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A computer-aided diagnosis (CAD) scheme is being 
developed to identify image regions considered suspi- 
cious for lung nodules in chest radiographs to assist 
radiologists in making correct diagnoses. Automated 
classifiers--an artificial neural network, discriminant 
analysis, and a rule-based scheme--are used to reduce 
the number of false-positive detections of the CAD 
scheme. The CAD scheme first detects nodule candi- 
dates from chest radiographs based on a difference 
image technique. Nine image features characterizing 
nodules are extracted automatically for each of the 
nodule candidates. The extracted image features are 
then used as input data to the classifiers for distinguish- 
ing actual nodules from the false-positive detections. 
The performances of the classifiers are evaluated by 
receiver-operating characteristic analysis. On the ba- 
sis of the database of 30 normal and 30 abnormal chest 
images, the neural network achieves an Az value (area 
under the receiver-operating-characteristic curve) of 
0.79 in detecting lung nodules, as tested by the round- 
robin method. The neural network, after being trained 
with a training database, is able to eliminate more 
than 83% of the false-positive detections reported by 
the CAD scheme. Moreover, the combination of the 
trained neural network and a rule-based scheme elimi- 
nates 96% of the false-positive detections of the CAD 
scheme. 
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A RTIFICIAL N E U R A L  networks 1,2 have 
found widespread applications in medical 

imaging in recent years and have been shown to 
be a very powerful tool in pattern recognition 
and data classification. 3-~6 In mammography, 
neural networks have been applied for the 
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detection of microcalcifications, 5,6 and classifica- 
tion of breast lesions. 6,7 In chest radiography, 
neural networks have been used for classifica- 
tion of interstitial disease, s interpretation of 
neonatal images, 9 detection of lung nodules, 1~ 
and estimation of scatter. TM Neural networks 
have been applied also to other imaging modali- 
ties such as nuclear medicine for lesion detec- 
tion in single-photon emission computed tomog- 
raphy images 19 and magnetic resonance imaging 
for image segmentation. 2o 

Radiologists can rail to detect pulmonar 5, 
nodules in up to 30% of cases with actually 
positive findings. 21 Diagnoses may be missed 
because of camouflaging effects of anatomic 
background, subjective or varying decision crite- 
rŸ or distractions in clinical situations. Auto- 
mated detection schemes that can detect poten- 
tial nodules and alert radiologists of locations of 
possible nodule candidates may be very useful 
in improving diagnostic accuracy. 

A computer-aided diagnosis (CAD) scheme 
is being developed to detect lung nodules and to 
help to reduce the number of false-negative 
diagnoses. 22-25 However, the number of false- 
positive detections obtained with the current 
CAD scheme is relatively high. Therefore,  it 
may be useful to employ an automated classifier 
to further reduce the number of false-positive 
detections and thereby improve the overall 
performance of the CAD scheme. 

We have at tempted to apply artificial neural 
networks to distinguish lung nodules from false- 
positive detections of the CAD scheme based 
on image data directly, l~ In this attempt, 64- x 
64-pixel regions of interest (ROI) that con- 
tained lung noduIes and false-positive detec- 
tions were selected from digitized chest radio- 
graphs that had been subjected to the CAD 
scheme. These ROIs were preprocessed by 
using a background-trend correct ion tech- 
nique 26 to suppress nonuniform background. 
Each trend-corrected ROI was then sub-sampled 
to forro a smaller 8 x 8 pixels ROI matrix. After 
being normalized, these ROIs were used as the 
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i n p u t  to  t h e  n e u r a l  n e t w o r k .  T h e  n e u r a l  n e t -  

w o r k  performed wel l  in  d e t e c t i n g  o b v i o u s  l u n g  

n o d u l e s .  H o w e v e r ,  t h e  p r e s e n t  v e r s i o n  o f  t h e  
n e u r a l  n e t w o r k  was  u n a b l e  to  d e t e c t  v e r y  s u b t l e  

n o d u t e s  o n  t h e  b a s i s  o f  i m a g e  d a t a .  

