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Abstract
Background Programmed cell death, or apoptosis, is a distinct, managed form of cell death. It is fundamentally dif-

ferent from necrosis. It is a genetically controlled, energy-dependent method of cellular deletion without inflamma-

tion. In the cardiovascular system, apoptosis occurs as a primary and secondary event in disease pathogenesis.

This review addresses our current understanding of the initiation, propagation and significance of apoptosis in the

cardiovascular system, as well as assessing therapeutic potentials arising therefrom.

Methods A Medline search was performed and relevant publications reviewed. Further articles were obtained from

the references of these publications.

Results and conclusions Apoptotic cell death is a key element in the pathogenesis and progression of

ischaemia-reperfusion (IR) injury, cardiac failure, myocardial infarction, atherosclerosis, endothelial dysfunction

and the clinical syndromes which these situations produce. Our increased understanding of the role of apoptosis

in the pathogenesis of cardiovascular disease offers potential to develop new therapeutic strategies.

Introduction
The term and concept of apoptotic or programmed cell

death first appeared in the medical literature in 1972.' Since
then, abnormalities of programmed cell death, or manipulation
of the processes of apoptosis, have become recognised as being
of central importance in a multitude of pathological states. The
concept that cells possess a modifiable capacity to dictate
whether or not they enter into a controlled lethal process is sig-
nificant in understanding cellular responses to adverse circum-
stances.

Apoptosis is a physiological process for the deletion of
unwanted or senescent cells without inflammation. Apoptosis
works synchronously with, but opposite to, mitosis in counter-
balancing and regulating tissue kinetics.= The regression of
interdigital webs is an example of physiological apoptotic cell
death. 6 The process of apoptosis is an energy-dependent,
tightly regulated and genetically encoded mechanism of indi-
vidual cell disposal. The ubiquitous process of apoptosis is seen
in its physiological context, actively deleting cells during
embryogenesis, metamorphosis, tissue atrophy, T-cell killing
tumour regression and turnover of intestinal epithelial cells.'• 5 ' 7 ' 8

Cellular resistance to apoptosis is exhibited in abnormalities of
these processes and particularly in carcinogenesis. 9

Apoptosis is exhibited pathologically in response to stresses
such as ischaemia-reperfusion (IR) hyperthermia, radiotherapy
and pharmacological agents. 10.1. However, pathological or inap-
propriate apoptosis has significant structural and functional
implications for the involved end organs. In mature organisms,
ongoing apoptosis maintains cellular homeostasis in renewing
cell types such as intestinal epithelium and leucocytes. In con-
trast, apoptosis is not a feature of non-renewable parenchymal
cells in the normal course of events. This is particularly so in
terminally differentiated cells such as cardiomyocytes. In the

myocardium, the finding of apoptosis after reperfusion is par-
ticularly significant as it implies late and potentially avoidable
cell death.1 16

In cardiovascular disease, developments in molecular biolo-
gy have facilitated an increasing appreciation of the role of
apoptosis, not only in heart failure and myocardial infarction
but also in IR injury, ageing, vascular wall remodelling and
atherosclerotic plaque destabilisation.'' -21 Apoptosis is now
recognised to not only contribute to the initiation of these dis-
ease states but also to influence long-term outcome in terms of
eventual myocardial pump failure or arterial occlusion.
Apoptosis occurs acutely but also persists after an initial
inflammatory or ischaemic insult, thus perpetuating the injury
sustained. As apoptosis is a process that can be potentially
attenuated, recognition of its contribution to cardiovascular
disease opens exciting new therapeutic avenues.

Pathological characteristics of apoptosis
Apoptotic cell death is a morphologically characteristic process
identified by a series of discrete distinguishable steps. Initially,
detachment of the affected cell from its surrounding cells
occurs. Apoptosis proceeds in an orderly controlled fashion
with characteristic cell volume reduction followed by convolu-
tion and blebbing of the cell membrane. Condensation of the
cytoplasm is reflected in an increased cell density. The nuclear
chromatin condenses, in association with activation of an
endogenous endonuclease, and gathers beneath the nuclear
membrane. The entire cell may now split into membrane-
bound structures with preserved organelle structures. These
apoptotic bodies may be visualised within tissues at this stage.
The cell now becomes subject to tissue phagocytic cell recog-
nition and action. Membrane integrity is maintained through-
out the process, in contrast to the swelling and subsequent
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rupture of a cell dying by necrosis. The destructive spilling of
intracellular contents into the surrounding tissues evoking
the classical inflammatory responses of necrosis is absent in
apoptosis. Apoptotic cells are phagocytosed by neighbouring
cells without the inflammation associated with, or need for,
neutrophil recruitment.'-'

