
Journal of Digital Imaging 
VOL 7, NO 4 NOVEMBER 1994 

A Method for Determinat ion  of Optimal  Image Enhancement  
for the Detect ion of Mammographic  Abnormal i t ies  

Derek T. Puff, Etta D. Pisano, Keith E. Muller, R. Eugene Johnston, Bradley M. Hemminger, 
Christina A. Burbeck, Robert McLelland, and Stephen M. Pizer 

We present a paradigm for empirical eva|uat ion of 
digital image enhancement algorithms for mammogra-  
phy that uses psychophysical methods for implementa- 
tion and analysis of a clinically relevant detection task. 
In the experiment, the observer is asked to detect and 
assign to a quadrant, or indicate the absence of, a 
simulated mammographic structure characteristic of 
cancer embedded in a background image of normal 

�9 breast tissue. Responses are indicated interactively on 
a computer  workstat ion.  The parameter values for the 
enhancement applied to the composite image may be 
varied on each trial, and structure detection perfor- 
mance is estimated for each enhancement condition. 
Preliminary investigations have provided insight into 
ah appropriate viewing duration, and furthermore, 
suggest that  nonradioiogists may be used under this 
methodology for the tasks investigated thus far, for 
predicting parameter values for clinical investigation. 
We are presently using this method in evaluat ing 
several contrast enhancement algor i thms of possible 
benefit in mammography. These methods enable an 
objective, clinically relevant evaluation, for the pur- 
pose of optimal parameter determination or perfor- 
mance assessment, of digital image-processing meth- 
ods potentially used in mammography.  
Copyright �9 1994by W.B. Saunders Company 
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T HE EMERGENCE OF digital mammogra- 
phy asa  breast-imaging modality necessi- 

tates the development of methods of optimal 
electronic image display. For many years exten- 
sive research has been devoted to the optimiza- 
tion of film/screen mammography, a character- 
istically high-resolution imaging modality. 
Likewise, for digital mammography to be effec- 
tive clinically, the methods by which digital 
mammograms are processed and displayed elec- 
tronically must be evaluated to allow the human 
observer to acquire the greatest amount of 
clinically important information from the result- 
ing images. 

Image-enhancement algorithms applied to 
the digital mammogram before its display may 
enable a significant improvement in detection of 
structures indicative of breast cancer. For ex- 
ample, the results from an earlier pilot study 
conducted in our laboratory suggest that the 
application of a contrast enhancement method 
may be helpful in enhancing the features of 
breast cancers. 1 Several subtle cancers missed in 
the original interpretation were more visually 
obvious after the application of the algorithm 
contrast-limited adaptive histogram equaliza- 
tion (CLAHE). 2 

The task for any investigator or clinician who 
attempts to use or show a benefit from image- 
enhancement methods is to optimize the perfor- 
mance of the methods. Inevitably, all methods 
possess various parameters, and successful appli- 
cation of any technique relies on optimal set- 
tings of those parameters. In our attempt to 
evaluate the potential benefit in mammography 
of several contrast enhancement algorithms, we 
have developed a methodology for determining 
the optimal parameter values for these aigo- 
rithms for enhancing the detectability of mam- 
mographic abnormalities, such as masses, calci- 
fications, and spiculations. 

In our initial attempts at determining optimal 
parameter values for CLAHE, which possesses 
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two parameters, radiologists were presented 
with a 5 x 5 grid displayed on a computer 
workstation. Each square in the grid contained 
a single simulated mammographic structure and 
surrounding background cropped from a digi- 
tized image of the ACR phantom (American 
College of Radiology Phantom, RM-161) and 
enhanced with CLAHE according to the param- 
eter vatues (which spanned the entire range of 
relevant values) on the corresponding axes (Fig 
1). The radiologists were asked to rate the 
visibility of the structures in the images. Their 
ratings were extremely diverse and subjective, 
apparently corresponding to their aesthetic judg- 
ments about the equally-enhanced noise in the 
images. Whereas this approach was useful for 
visualizing trends because parameter values 
were varied, an objective determination of the 
optimal position in the grid was dif¡ 