A s  a n  a l t e r n a t i v e  a p p r o a c h ,  w e  a t e  a p p l y i n g  
a u t o m a t e d  c l a s s i ¡  to  r e d u c e  t h e  n u m b e r  o f  
f a l s e - p o s i t i v e  d e t e c t i o n s  t h a t  a r e  o b t a i n e d  w h e n  

i m a g e  f e a t u r e s  a r e  e x t r a c t e d  a u t o m a t i c a l l y  by  

c o m p u t e r .  T h e  c l a s s i f i e r s  t h a t  a r e  u s e d  i n c l u d e  
n e u r a l  n e t w o r k s ,  d i s c r i m i n a n t  ana lys i s ,  a n d a  

r u l e - b a s e d  s c h e m e .  T h e  C A D  s c h e m e  f i rs t  i d e n -  
t i f ies  n o d u l e  c a n d i d a t e s  a n d  t h e n  a u t o r n a t i c a l l y  

e x t r a c t s  i m a g e  f e a t u r e s  fo r  e a c h  o f  t h e  c a n d i -  
d a t e s  i d e n t i f i e d .  U s i n g  t h e  e x t r a c t e d - i m a g e  fea -  
t u r e s ,  t h e  c l a s s i f i e r s  a r e  t r a i n e d  to  d i s t i n g u i s h  

n o d u l e s  f r o m  n o n - n o d u l e  d e t e c t i o n s .  T h u s ,  t h e  

n u m b e r  o f  f a l s e - p o s i t i v e  d e t e c t i o n s  o f  t h e  C A D  
s c h e m e  c a n  b e  r e d u c e d  w h e n  it  i n c o r p o r a t e s  t h e  

t r a i n e d  a u t o m a t e d  c lass i f ie rs .  

M A T E R I A L S  A N D  M E T H O D S  

In this study, 60 conventional, posterior-anterior chest 
radiographs obtained from 30 normal and 30 abnormal 
patients were selected for our database. The 30 abnormal 
cases had 32 pulmonary nodules with diameters ranging 
from 6 to 25 mm. The presence of pulmonary nodules was 
verified by computed tomography scans of radiographic 
follow-up. Calcified nodules and nodules with secondary 
features, such as atelectasis, were excluded. In the 30 
normal cases, the absence of nodules was confirmed by the 
consensus of two chest radiologists. 

The 60 chest radiographs were digitized by a Fuli optical 
drum scarmer (Fuji Medical Systems, Tokyo, Japan) 27 using 
a 0.1-mm pixel size and 10-bit quantization. The images 
were subsequently averaged into a 512- x 512-pixel matrix 
with ah effective pixel size of 0.6 mm. 

The CAD scheme was based on a difference-image 
teehnique. ~z-z5 In this difference-image approach, lwo fil- 
tered images were created from an original chest image-- 
one was signal enhanced, and the other signal suppressed. 
The nonuniform background in the original chest image can 
be substantially removed by subtracting the signa[-sup- 
pressed image from the signal-enhanced image to obtain a 
difference image. Gray-level thresholding was performed on 
the difference image to locate initial nodule candidates. 
After being subjected to tests of shape, size, and contrast, 
the remaining nodule candidates were reported. A sensitiv- 
ity of ~ 70% was achieved by this CAD scheme. A false- 
positive detection by the CAD scheme was defined a s a  
nodule candidate, indicated by the CAD scheme, that was 
actually a normal anatomic structure such as ribs of pulmo- 
nary vessels. In this study, a "relaxed" threshold level was 
used so thal 11 to 12 false-positive detections per image 
were produced by lhe CAD scheme. By applying the CAD 
scheme to our database of 60 radiographs (32 nodu|es), we 

identified 727 nodule candidates that included 23 nodules 
and 704 false-positive detections. 

After the initial identification of nodule candidates, 
automated image feature-extraction techniques were used. 
Nine image features were calculaled for each of the nodule 
candidates regarding the contrast, effective size, degree of 
circularity, degree of irregularity, slope of contrast, slope of 
circularity, slope of irregu[arity, edge gradient, and standard 
deviation of edge gradient. These image features were then 
used as the input to the automated classifiers--a neural 
network, discriminant analysis, anda rule-based scheme--to 
distinguish the actual nodules from false-positive detections 
(le, non-nodules). The performance of the classifiers was 
evaluated by receiver-operating characteristic (ROC) analy- 
sis.28-32 

Image Feature Analysis 
For each of the nodule candidates initially identified by 

the C.~I) scheme, automatic gray-IeveI region growing 33 is 
performed. In such growing, the size of the grown regions is 
analyzed a s a  function of the gray levels. The gray levels 
relative to the peak of the nodule candidate for region 
growing are kept the same for each of the nodule candi- 
dates. Fig 1, A and B show a nodule and the corresponding 
contour lines, respective[y; contour lines represent the 
grown areas corresponding to the various gray levels. The 
area within each contour line will be referred to asa  "grown 
region." Nine image features are calculated for the nodule 
candidates. Contrast is defined as the gray-level interval 
used in the region growing process, le, the difference 
between the maximum and lhe minimum pixel values within 
a grown region. The effeclive size, the degree of circularity 
and the degree of irregular[ty are defined in terms of 
parameters that are demonstrated in Fig 2. A circle that has 
the same area as the grown region is centered at the 
centroid of the grown region. We denote the area of the 
grown region byAg and the portion ofAg that is within the 
circle by Ac. Perimeters of the circle and the grown region 
are denoted by Pe and Pg, respectively. Effective size is 
defined as the diameter of the circle that has the same area 
as the grown region. The degree of circularity is defined as 
the ratio of the area of the grown region within the circle to 
the area of the grown region, If a grown region is a perfect 
circle, the degree of circularily will be equal to 1. On the 
other hand, ir a grown region has a narrow linear shape, the 
degree of circularity will be c]ose to 0. The degree of 
irregularity is defined as: 