The process is an inducible phenomenon with a key biologi-
cal event being the activation of an endogenous endonuclease,
resulting in internucleosomal cleavage of genomic DNA. The
extensive nucleosomal DNA fragments resulting from this
endonuclease activation are 180-200 bp oligonucleosomal
units, or multiples thereof, and are a pathological hallmark of
apoptosis, which may be detected as a ladder on gel elec-
trophoresis. 22 Single cell microgel electrophoresis, the `Comet'
method, can also demonstrate these distinctive DNA strand
breaks in individual apoptotic cells by their migration into a
specific `tail' pattern.23 a'

The specific cleavage pattern of genomic DNA by endonu-
cleases yields strand breaks that can be identified by labelling of
the free 3'-OH DNA ends with modified nucleotides. Terminal
deoxynucleotidyl transferase (TdT) catalyses polymerisation of
nucleotides to free 3'-OH DNA ends in a template manner in
order to label these breaks in the TUNEL (TdT-mediated
dUTP nick end labelling) assay for apoptosis.26 '

The regulation of intracellular pH is integrated into the pro-
gression of apoptosis, with a fall in pH preceding the terminal
subcellular events. 28 Preconditioning of cells using ischaemia
protects against cell death through protein kinase C (PKC)
mechanisms. 29•3° The PKC protective mechanism involves
diminution of intracellular acidification and inhibition of this
pathway in vitro. This has been shown to protect cardiomy-
ocytes from apoptotic death in response-simulated IR injury. 30

Although the apoptotic cell does not evoke inflammatory
responses to stimulate its removal, it does signal its death to res-
ident tissue phagocytes and neighbouring cells. This is achieved
by cell membrane surface expression of the normally exclusive-
ly cytoplasmic facing aminophospholipid phosphatidylserine. 31-33

This phosphatidylserine extrusion facilitates phagocytic removal
of the apoptotic cell. It also facilitates phosphatidylserine detec-
non on the cell surface by Annexin V, thus allowing for anoth-
er method of identifying apoptotic cells.TM As phosphatidylserine
surface expression is an early event. in the apoptotic pathway,
Annexin V labelling allows identification of apoptotic cells at
this timepoint. Cell surface phosphatidylserine expression pro-
motes thrombin generation in vitro. 35 This finding raises the
possibility that apoptosis seen in atherosclerotic plaques may
contribute to their thrombogenicity in vivo.20-111

Myocyte apoptosis is difficult to recognise as it affects inch-
vidual myocytes and is scattered across the muscle or myocardi-
um. The process of apoptosis is rapidly completed in as little as
34 minutes (as assessed by time lapse photography'') and may
not be detectable beyond 24 hours.'#-" Given this fact, the
detection of a relatively low prevalence (0.2%) of apoptotic
myocytes in the myocardium at a given time point is highly sig-
nificant, implying that if sustained for one year this would lead
to an unsustainable loss of more than 50% of the myocardium.
Various investigators have reported great variability in the
extent of apoptosis in diseased myocardium, some reporting as
high as 35% in ischaemic cardiomyopathies.'° The immunohis-
tochemical finding of apoptosis in the myocardium can
be further verified by demonstrating DNA laddering on
electrophoresis of comparable specimens. 16

Biochemical control of apoptosis
The process of apoptosis is orchestrated by the interactions of

numerous proto-oncogenes and environmental factors. Initial
clues about the genetic command structure of apoptosis were
gained from landmark studies on the tiny nematode
Caenorhabditis elegans showing that there are 1,090 cell births
and 131 cell deaths in the construction of the adult worm.`-` 2

Further work identified two genes ced-3 and ced-4 which are
essential for the programmed death of these 131 cells.
Mutations of these genes permit these cells, which would nor-
mally die, to survive. A third gene, ced-9, is necessary to sustain
life through tonic inhibition of the. pro-apoptotic genes ced-3
and ced-4. 43 The ced-9 gene shares structural and functional
homology with the human bcl-2 gene.

Caspases
The C. elegans ced-3 gene equivalent product in humans is a
family of cystine proteases associated with interleukin (IL) 1B-
converting enzyme (ICE). These cystine proteases, referred
to as caspases, are key mediators of apoptosis.' ," A characteristic
feature of the caspases (of which 10 have been identified to date)
is the presence of a cysteine residue within a highly conserved
pentameric sequence in the catalytic centre. 39 '

The caspase family appears to play a key role in the initiation
of apoptotic cell death, being present during apoptosis and their
inhibitors protecting against apoptotic cell death. Caspase acti-
vation produces the structural nuclear changes in apoptosis via
protein cleavage of cytoskeletal (actin, fodrin and the familial
polyposis protein APC), DNA repair (DNA-PK, PARP), nuclear
envelope (lamins) and cell cycle (retinoblastoma protein) ele-
ments.' In addition, one of the endonucleases thought to be
involved in the chromatin changes of apoptosis is activated by
proteolytic cleavage.