Because simple rating schemes were insuf¡ 
cient, we determined that a more rigorous 
preliminary investigation must be conducted to 
determine the optimal parameter vatues. This 

objective prclimina U determination is impor- 
tant for several reasons. First, the extensive 
computation time required in the generation of 
an enhanced image, for most of the existent 
methods, prohibits an interactive adjustment of 
the relevant parameters. Second, because these 
algorithms enhance both the signal and noise in 
the image, an interactive determination of en- 
hancement parameter values might be influ- 
enced by aesthetic judgments about the image 
and not dictated instead by optimal perfor- 
mance at a specified task. Thus, the determina- 
tion of parameter settings calculated from the 
performance of several observers offers an objec- 
tive, experimentally-proven assignment of the 
optimal values with respect to the task. 

We have devetoped a method, described 
below, which uses psychophysical methods for 
implementation and analysis of a five-atterna- 
tive forced choice (5-AFC) detection task, to 
achieve an objective and clinically realistic dete> 
mination of the optimal parameter values for 
the enhancement algorithms under investiga- 

Fig 1. A 5  x 5grid of CLAHE 
enhancement parameter combi- 
nations as applied to a mass and 
surrounding background cropped 
from a digitized image of the 
ACR phantom. The squares in 
the grid are enhanced according 
to the CLAHE parameter values 
on the axes; values to the right 
along the horizontal axis reflect 
decreasing contextual region 
size, whereas values toward the 
bottom along the vertical axis 
reflect decreasing contrast limita- 
tion. 
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tion. This approach incorporates the following 
emphases. First, it is important to make a 
determination of the optimal parameter  values 
with respect to the visual task conducted in the 
interpretation of the image. The task of detec- 
tion of abnormal mammographic structures may 
be improved by the application of the enhance- 
ment algorithms we are investigating, and thus, 
we have attempted to determine the parameter  
values to optimize detection. Second, real mam- 
mographic images are used as background to 
determine parameter  values that are clinically 
applicable. Finally, ir is also important to recog- 
nize that the optimal enhancement  parameter  
values may be different for structures of differ- 
ent sizes and shapes; we have at tempted to 
develop this method, and suggest structure 
simulations, for determining optimal parameter  
values for the enhancement of several different 
mammographic structures (masses, calcifica- 
tions, and spiculations) of sizes typical of earlier 
breast cancer. 

We report here a description of the proposed 
methods, along with several results integral to 
the construction of this methodology. Specifi- 
cally, we conducted preliminary investigations 
to determine the appropriate viewing duration 
and acceptable observer population for use with 
these methods. We also measured possible 
training effects that may have occurred through- 
out the experiments. 

In determining a viewing duration, we origi- 
nally believed that a brief duration for the 
display of the images on each trial would be 
necessary to acquire an objective assessment of 
the effect of the application of contrast enhance- 
ment in making this detection. Furthermore,  we 
believed the brief duration would allow us to 
measure the saliency of the effect by maximizing 
any differences among contrast-enhancement 
conditions. However, although mammograms 
are often viewed rapidly in busy screening 
contexts, a limited viewing duration is never 
explicitly imposed upon radiologists in the clinic. 
Thus, we endeavored to measure detection 
performance as the viewing duration was var- 
ied. 

Secondly, recognizing that recruiting radiolo- 
gists for observer studies is difficult and time 
consuming, we conducted an experiment to 
determine whether nonradiologists were predic- 

tors of the performance of radiologists as the 
enhancement  conditions were varied. We be- 
lieve that i t i s  not important ir nonradiologists 
perform worse in general than radioIogists at 
this task. However, ir the relative distributions 
of the two populations' scores ate sufficiently 
similar, nonradiologists might be used as observ- 
ers under this methodology for the purpose of 
determining enhancement  parameters  that 
might later be investigated clinically. Thus, we 
report  the results of an experiment in which 
detection performance was measured for both 
radiologists and nonradiologists as the CL AHE  
enhancement parameters were varied. 