A rounded grown region will have a low irregularity, 
whereas an irregularly shaped grown region will have a high 
degree of irregularity. 

As shown in Fig 1C, the effective size, the degree of 
circularity, and the degree of irregularity ate calculated as 
functions of the contrast of a grown region. Note that when 
the contrast is increased to a certain point, the effective size 
and the degree of irregularity increase abruptly, whereas 
the degree of circularity decreases abruptly. This transition 
indicates that the grown region has merged with the 
surrounding background adjacenl to the nodule candidate. 
The grown region at the point just before this transition, as 
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Fig 1. (A) Original image of an actual nodule (arrow indi- 
cates nodule); (B} the corresponding contour line image after 
region growing; (C) a diagram indicating relationships be- 
tween the contrast of the grown region and degree of circular- 
ity ( . . . .  ); degree of irregularity (----); and effective size (--}. 

illustrated by the light area in Fig IB, appears visually to be 
similar to the actual shape and size of the nodule candidate 
in Fig lA. Thus,  we define this point as the transition point. 
The values of the image features at the transition point are 
used as input to the classifiers. 

As the contrast increases from zero to its value at the 
transition point, the shape of the nodule candidate grows 
from a starting point to approximately the full size of the 
candidate.  The average slopes of effective size, circularity, 
and irregu]arity witfiin the contrast range from zero to the 
transition point define tfiree additional feamres  that are 
used [k)r the input data to the classifiers. 

Two additional features used in this study are derived 
from an edge gradient  analysis. 34 For each nodule candi- 
date, the magni tude and orientation of edge gradients are 
calcu/ated for all pixels within a 50- • 50-pixel ROt,  
centered at the same pixel that was used previously for 
initializing the region-growing process. For an ROl  that 

contains a nodule and vessels, edge gradients are generally 
oriented in many ditterent dil:ections. Therefore,  the distri- 
bntion of the number  of  pixels in different directions is 
relatively uniform with a small s tandard deviation. How- 
ever, for ROIs  containing rib edges, the gradient-orienta- 
tion shows a definite directionality, and the standard devia- 
tion of the number  of pixels in different directions is usually 
large. Thus,  we use the average edge gradienl and the 
s tandard deviation of edge gradient also as features for the 
input to the classifiers. 

The database of nodule candidates used in this study 
includes 23 nodules and 704 false-positive detections. Fig- 
ure 3 shows the average values of the input features for 
these nodules and false positives, In general, the differences 
between nodules and false positives ate very small for most 
of the inpul features. However, the contrast, the effective 
size, the degree of circu]arity, and the s tandard devialion of 
edge gradient show larger differeuces, relative to their 
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G r o w n  reg ion  ind ica ted  by 
c o n t o u r  line wi th  a r e a  Ag 
and p e r i m e t e r  Pg 
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A r e a  of  g r o w n  reg ion  
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Fig 2. Illustration of definitions of parameters that were 
used to define three image features, ie, effective size, degree 
of circularity, and degree of irregularity for a nodule candidate. 

standard errors, than the other features for the two classes 
of nodule candidates. 

Neural Networks 

A three-layer, feed-forward neural ne~ 'o rk  is used in this 
study. Backpropagation and the generalized delta rule are 
used for the training a lgor i thm) 5 A logistic function is used 
as the nonlinear activation function for each processing unit 
in the neural network, such that 

1 
% = , ( 2 )  

where opj is the j th  element  of the actual output  pattern 
produeed by the presentat ion of input pattern p. nŸ is the 
weight from the ith to j th  units, and 0 iis the threshold of the 
j th unit. In the training process, the weights and thresholds 
are adjusted iteratively so that the differenee between the 
output  values and the desired results is minimized, accord- 
ing to the following rule: 

AW]i(n + l )  = "q(~p/Opi) + otAwji(n), (3) 

where n indicates the number  of presentat ions of each input 
data pattern, which is also defined as iterations, v I i s  the 
learning tate, gpj is the error signal, which is related to the 
difference between the output  of  the neural network and 
the target (ie, desired) output ,  35 a n d a  is a m o m e n t u m  term 
that determines the effect of past weight changes on the 
current  direction of movement  in weight space. Figure 4 
shows the structure of the neural network that was used in 
this study. In the training process, when image features of a 
nodule or a false positive are provided to the input layer of  
the network, an output  value of 1 of 0, respectively, is 
provided to the output  unir as the desired value. The 
number  of units in the hidden layer can be chosen according 
to the nature of input and output  data. In this study, the 

optimal performance,  defined as having the greatest  area 
under  an ROC curve (Az), is achieved by using eight hidden 
units and 1,000 training iterations (de¡  earlier). 