The activation of caspases may be initiated via receptor-
dependent mechanisms, specifically Fas for two members of the
family, caspase-2 and -8. 4' -{' Tumour necrosis factor (TNF) and
Fas ligand-mediated apoptotic death rely upon caspase activa-
tion as a prerequisite to cell deletion.'' There are a number of
characterised death receptors, including Fas, TNFRI, death
receptor (DR)-3 (Apo-3) and TNF-related, apoptosis-inducing
ligand (TRAIL) receptors DR-4 and -5. Binding of the respec-
tive ligands to these receptors results in recruitment - of dedi-
cated intracellular adapter proteins to the cellular membrane.
For TNFR1 and DR3, this protein is TNFR associated death
domain protein (TRADD).' "56 Fas-associated death domain
(FADD) protein fulfils this role for Fas and DR-4. 4749 These
proteins then interact with caspases, precipitating fatal cellular
proteolytic cleavage.

Work by Enari et al'° on apoptosis induced by Fas receptor
interaction suggested that the caspases are sequentially activat-
ed. The ultimately lethal proteolytic effects of caspase activa-
tion are mediated downstream by caspases -3 and -7. 39 Other
upstream caspases with long prodromes have regulatory
functions."

Bcl-2 family
The Bcl-2 (B-cell lymphoma-2) gene was isolated from the
breakpoint of a translocation between chromosomes 14 and 18.
The gene is found in 90% of follicular lymphomas and 20% of
diffuse non-Hodgkin's lymphomas.$ 1 •52 This translocation results
in the bringing together of the Bcl-2 gene and the immunolog-
ical heavy chain locus with increased Bcl-2 production and
expression. Bcl-2 expression in myeloid precursors and pro-B
cells dramatically improves survival on withdrawal of growth
factors. The C. elegans equivalent to bcl-2 was found to be ced-
9, whose loss of function mutation precipitated apoptosis, thus
characterising it as a negative regulator of apoptosis. 53
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Bcl-2 gene expression in humans correlates with resistance to
apoptotic cell death. Bcl-2 overexpression confers resistance to
the action of gamma radiation and chemotherapeutic drugs
that act by inducing DNA damage. It does not prevent damage
to the cells from these agents, but rather inhibits apoptosis
occurring in response In the heart, diminished bcl-2 expres-
sion in the right ventricle has been associated with apoptotic
cell death assisting the transition to an adult circulatory sys-
tem. 5 In coronary artery ligation models and in vivo with heart
failure, bcl-2 expression is markedly upregulated. 16 This upreg-
ulation is suggested to be a compensatory mechanism by the
myocardium in the face of widespread cell death. The exact
mechanism whereby bcl-2 inhibits apoptosis is uncertain; how-
ever, its co-localisation with bax on the mitochondrial mem-
brane suggests this may be a key site." The release of mito-
chondrial proteins, cytochrome c and apoptosis-inducing factor
(AIF) into the cytosol activates caspases and thus cell death. 58,a9

Caspase -3, -6 and -7 activation are downstream from bcl-2. 6061

However, bcl-2 blocks the release of cytochrome c and AIF
from mitochondria, thus suggesting a potential site for its anti-
apoptotic activity. 62,63

Bcl-2 has also been suggested to function as an anti-apoptot-
ic agent through its anti-oxidative role.°' However, bcl-2 is also
anti-apoptotic under anaerobic cell culture conditions and apop-
tosis occurs in similar circumstances without reactive oxygen
species being present bcl-2 still remains protective. 65' Therefore,
bcl-2 cannot function through purely antioxidant-dependent
mechanisms, nor can the generation of reactive oxygen species
be an exclusive effector of programmed cell death. 13

The extended Bcl-2 family contains nine members, defined
by the presence of three structural motifs in the protein
sequence. 65 '67 These proteins may be pro- or anti-apoptotic and
appear to interface after cell surface signals induce caspase acti-
vation. Bax is a pro-apoptotic member of this family with 45%
homology to bcl-2. It appears that the formation of Bax/Bcl-
2 heterodimers is an important control point in apoptosis. 62

Mutations of Bcl-2 may allow it to evade the blocking effect of
binding to Bax and thus allow anti-apoptotic signals to assume
dominance within the cell. Thus, if the Bax/Bcl-2 ratio is
altered, this allows the dominant pro- or anti-apoptotic influ-
ence to prevail. The overexpression of bcl-2 and the anti-apop-
totic proto-oncogene bcl-xL have been shown to be associated
with an alteration in the onset of toxin-induced apoptosis.^•^