Finally, we report  data gathered using this 
methodology in a preliminary evaluation of a 
subset of the parameter  space for the contrast- 
enhancement  method CLAHE. 

Any repeated-measures human-subjects ex- 
periment, particularly one that measures the 
effect of novel image presentations, is suscep- 
tible to training effects. The differences be- 
tween conditions may shift because of practice 
with images that were initially less familiar of 
standard in appearance. Such effects are inevi- 
table, and the best that any investigator can do 
is provide sufficient practice beforehand so that 
observers are well along the learning curve at 
the onset of the experiment. We r e p o r t a n  
analysis of training effects for radiologists and 
nonradiologists in one of the CLAHE-en-  
hanced mass-detection experiments. 

Whereas the results presented in this paper 
were obtained from an investigation of CLAHE, 
we believe that the methodology proposed here 
will be applicabIe in the evaluation of virtually 
any image-processing algorithm. Therefore,  we 
do not make any claims about the efficacy of 
CLAHE of any other algorithm: we present 
what we believe to be a useful, relevant method 
for systematically investigating such image en- 
hancements. 

MATERIALS AND METHODS 

Physicat Specifications 
The experiments were conducted on a Sun4 computer 

workstation (Sun Microsystems, Inc, Mountain View, CA). 
The observer was seated with his of her head positioned in a 
chin test, such that the viewing distance was 38 cm. The 
images were presented and observer judgments were indi- 
cated with a mouse using ah interactive windowing system 
(X Window System; Massachusetts Institute of Technology, 
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Cambridge,  MA). The images presented on each trial 
occupied 11.57 degrees of  visual angle, and were 256 x 256 
pixels. The  experiments  were conducted in a darkened 
room. The  overall luminance of the screen was 2.96 fL, and 
the images were displayed with 246 gray levels ranging from 
0.001 to 11.91 fL. Perceptual  linearization of the display was 
conducted essentially as described by Pizer. 3 

Observers 
We conducted preliminary investigations with two ob- 

server populations: board-certified radiologists who ate 
specialists in breast  imaging, and nonradiologists. Exemp- 
tion from human-subjects  review was obtained from the 
Institutional Review Board of the University of North 
Carolina (UNC)  Medical School. The observer was in- 
structed to make his or her best guess as to the presence and 
location of the structure,  and to indicate (with the appropri- 
ate but ton)  that the structure was absent  only when he or 
she was certain tbat the structure was not present  in the 
image. P re l imina~  training was performed with a min imum 
of 25 practice trials before the experiment.  This allowed us 
to acquaint observers, particularly radiologists, with these 
nonstandard  images. 

Images 
The background images were 256- z 256-pixel images 

cropped from mammograms  digitized at 50-~m spot size, 
12-bit resolution (Lumisys laser film digitizer, Lumisys Inc, 
Sunn~a le ,  CA). The images contained relatively dense 
breast  parenchyma. They were selected from ma mmogra ms  
known to be normal by virtue of a lack of mammograph ic  or 
clinicat evidence of malignancy for a 3-year period. 

Mammographic  masses were s imulated by blurring (via 
convolution with a Gaussian kernel with a s tandard devia- 
tion of 2.0 pixels) a circle ~ 5 mm in diameter  (1.51-degree 
visual angte at the 38-cm viewing distance). The masses  
were embedded  by a pixelwise addition of the structure and 
background images (Fig 2). 

The  contrast of the mass  then  is defined to be the 
maximum gray level at the center  of  the mass before 
addition with the background. Normally, contrast is a 
unitless measure,  formed by a ratio of foreground and 
background luminances  or gray levels. However, because we 

perform pixelwise addition of the mass, which is nonuni- 
form in intensity because of the blurring, with a background 
that is variable because of structure and noise, such a ratio 
would be difficult to formulate.  Fur thermore,  our definition 
allows a dependent  variable with discrete levels for use in 
the threshold determinat ions in the analysis. 