Discriminant Analysis 
On the basis of Bayesian statistics, signal detection 

theory, and an assumption of mult idimensional  normality of 
input data distributions, the optimal linear discriminant 
function 36 is given by (see Appendix):  

D(~)  = (0.~ - / ~ . ) '  Y~- '  ~. (4) 

where g is an input vector of feature values (nine, in this 
study), ~ is an average vector of a training database,  and E is 
the 9 x 9 within-group variance matrix of the training 
database.  Subscripts s and n denote two states of t r u t h - -  
signal and no i se - - tha t  correspond to nodules and false- 
positive detections in this study, respectively. The discrimi- 
nant  function expressed by equation 4 is de termined 
(trained) by calculating q and E from the training database. 

Rule-Based Scheme 
A rule-based scheme is developed by Matsumoto  et al 37.38 

to eliminate false-positive detections of the CAD scheme. 
This rule-based scheme is developed on the basis of the 
knowledge of experienced radiologists. The first step in this 
scheme is an analysis of the characteristics of  the features of 
false-positive detections that occurred at rib crossings, rib 
and vessel crossings, end-on vessels, and aggregates of 
vessels. Threshold levels for the image features are chosen 
to remove as many false-positive detections as possible 
without Ioss of true nodules,  by analyzing all cases in the 
database.  Detailed description of this scheme can be found 
elsewhere.34, 35 
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Fig 3. Average values of nine input features for cases used 
in this study, which include 23 nodules and 704 false positives. 
The nine input features are (from 1 to 9): contrast, effective 
size, degree of circularity, degree of irregularity, slope of 
effective size, slope of circularity, slope of irregularity, edge 
gradient, and standard deviation of edge gradient. 
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Fig 4. Structure of a three-layer, feed-forward neural net- 
work that was used for the detection of lung nodules based on 
nine input features. 

Implementation of Classifiers 
The CAD scheme, the neural network, and discriminant 

analysis are implemented on an IBM RISC 6000 POWER- 
station 560 (IBM, Purchase, NY). The rule-based scheme is 
implemented on a DEC VAX 3500 workstation. 

Evaluation of Performance of Classifiers 
In general, an evaluation of decision-making perfor- 

mance in terms of correct detections or classifications 
depends on the threshold value used. In this study, ROC 
analysis is used to objectively assess the overall performance 
of the classifiers by varying the threshold value. In ROC 
analysis, a curve that relates true-positive fraction (TPF) to 
false-positive fraction (FPF) is obtained instead of the 
single combination of TPF and FPF obtained from yes/no 
decisions based on a particular threshold value, which 
corresponds to only one point on the ROC curve. The area 
under an ROC curve (Az) is used to summarize the 
performance of each classifier. 

To estimate the ability of the neural-network and discrimi- 
nant-analysis classifiers to generalize from the cases on 
which they are trained and make decisions concerning cases 
that have not been included in their training, we use both a 
round-robin method--also known as a leave-one-out 
method--and a jackknife method to evaluate the perfor- 
mance of the classifiers. In the round-robin method, all but 
one case in a data set is used to train a classifier. The single 
case that has been left out is then used to test the classifier. 
This procedure is repeated so that each case in the data set 
is used once asa testing case. In the jackknife method, one 
half of the cases in a data set are randomly selected asa 
training set and the other half are used asa testing set. 
Various training/testing sets can be generated by use of a 
random-nurnber generator. The LABROC4 algorithm devel- 
oped by Metz et al 29 is used to fit ROC curves to the 
continuous data that are obtained from the output unir of 
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the neural network and from the discriminant function 
(equation 4). 