The bcl-x member of this family offers protection from apop-
tosis by binding to bax, thus preventing the formation of bax
homodimers which accelerate the apoptotic process.'° The
observed reduction in bcl-x seen in experimentally injured
arteries may therefore allow bax homodimerisation to occur,
precipitating smooth muscle cell apoptosis. 7 '

Bcl-2 expression is markedly upregulated in humans with
heart failure. However, Bax expression is unaffected. This
upregulation occurs in the context of an increase in cardiomy-
ocyte apoptosis. ` 6 The increase in Bcl-2 expression appears in
this context to be a secondary compensatory mechanism to
promote survival of the remaining cardiomyocytes.

p53
The tumour suppressor gene p53 is pro-apoptotic. Loss of p53
function is the result of the most commonly mutated gene in
human malignancies. 71 It acts as a cellular sensor of DNA dam-
age, inappropriate oncogene activation, hypoxia and the pres-
ence or absence of certain cytokines, and induces apoptosis in
response to such stimuli. p53 has a role in chaperoning DNA,
inducing apoptotic death when defects emerge. 737$

In the cardiovascular system, gene transfer-induced p53

overexpression in normoxic cultured rat neonatal cardiomy-
ocytes can precipitate apoptotic cell death.'; Hypoxia in cultured
cardiomyocvtes, which induces apoptosis, is also associated with
increased p53 expression.° However, in p53 deficient mice,
apoptosis may also occur in cardiomyocytes by forced entry into
the S phase of the cell cycle.' 7 '74 '75 '1° In these p53 deficient mice,
ligation of the left coronary artery does not alter the degree of
apoptosis in hypoxic areas when compared with wild type mice. 7°
Kirshenbaum and de r% ,Ioissac'' and Kirshenbaum 78 have shown
that p53 interacts dynamically with other proto-oncogenes
involved in apoptotic regulation. p53 expression causes an
upregulation of pro-apoptotic Bax, but this effect and its own
apoptotic potency are downregulated by bcl-2 expression. 77 '78

Nitric oxide
Nitric oxide (NO) is involved in vessel relaxation, inhibition
of smooth muscle and endothelial cell proliferation, and
reduction of platelet adhesion. 79 '8° In the myocardium, recent
work has shown that constitutively expressed NO synthase
(cNOS), inducible NO synthase (iNOS) and endothelial NO
synthase (eNOS) have functional autocrine and paracrine
effects similar to their effects on vascular cells.$` NO release
precipitates myocardial depression in response to systemic dis-
turbance and part of this dysfunction is mediated by NO-
induced cardiomyocyte apoptosis. 98

In a rat model of heterotopic cardiac transplantation, it was
shown that rejection was associated with significant induction of
the mRNA, protein and enzyme activity of iNOS. 82 '83 This was
detectable in endothelial cells, cardiomyocytes and infiltrating
monocytes.99 Further work expanded the understanding of the
role of NO in this context by demonstrating that cytokine
induction of iNOS was associated with NO-mediated death of
cardiomyocytes in vitro." Szabolcs et al subsequently confirmed
that the mechanism whereby NO-induced cardiomyocyte death
in vivo was indeed apoptotic, thereby demonstrating directly
the link between NO and cardiac apoptosis.`°°

In vivo gene transfer studies of endothelial cell NO synthase
(ecNOS) activity to the myocardium resulted in cardiomyocyte
apoptosis. 85 The suggestion from this study was that the inflam-
mation and cvtokine release associated with myocardial infarc-
tion, myocarditis and . cardiomyopathies may result in similar
pro-apoptotic effects on cazdiomyocytes via NO-dependent
mechanisms.

In the myocardium, NO activates cGMP-dependent protein
kinases and cGMP-modulated phosphodiesterases, thus regu-
lating calcium current and contraction. 103 In the course of
oxidative injury (such as IR), the simultaneous production of
NO and superoxide leads to the formation of peroxynitrite. It
now appears that peroxynitrite is a significant mediator of
injury previously attributed solely to NO or superoxide. 88

Peroxynitrite production results in single strand DNA breaks,
with consequent activation of poly ADP-ribose synthetase
( PARS) which is cytotoxic. 105 This mechanism has now been
shown to cause endothelial cell apoptosis in vitro. ' 05

NO appears to play a major role in vessel wall apoptosis by
inducing programmed cell death in smooth muscle cells and
infiltrating monocytes. $' NO activity is reduced in the vessel
wall in hypercholesterolaemia suggesting a potential mechanism
whereby diminished apoptotic control of cellular homeostasis
allows progression of atherosclerosis.