Whereas  we do not present  results here of  experiments 
using other  structures,  we have produced reasonable simula- 
tions of calcifications and spiculations. Calcifications were 
generated by creating a cluster of five 2- • 2-pixel rectangles 
positioned randomly within a 9-mm 2 (2.7-degree) region. 
Spiculations were generated with a 1-pixel-wide line 11 mm 
(3.32 degrees) in length, positioned in one of four orienta- 
tions (0, 45, 90, 135 degrees). In all cases, although the 
simulated structures are not entirely realistic, they do 
possess the same scale and spatial characteristics of  the 
actual mammographic  structures for which we are t~ ing  to 
optimize digital enhancement  and display. 

Task Sequence 
The observer initiated the trial by clicking with the mouse 

in the window. The observer was then presented with an 
image on a black background. His or ber task was to indicate 
the presence of the embedded  structure by clicking in one of 
the four imaginary quadrants  in the image, or to indicate its 
absence by clicking in a window (with an indicative label) 
next to the image (Fig 3). Because the observer must  select 
from one of five response options, this is a 5-AFC experi- 
ment.  The  image was presented for an interval specified by 
the designated viewing duration for the experiment (0.5, 2.0, 
5.0 seconds, or unlimited).  For experiments  with a limited 
viewing duration,  if the observer had not responded within 
the display duration, the image was erased and the subject 
had an unlimited time to make a decision on the blank 
screen (in which the quadrants  were indicated with lines). 

Feedback was provided on each trial in the forro of a 
circle surrounding the structure (of an appropriate visual 
indication if the structure was not present),  as well as with 
ah audible signal. We believed ir was important to always 
provide feedback for several reasons. First, in a threshold 
detection task, observers rarely see fully or clearty the target 
they are searching for. By circling the target briefly after 
each trial that ir was present,  the observer is continually 

Fig 2. A simulated mass be- 
fore (left) and after (right) inser- 
tion, in the upper-left quadrant, 
in a background image of real 
mammo9raphic tissue, 
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Fig 3. Experiment window on 
a computer workstation, The im- 
age (2562 pixels, 246 gray levels) 
is presented on a black back- 
ground in the center of the win. 
dow, The simulated mammo- 
graphic structure may be in orte 
of the quadrants in the image. 
The button on the left containing 
the box icon is used to indicate 
the absence of the structure. 

reminded of the appearance of what they are searching for. 
Similarly, observers can learn when they are repeatedly 
incorrectly selecting features present  in the repeating back- 
grounds. Secondly, feedback provides motivation for the 
observers; without it they become uncomfortable about  
their performance or work at the task with less effort. Any 
training effects that might arise from continual feedback 
should occur in the practice sessions before the experiment.  

An arrow cursor was used in the experiment  window. 
Whereas  a nondirectional, symmetric cursor probably should 
have been used, the zone around the borders of  the 
quadrants  in which masses could not be located should have 
prevented unintended responses arising from minor errors 
in mouse positioning. Fur thermore ,  any misconceptions 
related to the directional mouse  should have been elimi- 
nated through extensive training with feedback. 

Design 
For each trial, the background image was chosen ran- 

domly from among a list of 25. In those trials in which the 
structure was in fact present,  the structure was embedded  
randomly in one of the four quadrants .  To provide realistic 
variability in mass locations, the mass  was also positioned 
within the chosen quadrant  in a random manner .  However, 
to eliminate ambiguity in the selection of quadrants ,  the 
structure was positioned in such a way that it was never 
directly adjacent to the quadrant  borders. For each trial, the 
contrast of the structure was chosen randomly from among 
a list of predetermined contrast values chosen for the 
experiment. 