RESULTS 

Performance of the Classifiers Based on Selected 
Data Sets 

To evaluate  the pe r fo rmance  of classifiers in 
dis t inguishing nodules  from false-positive detec- 
tions, we used the round- rob in  and jackknife 
methods ,  as discussed earlier.  For  the round-  
robin  method,  we created three  t ra in ing data 
sets f rom the database.  Each of the three data 
sets inc luded all of the 23 nodules  and 115 
randomly  selected false-positive detections.  This 
round- rob in  test was used to evaluate the neural-  
ne twork  classifier and the discr iminant-analysis  
classifier for each of the three t ra in ing data sets. 
Note  that  the n u m b e r  of false-positive cases in 
each t ra in ing  data  set was five t imes larger than  

the n u m b e r  of nodule  cases. Therefore ,  we 
modified the t ra in ing  process of the neura l  
ne twork  such that  the n u m b e r  of t ra in ing itera- 

t ions for the nodules  was five t imes greater  than 
that  for the false-positive candidates .  This  modi-  
fication of the t ra in ing  process resul ted in equal  
num be r s  of data  entr ies  for nodules  and for 
false positives. R O C  analysis was used to inde- 
penden t ly  analyze the results ob ta ined  from the 
three  t ra in ing  data  sets. Averaged R O C  curves 
for the two classifiers are shown in Fig 5. The  
neura l  network,  which achieved an Az value of 
0.79, pe r formed  somewhat  be t te r  than discrimi- 
nan t  analysis (Az = 0.74), a l though the differ- 
ence was not  statistically significant (two-tailed 
P value = .182 and  95% confidence interva129 
was [ -0 .110 ,  0 . 2 1 6 ] ) . .  

Alternat ively,  the jackknife method  was used 
to evaluate  the pe r fo rmance  of the neura l  
network.  In  the jackknife  test, 10 different data 
sets were selected for the evaluat ion.  Each of 
the data  sets inc luded all of the 23 nodule  cases 
and  a n u m b e r  of r andomly  selected false- 
positive cases. R O C  analysis was per formed 
separately  on each data  set, and  the Az values 
ob ta ined  from the 10 different data  sets were 
averaged. 

We used three  different ratios of the n u m b e r  

of false-positives to the n u m b e r  of nodules  in 
these evaluat ions,  namely,  1, 5, and 20. The 
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Fig 5. ROC analysis of the performance of the neural 
network, and discriminant analysis for distinguishing lung 
nodules from false positives based on results of three data 
sets using the round-robin method. 

number of the nodules was kept the same at 23 
for all three ratios used, whereas the number of 
false positives was varied accordingly. The aver- 
age Az values for the neural network and their 
standard deviations obtained with the three 
different ratios in the training data set are 
shown in Fig 6. The ratio of the number of 
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Fig 6. Performance of the neural network based on the 
jackknife method. Effect of the ratio of the number of false 
positives to the number of nodules in the training and testing 
data sets; A, values for each of the ratios were averaged over 
10 randomly selected sets. 

false-positive cases to the number of nodule 
cases did not affect the performance of the 
neural network signi¡ (two tailed P 
value = .32 for the difference of Az values 
between ratios 1 and 20), although the Az value 
appeared to decrease slightly when the ratio 
increases. The Az values obtained by the jack- 
knife method were slightly smaller than those 
obtained with the round-robin method, shown 
in Fig 5 because, in general, the round-robin 
method used a given number of cases more 
efficiently than the jackknife method in training 
a classifier. The variance of the Az value de- 
creased as the ratio increased because of the 
increase in the total number  of cases involved. 

Elimination of False-Positive Detections 

To evaluate the ability of the classifiers to 
eliminate false-positive detections, the neural 
network and discriminant analysis were ¡ 
trained by using a training data set and then 
tested using the entire database. This approach 
was used for reasons discussed later. Each of 
the training data sets contained all of the 23 
nodule cases and 115 false-positive cases se- 
lected randomly from the database. Figure 7, A 
and B, show histograms of the output obtained 
from the neural network and from the discrimi- 
nant function, respectively, after training on 
one of the training data sets. With the neural 
network, ~ 8 0 % of false-positive detections 
could be eliminated without loss of true nodules 
if a threshold levet of 0.9 was selected. However, 
discriminant analysis could eliminate only about 
30% of false-positive detections without a loss 
of true nodules (threshold value = 0.4). Table 1 
summarizes the performance of the two classi¡ 
ers in eliminating false-positive detections when 
they were trained with each of the three training 
data sets. 

ROC analysis was performed on the outputs 
obtained from the neural network and the 
discriminant function for the three different 
training data sets. The average ROC curves 
obtained in this way are shown in Fig 8. Note 
that when the false-positive fraction was 0.2, the 
averaged true-positive fraction of the neural 
network was almost 1.0. Therefore,  about 80% 
of false-positive detections could be eliminated 
by the neural network without substantial loss 
of true-positive detections. 