Nuclear factor kappa beta (NF-kb)
NF-kb has a potent anti-apoptotic role. In the vascular
endothelium, it is expressed constitutively and can be upregu-
lated by stimuli such as IL-6, thrombin, platelet-derived
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growth factor (PDGF) and basic fibroblast growth factor. 88,9 In
addition, it is essential for in vitro proliferation of vascular.
smooth muscle cells. Expression of vascular cell adhesion mol-
ecule (VCAM)-1 is also NF-kb dependent. 90"°6 Accumulating
evidence has shown NF-kb is activated in both vascular cell
injury and atherosclerosis. 91'93 In a rat model of balloon
catheter carotid injury, NF-kb regulated genes, monocyte
chemoattractant protein (MCP)-1 and VCAM-1 were appar-
ent in smooth muscle cells within four hours. This expression
occurred in parallel with macrophage infiltration. This finding
links NF-kb to the injury and lesion formation responses of the
endothelium."

NF-kb plays a key role in regulating vascular smooth muscle
cell proliferation in normal and damaged endothelium.
Abnormalities in the regulatory processes of smooth muscle
and endothelial cell proliferation clinically produce neointimal
hyperplasia. Its anti-apoptotic role in such circumstances may
ultimately be harmful. Its upregulation in atherosclerotic
plaques also suggests a potential role in their pathogenesis. 91,92

Tumour necrosis factor
Tumour necrosis factor (TNF) is a potent inducer of apoptot-
ic cell death in many cell types, subsequent to binding to its
receptor. 93 TNFa has been shown to induce apoptosis in car-
diomyocytes in vitro and in vivo. 23 '94 Two cell surface receptors
for TNFa, the 55kD and 75kD TNFR1 and TNFR2, respec-
tively, are both functionally expressed by cardiomyocytes in the
failing myocardium. 9'

Fas expression in the murine myocardium has been found
to be enhanced in models of viral congestive cardiac failure
and this was associated with apoptosis of inflammatory cells
and cardiomyocytes. 96 Fas expression is also upregulated in
coronary artery ligation.'$

Apoptosis in the normal cardiovascular system
In the cardiovascular system, apoptosis is first seen during
embryogenesis with remodelling of the bulbis cordis and atri-
oventricular cushions by programmed cell death.' Postnatal car-
diac apoptotic cell death is expressed preferentially in the right
ventricle, with the resultant reduced right chamber muscle mass
accompanying the transition to an adult circulatory system."
This cardiac remodelling is associated with and facilitated by
diminished expression of the anti-apoptotic _ gene bcl-2.8 The
development of the cardiac conductive system of pathways also
employs apoptosis in deleting unnecessary cells. 98 Aberrant per-
sistent atrioventricular conductive pathways, which would nor-
mally be removed by apoptosis, have been suggested as a
potential cause of abnormalities such as Wolff-Parkinson-White
syndrome.' 2 '

The postnatal development of the vascular system involves
cell death by apoptosis in vessel remodelling." , '°° In an analo-
gous situation, the vascular endothelial post-injury response
relies on homeostasis between proliferation and remodelling by
apoptotic cell deletion in order to prevent excessive neointimal
hyperplasia.'°'

Apoptosis in ischaemia-reperfusion (1R)
The vascular endothelium, by virtue of its location at the
blood-tissue interface, is in the front line of IR injury.
Reperfusion of ischaemic tissues is a consistent aim of clinical
therapies. However, as Parks and Granger102 showed, reperfu-
sion is a double-edged sword which can exacerbate the initial
hypoxic injury. Reactive oxygen species such as superoxide,
NO, hydrogen peroxide, lipid peroxides and the hydroxyl rad-
ical generated in excess during IR injury can subject a cell to

oxidative stress and subsequent apoptosis. 103 In addition to the
reactive oxygen species, other elements of the reperfusion
injury which are known to cause apoptosis include alterations
in intracellular calcium homeostasis, 43, '°4 an inflammatory reac-
tiontr" and increased mechanical stretch.'°' The presence of
similar mediators in other contexts leads on to a potential role
for apoptosis in mediating some of the clinically relevant effects
of local and systemic IR injury, as well as the systemic inflam-
matory response syndrome (SIRS). The synergistic dual effect
produced under such circumstances results in initial vascular
endothelial damage and ultimately end organ injury. An analo-
gous situation occurs in the failing myocardium where reactive
oxygen species, inflammatory cytokines, NO, hypoxia, reperfu-
sion and mechanical stretch exert pro-apoptotic influences
upon the endothelium and cardiomyocyte. ""°7