Deterrnination of a viewing duration. Using the described 
protocol, an experiment  was eonducted to determine the 
most appropriate viewing duration for this methodology. 
Nine contrast values ranging from 15 to 125 gray levels 
above background were chosen in a preliminary experiment  
as the simulated mass  contrast values for use in this 
experiment.  Mass-detection performance for two radiolo- 
gists and four nonradiologists was measured  in separate  
experiments using display durations of 0.5, 2.0, and 5.0 

seconds. Four C L A H E  contrast enhancement  conditions 
were applied throughout  the experiments  in addition to 
unenhanced  images. Later, an additional experiment  using 
7 radiotogists and 16 nonradiologists was conducted with an 
unlimited viewing duration. An average of 10 observations 
per contrast per enhancement  condition were collected for 
each observer. 

Determmation of the observer population. With the same 
protocol, an experiment  was conducted to measure  the 
performance of two observer populations as the C L A H E  
enhancement  parameters  were varied. The  nine mass- 
contrast vatues chosen for the viewing-duration experiment  
were used here as well. Mass-detection performance for 7 
radiologists and 16 nonradiotogists was measured  in a single 
experiment  using four C E A H E  cont ras t -enhancement  con- 
ditions (as well as unenhanced)  and an unlimited viewing 
duration. Again, ah average of 10 observations were col- 
lected from each observer for each contrast in each enhance-  
ment  condition. 

CLAHE investigation. For the experiments  determining 
the optimal parameter  values for CLAHE,  five contrast 
values were determined in a preliminary study, and are the 
values at the threshold contrast (60% correct) and 0.5 and 
1.0 s tandard deviations in ei ther direction, extracted from a 
fitted curve of the psychometric function for several observ- 
ers (see Analysis for an explication of the relevant statistical 
methods  in making this determination).  

Five values of  each of C L A H E ' s  two parameters  were 
studied. The  parameter  values were chosen to have logarith- 
mic spacing and to span the entire range of possibte values. 
A single block in the experiment  consisted of 125 trials: each 
of the structure contrast  levels was presented at each of the 
25 enhancement  parameter  combinations. Fur thermore ,  
the structure was presented once in each of the tire 
positions (four quadrants  and absent)  in each of the 25 
background images. Each new block contained a newly 
randomized order for background image presentation,  struc- 
ture contrast and placement,  and enhancement  application. 
A complete experiment  consists of over 20 blocks of data. 
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Fig 4. Psychometric function for four subjects depicting 
detection performance (percent correct) as a function of five 
structure contrasts. The data reflect detection performance for 
a simulated mass for a single CLAHE parameter combination. 
Structure contrasts are gray levels of the sŸ structure 
above background before addition with a mammographic 
image. 

Using this design, a preliminary experiment was con- 
ducted measuring simulated mass-detection performance 
for three nonradiologists f o r a  2-second viewing duration. 
For this experiment, only tire b[ocks were run for most 
observers, giving tire observations per contrast per  enhance- 
ment. 

Analysis 
This design systematically varies structure contrast to 

derive a detection threshold, a measure of performance, for 
each enhancement  condition. As we will show, the detection 
threshold is defined as that structure contrast correspond- 
ing to a chosen performance (percent correct) level. Com- 
parisons of different processing parameters can be made by 
assessing the shifts in detection thresholds tbat they cause. 
An alternative to tbis approach might be to study detection 
performance for a single, predetermined contrast level. 
Whereas this would require fewer trials because only a 
single contrast was examined, ir woutd be very difficult to 
determine, given the variability in both background image 
content and human performance, what single contrast to 
u s e .  