A 
I I 

103 

202 WU ET AL 

Z ~o 

B 

Z 10 

,�91 

I I 

D Fa l se -pos i t i ves  
m N o d u l e s  

~o.o o 2 0.4 o.6 o s 1.~ o.o o.2 o.4 0.6 a.s no 

O u t p u t  va lue  f f o m  the  n e u r a l  n e t w o r k  O u t p u t  va Iue  f r o m  d i s c r i m i n a n t  a n a l y s i s  

Fig 7. 
detections; (A) the neural network; (B) the discrŸ analysis. 

Histograms of the output values from the clas$ifiers, trained by using data set A in Table 1, for elimination of false-positive 

The rule-based scheme 37,38 was developed to 
eliminate false-positive detections based on the 
analysis of various types of false positives. Based 
on the database of 30 normal and 30 abnormal 
images that included 23 nodules and 704 false 
positives, the rule-based scheme was able to 
reduce the number of false-positive detections 
to 277 without loss of true nodules. Therefore,  
~60% of the false-positive detections were 
eliminated by the rule-based scheme. Table 1 
shows that the neural network was able to 
perform better  than the rule-based scheme 
(discussed earlier) in eliminating false-positive 
detections, whereas the performance of discrimi- 
nant analysis was poorer  than that of the rule- 
based scheme. However, in comparing the rule- 
based scheme with the neural network and 
diseriminant analysis, it is important to notice 
that the rule-based scheme was established on 
the basis of al1 of the cases in the database, 
whereas the neural network and discriminant 

analysis were trained based on a training data 
set and then tested against a larger case set that 
included the training set. Hence, the obtained 
results were partially biased in favor of the 
rule-based scheme. 

Performance of the Neural Network with Two 
Groups of False Positives 

The neural network and the rule-based 
scheme were two essentially independent classi- 
fiers that may distinguish nodules from false 
positives in different ways. Therefore,  the types 
of false positives eliminated by the two classifi- 
ers could be different. The neural network was 
applied to distinguish both nodules flora false 
positives that were identified as such by 
the rule-based scheme, and also nodules from 
false positives that were not identified as such 
by the rule-based scheme. The performance of 
the neural network was evaluated by using the 
round-robin method in connection with two 

Table 1. Comparison of Performances Among Classifiers in Elimination of False-Positive Detections 

Discriminant Analysis Neural Network 

Classifier A B C A B C 

Remaining nodules after test 23 23 23 23 23 23 
Remaining FP after test 495 517 504 123 67 101 
Nodules Iost 0 0 0 0 0 0 
% of FP eliminated 30 27 28 83 91 86 

Total number of nodules and false positives in the database ate 23 and 704, respectively, A, B, and C indicate three different data sets 
used in the trainin9 of the c~assifiers. 

Abbreviation: FP, false-positive detections. 
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data sets: one containing all of the nodules and 
a number of false positives identified by the 
rule-based scheme, and another containing all 
of the nodules a n d a  number of false positives 
that were not .identified by the rule-based 
scheme. ROC analysis of the results of the two 
round-robin tests yielded Az values of 0.74 and 
0.72, respectively. Thus, it appeared that there 
was no substantial difference between the per- 
formance of the neural network in identifying 
these two groups of false positives, although 
the neural network was able to recognize the 
false positives identified by the rule-based 
scheme slightly better than the false positives 
that were not identified by the rule-based 
scheme. This result suggests that the neural- 
network and rule-based classifiers distinguish 
between nodules and false positives in substan- 
tially different ways. Therefore,  some of the 
false positives that were not eliminated by one 
of the classifiers may be eliminated by the other. 

Performance of Combining the Neural Network, 
Discriminant Analysis, and the 
Rule-Based Scheme 

As we discussed in the previous section, the 
false-positive detections eliminated by the rule- 
based scheme were largely distinct from those 
eliminated by the neural network. Therefore,  
one can expect that the number of false-positive 

detections might be reduced even further by 
combining two or three of the classifiers. 

The results obtained from two pairings of the 
classifiers are summarized in Table 2. The 
neural network and the discriminant function 
were first trained individually by using selected 
training data sets. To combine discriminant 
analysis and the neural network, we applied one 
classifier after another. When the neural net- 
work was trained on the training data set A, the 
number of false-positive detections could be 
reduced to 112, as shown in Table 2, by combin- 
ing the neural network with discriminant analy- 
sis. Note that the neural network and discrimi- 
nant analysis could reduce the number of false- 
positive detect ions only to 123 and 495, 
respectively, ir they were applied individually. 
We also combined the neural network with the 
rule-based scheme to reduce the number of 
false-positive detections. We first applied the 
rule-based scheme so that the number of false 
positives was reduced to 277. The neural net- 
work, which had been trained by training data 
set A, was then applied to the remaining 277 
false positives. As a result, all of the true 
nodules were retained, but 668 (96%) of the 
original 704 false positives were eliminated. 
ROC analysis yielded an Az value of 0.93 for this 
combination of classifiers. The ROC curves of 
the two combined classifiers, averaged over 
three different training data sets, ate shown in 
Fig 9. 