Autopsy studies of post-myocardial infarction patients, who
had initially successful thrombolysis and therefore a patent
infarct-related artery, showed a clear subset of cardiomyocytes
dying by apoptosis as a result of IR. 108 This finding is also seen
in experimental animal models of IR. `4 Because apoptosis after
infarction is an energy-dependent process relying on circulato-
ry nutrient supply, it will occur primarily in reperfused or
watershed areas of the infarct. 21 Studies have shown that
myocardial apoptosis does not occur in purely ischaemic areas,
but will occur upon reperfusion of these areas. 14 Therefore,
while one may attempt to deal with an atherosclerotic throm-
bus after the event occurs, acute apoptotic cardiomyocyte
death, while it may be prompted, begins when flow is partially
or fully restored. Therefore, reperfusion by recanalisation,
thrombolysis or angioplasty provides a window from which
time onwards the contribution of apoptotic cell death to the
pathological process is potentially amenable to attenuation.

Antioxidants and free radical scavengers such as superoxide
dismutase have been used to counteract the pro-apoptotic
effects of oxidative stress on tissues exposed to IR. 1 °9," Vascular
endothelial cells in vitro are protected from apoptotic cell death
in a SIRS analogous model using the amino acid taurine. 11

Apoptosis in the diseased myocardium
Cardiomyocyte cell loss and scar formation are integral com-
ponents of cardiac dysfunction from numerous aetiologies.
Experimental and autopsy studies have confirmed that car-
diomyocytes undergo cell death by apoptosis as a component
of hypoxia,43 IR, 14 heart failure 15,16,44,117,119 and myocardial infarc-
tion.l$ Following on from this work, the traditional viewpoint
of heart failure as a purely haemodynamic continuum has been
modified by an increasing awareness of the fact that the inter-
action of cytokines, neurohormones and apoptotic mediators
play a significant role in the evolution and progression of this
disease process."° As the myocardium has no regenerative
capacity, prevention of apoptosis-induced cardiomyocyte loss
has potentially significant clinical implications.

The changes in myocardial loading that accompany heart disease
of ischaemic or non-ischaemic origin activate various cellular
responses. Apoptotic myocyte death is a sequel of such physical
stresses." Animal studies of pressure overload hypertrophy mod-
els, such as aortic banding, loading of isolated papillary muscle and
genetically determined hypertension, have all demonstrated resul-
tant apoptotic cardiomyocyte losses. 2,1'2.113 The progression of car-
diac hypertrophy resulting from pressure overload involves
myocyte loss with hypertrophy of the remaining myocytes and
proliferation of non-muscle cells. In a rat model of pressure over-
load, the secondary cardiac hypertrophy and remodelling was initi-
ated by a wave of apoptotic cardiomyocyte death, thus implicating
apoptosis in the pathogenesis of these events."
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Leri et al' ` 4 have suggested a mechanism whereby myocyte
stretch-induced autocrine release of angiotensin II is associat-
ed with activation of p53, thus resulting in prolonged upreg-
ulation of myocyte apoptosis. This suggestion was reinforced
by Kajstura et al"' who noted an increased incidence of apop-
tosis after treatment of isolated adult cardiomyocytes with
angiotensin II. Furthermore, in myocytes subjected to
stretch, the bcl-2 to bax ratio was lowered, thus increasing
myocyte apoptotic susceptibility. 118 Thus, the possibility arises
that apoptosis may be involved in the pathogenesis of overall
cardiac remodelling. 13' Postmortem examination studies of
human hearts 10 days post-myocardial infarction showed an
incidence of apoptosis of 0.7% in areas distant from the
infarct. There was no apoptosis in control non-infarcted
hearts.¢ This study implicates apoptosis in a wider myocardial
role, not limited to just the infarcted or hypoxic area. The
ventricular myocardial adaptation and remodelling that occurs
in response to pathological stimuli, while it may be compen-
satory in the short term, may initiate changes leading ulti-
mately to pump failure. Recently, evidence has been accumu-
lating that apoptotic cellular deletion participates, and may be
a significant determinant, in this pathological transition
process.' 5 ' 6• 13 ' If this rationale holds true, then the gradual
progression of myocardial dysfunction and ultimate failure
could potentially be halted by the arrest of apoptosis in the
myocardium.