From an experiment with a single observer, data were 
obtained in the form of a psychometric function relating 
detection performance (percent correct) as structure con- 
trast was varied along a number of levels. Figure 4 shows 
example data collected from four observers, for a single 
enhancement parameter  combination, for the experiment in 
which they were asked to detect simulated masses embed- 
ded in images enhanced with CLAHE. CtassicaI sensory 
discrimination theory would predict that, because contrast 
values were varied from virtual[y imperceptible to highly 
apparent,  a typical S-shaped curve would be expected to 
describe the data. 4 Specifically, detection performance for 
structure contrasts well-below threshold asymptotically ap- 
proaches 20%: in a 5-AFC paradigm, observers will, by 
chance alone, correctly detect the structure one out of every 

five trials on the average. Likewise, performance for easily- 
detected eontrasts asymptotically approaches 100%. The 
intermediate values, along which the the0retical detection 
threshold lies, represent the monotonically increasing tran- 
sition between the two extremes. Data not resembling such 
a form indicate the presence of additional, uncontrolled 
factors in the experiment: the observer's task may not be 
well-defined or he or she may be adopting different or 
inconsistent strategies for detecting stimuli. Using the 
described method, with sufficient data we indeed consis- 
tently obtained psychometric functions possessing this stan- 
dard, expected shape. 

The data from each observer was described using probit 
analysis, 5 which models a proportion outcome (percent 
correct divided by 100) a s a  function of a continuous 
predictor (in this case, structure contrast). In probit analy- 
sis, one assumes that the function follows the cumulative 
Gaussian (normal) distribution, and the analysis yields 
estimates for the two parameters (location and shape), 
which completely determine a function that characterizes 
the data. The location parameter (labeled ix in subsequent 
discussion) indicates the inflection point of the sigmoidal 
probit curve and is effectively the detection threshold. The 
location p a r m e t e r  is in contrast units; as the value for this 
parameter increases, performance accuracy decreases. Simi- 
larly, large values for the probit shape parameter (~) 
indicate a small (shallow) slope of the function. Fig 5 shows 
the probit curves for each subject's data from Fig 4. 

Extensive exploratory analysis has led to a statistical 
model with the following characteristics. First, log contrast 
is the appropriate metric for the dependent variable, 
because the log data is linear in probit space, allowing the 
most accurate fit of the original data. Furthermore, log units 
are often the most appropriate metric for psychophysical 
observations. Secondly, whereas a distinct probit curve 
location parameter was estimated for each subject in each of 
the enhancement  conditions, a single va[ue (for all enhance- 
ments) for the shape parameter was estimated for each 
subject. A stable numerical solution was not possible in the 
statistical analysis of the data when attempting to fit a 
distinct crfor each enhancement and subject. 
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Fig 4. (11), radiologists; (0) ,  nonradiologists. 
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This strategy has lead to the definition of the following 
response variable, a standardized inverse location measure  
we have labeled umstd. 

umstdi, j = (2 - i.s 

where i is an index for the subject, a n d j  is an index for the 
enhancement  condition, la is the probit curve location 
parameter,  and ~ is the probit curve shape parameter.  
Subtraction of ix from 2 inverts the function, enabling the 
intuitive representat ion of increased detection accuracy for 
larger values of umstd, tx is in units of log contrast and was 
a)ways contained within 0 and 2, thus making 2 an appropri- 
ate value for inverting the function. The probit curve 
location values are standardized by the est imate of the 
subject 's shape parameter ,  ~. This standardization was 
necessary because each subject possessed a different (r and 
the amount  by which detection accuracy increases with an 
increase in structure contrast may be different for each 
subject. The purpose of these experiments  is to measure  the 
effect of contrast enhancement ,  and contrast enhancement  
will undoubtedly cause a shift in some direction in the 
structure-contrast threshold. Because of the different slopes, 
this shift from contrast enhancement  may result in different 
accuracies for different subjects. Standardizing the probit 
curve location values by the subject 's probit curve slope 
allows a common scale for the comparison of detection 
accuracy among the different contrast enhancement  condi- 
tions. Thus, the umstd variable serves a s a  measure  of 
detection accuracy. 