We found that the number of false-positive 
detections could not be reduced further by 
combining all three classifiers because the false- 
positive detections eliminated by discriminant 
analysis were eliminated also by the rule-based 
scheme. This was in contrast to the false- 
positive detections that were eliminated by the 
rule-based scheme and by the neural network, 
which were largely distinct. 

One should note that the results in Tables 1 
and 2 and in Figs 8 and 9 were for elimination of 
false-positive detections by automated classifi- 
ers that had been trained by a training data set. 
Each of the training data sets contained all of 
the nodules a n d a  portion of the false-positives 
that were used for testing. Therefore,  our re- 
sults do not provide an unbiased assessment of 
the ability of the neural network and discrimi- 
nant analysis to recognize nodules (all of which 
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Table 2, Performance in Eliminating False-Positive Detections: Combinations of Classifiers 

Rule-8ased Scheme/ Discriminant Analysis/ 
Neural Network Neural Network 

Combinat ion A B C A B C 

Remaining nodules after test 23 23 23 23 23 23 
Remaining FP after test 36 24 46 112 66 98 
Nodules Iost 0 0 0 0 0 0 
% of FP eliminated 96 97 94 84 91 86 

Total number of nodules and false-positives in the database are 23 and 704, respectively. A, B, and C indicate three different data sets 
used in the training of the classifiers. 

Abbreviation: FP, false-positive detections. 

were in both the training sets and the testing 
set), but rather indicate the ability of the net- 
work to identify false-positive detections. 

DISCUSSION 

We found that an artificial neural network 
can be trained to distinguish between nodules 
and false-positive detections, and to serve a s a  
useful tool in eliminating false-positive detec- 
tions in the CAD scheme for detection of lung 
nodules in chest images. Our neural network 
achieved an average Az value of 0.79 when it was 
tested by the round-robin method on three 
selected data sets. Moreover, after being trained 
by selected training sets, the neural network was 
able to eliminate more than 83% of the false- 
positive detections reported by the CAD scheme, 

1,0 . . - -  i i i 

/ I ' Rule-based scheme/Neural network 
'~=a" ~  Az = 0 " 9 3 ~ ~  0.4 

|1  i Discriminant analysis/Neural networ~ b-, 0 ~ ~  
0.0 

0.0 0.2 0.4 0.6 0.8 1.0 

False-Positive Fraction 

Fig 9. ROC curves for eliminating false-positive detections 
combining the neural network with the discriminant analysis 
and the rule-based scheme. The neural network and the 
discriminant analysis were trained by using three data sets. 
ROC curves were average results based on the three training 
data sets. 

although this level of performance should be 
considered as the upper limit, as will be dis- 
cussed later. The performance of the neural 
networks, a nonlinear and nonalgorithmic ap- 
proach, appeared to surpass that of linear 
discriminant analysis in distinguishing nodules 
from false-positive detections. 

The prevalence of cases in the two classes-- 
nodules and false-positive detections--was un- 
balanced in our database. We modified the 
iteration scheme of the training process for the 
two classes of input data to compensate for this 
unbalanced prevalence so that the total number 
of training iterations for nodules and false 
positives were made equal. An alternative way 
to deal with unbalanced prevalence is to modify 
the generalized delta rule in the training algo- 
rithm so that the error term is not weŸ by 
the number of cases in each class. The effect of 
adjusting the error term on the performance of 
the neural network may be similar to the ap- 
proach that we used in the study reported here, 
but that possibility requires further investiga- 
tion. It is important to note that increasing the 
number of iterations or using a weighted error 
term for nodule cases  may help the neural 
network to learn the patterns of nodules and 
false positives in a more balanced way when the 
prevalence of the two classes in the database is 
unbalanced. However, increasing the number of 
iterations is not equivalent to increasing the 
actual number of cases in the training database, 
and it will not increase the ability of the neural 
network to generalize to the population of cases 
at large. 