The range of cardiac diseases in which inappropriate apop-
tosis has been demonstrated also includes cardiomyopathic
failure of ischaemic, viral and idiopathic origin, as well as in
arrhythmogenic right ventricular dysplasia.'5' "49."6

In myocardial ischaemia, apoptosis rather than necrosis has
been shown to be the critical determinant of eventual myocar-
dial infarct size and impact. `°,44 In addition, when reperfusion of
the myocardium occurs this prompts a wave of apoptotic cell
death, aggravating the ischaemic insult. ` 4

In vitro studies have shown that cardiomyocytes are
primed for apoptosis, which may be triggered by cytokines
such as TNFa. 23 TNFa is a particularly clinically relevant
cytokine, being present during local and systemic IR, sepsis
and SIRS. Chronic infusion of TNFa in vivo has been report-
ed to cause rapid onset of dilated cardiomyopathy with wide-
spread myocyte apoptosis. 18 TNFa levels are elevated in heart
failure, as well as in reperfused and infarcted myocardium."' - "'
The finding that oxidative stress induced apoptosis in isolat-
ed cardiomyocytes is significant as it suggests a direct mech-
anism whereby IR can induce apoptosis. 121,12 ' Therefore, car-
diomyocytes are primed for apoptosis which may be trig-
gered by cytokines, mechanical stretch or IR. Interestingly, it
has been suggested that the readiness with which cardiomy-
ocytes undergo apoptosis may also explain the rare incidence
of primary cardiac tumours.

Investigators attempting to promote cellular regeneration
in the myocardium have used recombinant adenoviruses,
delivering the adenoviral protein 12S E1A, and have induced
DNA synthesis in terminally differentiated cardiomyocytes. 91

However, this was followed by widespread apoptosis in the
absence of a second adenoviral protein E 1 B, a structural and
functional homologue of bcl-2. 92 Introduction of the bcl-2
homologue allowed cardiomyocvte proliferation and sup-
pressed apoptotic cell death.

The interaction of TNFa with CD95/Apol/Fas is directly
implicated in the death of cardiomyocytes post JR. ' 66 The evi-
dence above suggests that the expression of apoptosis in the
myocardium is a frequent pathological event with significant
clinical implications.

Apoptosis in atherosclerosis
Atherosclerotic plaque destabilisation has been shown to be
associated with apoptotic cell death, principally of inflammato-
ry cells and subendothelial smooth muscle cells in the fibrous
cap.' 9 -10122 Bennett et al 12' have shown that human vascular
smooth muscle cells derived from normal and atherosclerotic
endothelium have different thresholds for expression of apop-
tosis in vitro. Apoptosis in normal vascular endothelial smooth
muscle cells occurred only on removal of serum growth factors.
However, cells from atherosclerotic plaques died even with
high serum conditions. In addition, bcl-2 expression induced
by gene transfer and the cytokines IGF and PDGF protected
against smooth muscle cell apoptosis.' 4" This suggests that the
prevailing influences in determining the occurrence of apopto-
sis in vascular smooth muscle cells include proto-oncogene
expression and local cytokine interactions.

The highest concentration of apoptotic cells in an athero-
sclerotic plaque appears to be in regions enriched with
macrophages. This may be as a result of induction of apoptot-
ic pathways via macrophage TNFa release, reactive oxygen
species generation or directly by the production of oxidised low
density lipoprotein (LDL). 12* LDL penetration of the intima is
an initiating pathogenic effect in atherosclerosis. 125 •' 26 Its subse-
quent oxidative modification by macrophages and other cells
precedes foam cell formation. The effect of oxidised LDL in
directly precipitating apoptosis in cultured endothelial cells is
significant as it implies a pathway for the participation of apop-
tosis in the initial pathogenesis and progression of atheroscle-
rosis.' 27 This effect has been exploited therapeutically in LDL
receptor knockout mice by using the NO precursor L-arginine
to prevent and induce regression of atherosclerosis in hyperc-
holesterolaemic animals, possibly by an antioxidant effect or
alternatively directly via NO.' 28

Advanced human atherosclerotic plaques contain sclerotic
hypocellular regions. This has led to the suggestion that these
areas arise due to apoptotic cell death. 19 As part of the Coronary
Angioplasty Versus Excisional Atherectomy Trial (CAVEAT),
93% of the primary atherosclerotic plaques obtained by direc-
tional atherectomy were found to be hypocellular. 129 In addi-
tion, apoptotic cell death of proliferating smooth muscle cells
has been shown to control their numbers after injury such as
atherectomy.

Fas is widely expressed in atherosclerotic lesions, suggesting
a potential receptor-mediated mechanism of apoptotic death
within such lesions. 14' Dong et al have also shown Fas-mediat-
ed apoptotic cell death to be associated with post-transplant
coronary artery disease."

Apoptosis in the vascular endothelium
The endothelial cell fulfils an interactive role inhibiting prolif-
eration of adjoining cells, thrombus formation and leucocyte
adhesion while simultaneously regulating vasomotor tone in
response to tissue requirements or systemic stimuli. Endothelial
dysfunction contributes to abnormalities of these processes.