Variance est imates and confidence intervals can easily be 
computed with the designs used here. All but one of the 
study designs involved at least ten subjects. Fur thermore,  
considering the set of urnstd scores from each enhancement  
separately simplifies the problem to the traditional one for 
independent  observations. The combination of adequate 
sample size and independence imply that the usual formula 
for independent  observations applies, and allows computing 
sturdy estimates of the variance ofumstd separately for each 
enhancement .  Heterogeneity of variance oŸ occurs within 
subjects in behavioral studies. This motivated our choice of 
statistical tests and also makes  trying to define and compute  
a within-subject variance problematic. Hence,  in the results, 
we report only the between-subject s tandard deviations. 

Repeated-measures  analysis of variance (ANOVA)  on 
the umstd scores was chosen to test differences between 
enhancements  and populations. Enhancemen t  constituted a 
within-subject factor (because each subject experienced all 
enhancements) .  Observer population constituted a between- 
subject factor (because each subject can be a member  of 
only one population, radiologists or nonradiologists). Fi- 
nally, viewing duration constituted a within-subject factor. 
(See Maxwell and Delaney 6 or Kirk ~ for thorough t rea tment  
of repeated measures  ANOVA.)  Such an analysis, a para- 
metric analysis of continuous data, can be expected to be 
much more sensitive than any other approach for the same 
design, as it resuhs  in higher statistical power, and thus 
requires fewer subjects. 

A N O V A  provides, in addition to main effects (indica- 
tions of the effect of manipulat ion of single variables), 
appropriate interactions. An interaction indicates the ex- 
tent to which the relationship between the dependent  

Table 1. Mean Umstd Scores for Radiologists and 
Nonradiologists for Three Different Viewing Durations 

0.5s 2.0s 5.0s 

Radiologists 0.462 (0.274) 0.695 (0.315) 0.791 (0.182) 
Nonradiologists 0.707 (0.282) 0.841 (0.247) 0.892 (0.238) 

Scores (and standard deviations combined across four CLAHE 
enhancement conditions, as well as unenhanced ima9es) for 
three different viewin 9 durations. 

variable and one independent  variable are dependent  upon 
a second (or more) independent  variables. In at tempting to 
determine whether  nonradiologists are effective predictors 
of the performance of radiologists, it is essential to show 
that there is no interaction of the performance of the two 
populations as the enhancement  is varied. If the results for 
the two observer populat ions exhibit the same relative 
distribution, where nonradiologists and radiologists are 
performing optimally at the same enhancement  parameters  
and the results for the two populat ions vary similarly as the 
enhancement  parameters  are varied, then the two popula- 
tions do nol inleract. 

If we wish to show the equivalence of  these performance 
distributions, we are burdened with showing adequate 
power, the probability of correctly detecting the alternative 
that there are in fact differences between the populations. 8 
Consider  plotting the average urnstd value for each popula- 
tion separately, a s a  function of enhancement .  Power 
calculations were performed assuming an X-shaped interac- 
tion (a pure interaction between subject type and enhance-  
ment) ,  with a maximum umstd difference (at the endpoints  
of the X) corresponding to a 5% difference in proportion, 
correct between subject populations. This provides a worst- 
case scenario in that as one population improves perfor- 
mance,  the other  deteriorates. The data were analyzed with 
repeated-measures  A N O V A  techniques.  Hence,  the melh-  
ods described by Muller et al, t~ were used. Those methods  
allow computing power for exactly the repeated-measures  
hypothesis of interest. Readers  desiring a technical tutorial 
of the methods,  o r a  copy of free software which implements  
them, should consult the reference. 