In this study, we first used round-robin and 
jackknife methods to evaluate the performance 
of the neural network and discriminant analysis 
in distinguishing lung nodules from false posi- 
tives. However, in the second phase of this 
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study, the neural network and discriminant 
analysis were trained to eliminate false-positive 
detections of the CAD scheme by using a 
training data set that was part of the testing set. 
It is important to note that the round-robin and 
jackknife methods provide an unbiased test of 
the classifiers' ability to learn from training 
cases and generalize the learned knowledge to a 
different set of cases in the testing process. 
Therefore,  results from these tests more reliably 
indicate the level of performance that the neu- 
tal network or discriminant analysis can achieve 
when ir is applied in practical situations. Evalu- 
ation of the classifiers in terms of their ability to 
eliminate false positives from the CAD scheme, 
on the other  hand, does not require ah unbiased 
test of the neural network's ability to detect 
nodules. Ideally, we would train the network 
with a larger data set and apply the trained 
network to an entirety different data set to 
evaluate its performance. However, we were not 
able to split our database into completely sepa- 
rate training and testing data sets because the 
number of confirmed nodules in our database 
currently is very small. Nevertheless, our results 
indicate an upper limit on the number of false 
positives that the neural network would be able 
to eliminate if trained adequately to recognize 
all o r a  majority of the nodules. 

This upper limit on the number of false 
positives that the neural network would be able 
to eliminate can be explained by the example 
shown in Fig 7A. The neural network was 
trained by all of the nodules anda  portion of the 
false positives in the database and then tested 
on all of the cases in the database. All of the 
nodules were recognized by the neural network, 
and its output values were larger than 0.9 for all 
nodule cases. With its threshold level set at 0.9, 
the neural network was able to eliminate 83% of 
the false positives without losing any nodules. If 
the neural network had not been trained to 
recognize all of  the nodules, the output  values 
of some of the nodule cases would be less than 
0.9. A s a  result, the threshold value would have 
to be lowered to avoid losing true nodules, and 
the neural network would not be able to elimi- 
nate as many false positives. 

The majority of false-positive detections elimi- 
nated by the neural networks were not included 
in the training data set. Therefore,  our results 

suggest that the neural network may be a useful 
tool for reducing the number of false-positive 
detections from our CAD scheme. The false- 
positive detections that were eliminated by the 
neural network were, in general, different from 
those eliminated by the rule-based scheme and 
discriminant analysis. We found that a combina- 
tion of the neural network and the rule-based 
scheme eliminated 96% of the false-positive 
detections reported by the CAD scheme. This 
result suggests that after incorporation of a 
properly trained neural network and the rule- 
based classifier, our current CAD scheme would 
potentially achieve a sensitivity of 70% for 
detecting lung nodules in chest radiographs 
with only ~ 0.5 false positives per image. 

Nine image features were extracted from 
chest images and used as input data to the 
classifiers in this study. These nine features may 
not have included all of the useful information 
that can be used in detecting nodules. Other  
features such as the location of a nodule candi- 
date in a chest image and the density of the 
candidate may be useful. Expanding the input 
feature set and its effect on the performance of 
the neural network remains to be investigated in 
the future. 

APPENDIX: DERIVATION OF THE 
DISCRIMINANT FUNCTION 

Let 2 be a vector of random variables. A 
decision rule for determining whether2  belongs 
to the class s (signal) or the class n (noise) can 
be expressed as: 

fP(~]s) 
|P(~[n)  > c', assign ~ to s. 

If ]P(~ls)  
[ ~ <  c', a s s ign~ ton .  

By taking logarithm of both sides of the above 
inequalities, we can define a discriminant func- 
tion 

(P(~ls)] 
D(~) = In ~ ~ ]  + c, (Al)  

where c is a constant such that the decision rule 
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becomes 

ID(i) > Co, assign ~ to s, 
If / 

ID( i )  < Co, assign ~ to n, 

where Co is a critical value. 
Assuming N-dimensional normal distribution 

for / ,  one can write 

p(~]s) = [(2~) N/2 s~ [ 1/21 1 

[' T �9 exp - ~ ( i - ~ s )  t~]-~(~-~~) . (A2) 
S 

[ 1 ] 
�9 exp - ~ ( i - ~ n )  t ~ ] - l ( ~ - t i . )  . (13)  

n 

Where 12 is an average vector and s is a variance 
matrix. If we assume that the distributions of 
signal and noise have the same variances and 
covariances, then 

2 = 2 = 2 .  (A4) 
s n 

Substituting equations A2, A3, and A4 into Al ,  

we have 

D(~) = In ~ ~ / +  c 

1[ Z-' 
= 2 ( X -  ~Ln) t ( X -  ~n) 

-- (~ __ ~l~t,s)t ' ~ - 1  (,~ __ ~s)J -~- C 

1 

----- ([~s -- [~n) t Z 1 ~" ( A 5 )  

It can be shown that this discriminant func- 
tion is equivalent to an ideal statistical decision 
maker who uses likelihood ratio a s a  decision 
variable for input data that have the same 
variances and covariances for positive and nega- 
tive Gaussian distributions? If 1~. ~ ~., the 
linear classifier that maximizes the area under 
the ROC curve (Az), is given by 4 (~ ~)1 

D(~) = (12s- q + ~. (A6) 
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