In the endothelium, loss of integrin-mediated cell matrix
contact results in apoptotic cell death known as `anoikis'. The
term anoikis is derived from the Greek word for homeless and
is used in this context to denote a cell dying by apoptosis hav-
ing being displaced from its normal environment. 130 The death
of endothelial cells after detachment is beneficial as it prevents
detached or abnormal cells from reattaching and growing in a
dysplastic fashion .' 3

Neutrophil endothelial interaction is a key element in the
development of the adult respiratory distress syndrome (ARDS),
often as a component of SIRS. The endothelial dysfunction,
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manifested as increased capillary permeability in SIRS, is partly
as a consequence of endothelial cell apoptosis. 20 ' 13' It has been
suggested that, as a therapeutic strategy in sepsis and SIRS,
attenuation of the cellular response to this process may be more
beneficial than dealing with the extracellular mediators of this
process. It has been demonstrated in vitro that induction of heat
shock proteins can protect endothelial cells against subsequent
apoptosis in response to a SIRS insult model. 13334

Apoptosis in neointimal hyperplasia
The vascular endothelium response to injury involves smooth
muscle cell proliferation and neointimal formation. This pro-
liferation continues for up to 12 weeks. If abnormally regulat-
ed proliferation proceeds unchecked, then an overexuberant
thickening of the intima will result. However, the total num-
ber of cells present after such injury is typically maximal at two
weeks.'" The rate-limiting factor in this context is smooth
muscle cell deletion by apoptosis, which intercedes to control
cell numbers. 15 The inference, therefore, is that this apoptotic
control allows neointimal thickness to remain constant despite
a continued smooth muscle cell proliferation response to
injury. 13' Pearlman et al showed that extensive apoptosis is
detectable in an animal model of intimal injury as early as 30
minutes post-injury. However, no apoptosis was seen in nor-
mal vessels. 82 In neointimal hyperplasia, proto-oncogene con-
trols of apoptosis act as molecular thermostats balancing cell
death versus proliferation, which determines cell numbers and
survival. 81

Apoptosis is observed more frequently in restenotic than pri-
mary atherosclerotic lesions. 2° This is again consistent with the
dynamic interaction of cell proliferation and apoptosis exerting
homeostatic control on cell numbers in the context of
endothelial repair and remodelling. This increased frequency of
apoptosis in restenotic rather than primary atherosclerotic
lesions is supported by autopsy reports of patients dying after
multiple angioplasty procedures."' Studies of specimens
obtained by percutaneous transluminal atherectomy have pro-
vided further evidence of hyperplasia being homeostatically
counterbalanced by apoptosis, with both elements being more
prominent in restenotic lesions. -° ,

3'-

An even greater frequency of smooth muscle cell prolifera-
lion and apoptosis is seen in neointimal hyperplasia complicat-
ing stent restenosis. 20,138 . 148 The combined significance of these
observations is that if apoptosis can be upregulated within
these lesions, then the homeostatic mechanisms will dampen
down the excessive proliferation of smooth muscle cells. Gene
therapy delivering the thymidine kinase gene via an adenoviral
vector has been successfully used to reduce restenosis after
angioplasty in an atheromatous rabbit model by inducing
apoptosis of smooth muscle cells.""

There is now clear evidence that apoptosis plays a key role in
the pathogenesis of cardiovascular disease. Its effects range
from reduced apoptosis contributing to neointimal hyperplasia
to excessive apoptosis inducing cardiac failure.

The process of apoptosis may be modulated to attenuate,
delay, avoid or precipitate cell death. These modulations are
used by neoplastic and viral infected cells to promote their
own survival. However, in the context of cardiovascular apop-
totic cell -death, similar manipulations have the potential to be
used to induce favourable clinical outcomes. Genetic transfers
of particular cellular profiles of proto-oncogene expression,
such as bcl-2 and p53, hold the potential to suppress undesir-
able apoptosis in cardiac ischaemia or to beneficially promote
apoptosis in neointimal hyperplasia.

The inflammatory response is a dynamic process and apoptosis

is recognised as being a key element in this continuum. It
occurs early"° and late" ," in reperfusion as a part of IR injury.
The mechanisms involved in these processes are gradually
being elucidated in the myocardium and endothelium.' 42 '

In the myocardium and vascular endothelium, reactive oxy-
gen species, inflammatory cytokines, NO, hypoxia, reperfusion
and mechanical stretch exert pro-apoptotic influences upon
cells. The clinical syndromes produced by these influences
have established apoptotic contributions to their pathogenesis
and significance. The apoptotic cpmponent contributing to
these disease processes is potentially amenable to beneficial
therapeutic manipulation.

This study was funded by a Health Research Board clinical
research fellowship and the North-Eastern Health Board.
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