

    CAS  Google Scholar 

  • Mrozik A., Łabużek S., Piotrowska-Seget Z. (2004b). Changes in cellular fatty acids composition induced by phenol and catechol inPseudomonas vesicularis andPseudomonas stutzeri. Biotechnologia, 64: 89–97.

    Google Scholar 

  • Mrozik A., Łabużek S., Piotrowska-Seget Z. (2005). Changes in fatty acid composition inPseudomonas putida andPseudomonas stutzeri during naphthalene degradation. Microbiol. Res., 160: 149–157.

    Article  CAS  PubMed  Google Scholar 

  • Müller C., Petruschka L., Cuypers H., Burchhardt G., Herrmann H. (1996). Carbon catabolite repression of phenol degradation inPseudomonas putida is mediated by the inhibition of the activator protein PhlR. J. Bacteriol., 178: 2030–2036.

    PubMed  Google Scholar 

  • Pawlowski J., Shingler V.(1994). Genetics and biochemistry of phenol degradation byPseudomonas sp. CF600. Biodegradation, 5: 219–236.

    Article  Google Scholar 

  • Ramos J.L., Duque E., Rodriquez-Herva J.J., Godoy P., Haidour A., Reyes F., Fernanadez-Barrero A. (1997). Mechanisms for solvent tolerance in bacteria. J. Biol. Chem., 272: 3887–3890.

    Article  CAS  PubMed  Google Scholar 

  • Sajbidor J. (1997). Effect of some environmental factors on the content and composition of microbial membrane lipids. Crit. Rev. Biotechnol., 17: 87–103.

    Article  CAS  PubMed  Google Scholar 

  • Sasser M. (1990). Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. Microbial ID, Inc., Newark, DE, USA.

    Google Scholar 

  • Shingler V., Pawlowski J., Karklund U. (1992). Nucleotide sequence and functional analysis of the complete phenol/3,4-dimethylphenol catabolic pathway ofPseudomonas sp. strain CF600. J. Bacteriol., 174: 711–724.

    CAS  PubMed  Google Scholar 

  • Shingler V., Bartilson M., Moore T. (1993). Cloning and nucleotide sequence of the gene encoding the positive regulator (DmpR) of the phenol catabolic pathway encoded by pVI150 and identification of DmpR as a member of the NtrC family of transcriptional activators. J. Bacteriol., 175: 1596–1604.

    CAS  PubMed  Google Scholar 

  • Shuttleworth K.L., Cerniglia C.E. (1996). Bacterial degradation of low concentrations of phenanthrene and inhibition by naphthalene. Microb. Ecol., 31: 305–317.

    Article  CAS  Google Scholar 

  • Sikkema J., Weber F.J., Heipieper H.J., de Bont J.A.M. (1994). Cellular toxicity of lipophilic compounds: mechanisms, implications ans adaptations. Biocatalysis, 10: 113–122.

    Article  CAS  Google Scholar 

  • Sikkema J., de Bont J.A.M., Poolman B. (1995). Mechanism of membrane toxicity of hydrocarbons. Microbiol. Rev., 59: 201–222.

    CAS  PubMed  Google Scholar 

  • Stülke J., Hillen W. (1999). Carbon catabolite repression in bacteria. Curr. Opin. Microbiol., 2: 195–201.

    Article  PubMed  Google Scholar 

  • Sung R.H., Soydoa V., Hiroaki O. (2000). Biodegradation by mixed microorganisms by granular activated carbon loaded with a mixture of phenols. Biotechnol. Lett., 22: 1093–1096.

    Article  Google Scholar 

  • Tian L., Ma P., Zhong J.J. (2003). Impact of the presence of salicylate or glucose on enzyme activity and phenanthrene degradation byPseudomonas mendocina. Proc. Biochem., 38: 1125–1132.

    Article  CAS  Google Scholar 

  • Tropel D., van der Meer J.R. (2004). Bacterial transcriptional regulators for degradation pathways of aromatic compounds. Mol. Biol. Rev., 68: 474–500.

    Article  CAS  Google Scholar 

  • Tsitko I.V., Zaitsev G.M., Lobanok A.G., Salkinoja-Salonen M.S. (1999). Effect of aromatic compounds on cellular fatty acid composition ofRhodococcus opacus. Appl. Environ. Microbiol., 65: 853–855.

    CAS  PubMed  Google Scholar 

  • Wang K.W., Baltzis B.C., Lewandowski G.A. (1996). Kinetics of phenol biodegradation in the presence of glucose. Biotechnol. Bioeng., 51: 87–94.

    Article  CAS  PubMed  Google Scholar 

  • Wang S.J., Loh K.C. (1999). Facilitation of cometabolic degradation of 4-chlorophenol using glucose as an added growth substrate. Biodegradation, 10: 261–269.

    Article  CAS  PubMed  Google Scholar 

  • Wang S.J., Loh K.C. (2001). Biotransformation kinetics ofPseudomonas putida for cometabolism of phenol and 4-chlorophenol in the presence of sodium glutamate. Biodegradation, 12: 189–199.

    Article  CAS  PubMed  Google Scholar 

  • Weber F.J., de Bont J.A.M. (1996). Adaptation mechanisms of microorganisms to the toxic effects of organic solvents on membranes. Biochim. Biophys. Acta, 1286: 225–245.

    CAS  PubMed  Google Scholar 

  • Yrjälä K., Paulin L., Romantschuk M. (1997). Novel organization of catecholmeta-pathway genes inSphingomonas sp. HV3 pSKY4 plasmid. FEMS Microbiol. Lett., 154: 403–408.

    Article  PubMed  Google Scholar 

  • Yu J., Ward O.P. (1994) Studies on factors influencing the biodegradation of pentachlorophenol by mixed bacteria culture. Int. Biodeter. Biodeg., 34: 209–221.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnieszka Mrozik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mrozik, A., Piotrowska-Seget, Z. & Labużek, S. Cellular fatty acid patterns inPseudomonas sp. CF600 during catechol and phenol degradation in media supplemented with glucose as an additional carbon source. Ann. Microbiol. 56, 57–64 (2006). https://doi.org/10.1007/BF03174971

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03174971

Key words

Navigation