Whereas  we feel the described statistical approach is the 
most  sensitive single analysis, ir may be important  to 
consider the extent to which a parameter  combination 
allows Ÿ selections (a response in one of the 
quadrants  when the structure was not present).  Additional 
discrimination amongst  enhancements  can be obtained with 
R O C  analysis, the s tandard approach for such data. 9 In 
addition, the reader  should recognize that other  metrics 
may be preferred to the umstd variable in some settings. For 
example, p, + e (from the probit curve) provides the 

Table 2. Mean Umstd Scores for Radiologists and 
Nonradiologists for an Unlimited Viewing Duration 

Unlimited 

Radiologists 0.857 (0.234) 
Nonradiologists 0.747 (0.256) 

Scores (and standard deviations combined across four CLAHE 
enhancement conditions, as well as unenhanced images) for an 
unlimited viewing duration. 
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Fig 6. Mean urnstd scores for radiologists and nonradiolo- 
gists at three viewing durations and unlimited viewing dura- 
tion. (11}, radiologists; (O), nonradiologists. 

stimulus value corresponding to ~87% correct in a five- 
alternative task. This, or some other higher percentile, may 
be preferred when interest lies in assessing performance at 
higher levels of detection, rather than in characterizing 
threshold performance. 

A difficulty with the investigation of any enhancement  
method lies in systematically studying the large number of 
enhancements that may arise from the possible combina- 
tions of the method's  parameter settings. A standard 
statistical solution involves study designs such as fractional 
factorials. 7 Such a design sacrifices the abi]ity to test the 
highest order  interactions among the parameters to reduce 
the number of treatment conditions that must be examined. 
In addition, assigning one (or more) treatment parameters 
as between subject factors, can dramatically ease the burden 
on each subject and simultaneously enhance the statistical 
sensitivity of the study. The range of possible enhancement  
methods as well as the alternative designs for evaluating 
each of them precludes detailed recommendations in any 
compact form. 

RESULTS 

Determination oŸ Viewing Duration 

Repeated-measures ANOVA with viewing 
duration as the only within-subject factor was 
conducted on the umstd scores combined across 
five enhancement  conditions for radiologist and 
nonradiologist observers. As mentioned in the 
Design section, two display duration experi- 
ments were conducted: data from the experi- 

ment examining display durations of 0.5, 2.0, 
and 5.0 seconds are presented in Table 1, 
whereas data from the separate experiment 
examining the unlimited display duration are 
presented in Table 2. The data are depicted 
graphically in Figure 6. 

Notably, mean urnstd scores for radiologists 
are poorer than those for nonradiologists, though 
not significantly so (F = 1.02, P = .369, at the 
0.5-second viewing duration where the differ- 
ence is greatest). With increased viewing time 
(from 0.5 to 5.0 seconds), scores for both popu- 
lations improved, without interaction (F = 0.82, 
G-G P = .4441). The Greenhouse-Geisser  epsi- 
lon (G-G P), a more conservative probability 
estimate applied in the analysis where appropri- 
ate, is a measure of the probability of rejecting 
the null hypothesis of equal means that incorpo- 
rates a correction for unequal variances be- 
tween the treatment conditions in a within- 
subjects design. At the unlimited viewing 
duration, there was also no significant differ- 
ence between the mean for the two populations 
(F = 0.94, P = .343). Based on the trend noted 
at the first three brief viewing durations, as well 
as the comments of the radiologist participants 
regarding their standard viewing practices, we 
have decided upon ah unlimited viewing dura- 
tion for future experiments. 

Determination of the Observer Population 

Repeated-measures ANOVA with enhance- 
ment as the within-subject factor was conducted 
on the umstd scores for radiologists and nonra- 
diologists. The data, in Table 3 and Fig 7, show 
mass-detection thresholds for the two observer 
populations at five CLAHE enhancement condi- 
tions (including unenhanced) with an un[imited 
viewing duration. Whereas the means for radi- 
ologists are greater than those for nonradiolo- 
gists in four of the five enhancement conditions, 
pairwise comparisons indicated that there were 
no significant differences between the two popu- 
lations in any of the enhancement  conditions 
(see Table 4). The data indicate a similar 

Table 3. Mean Umstd Scores for Radiologists and Nonradiologists for Four CIAHE Enhancement Conditions 

Unenhanced CLAHE A CLAHE B CLAHE C CLAHE D 

Radiolo9ists 0.881 (0.46) 0.856 (0.41) 0.964 (0,30) 0,840 (0.32) 0,743 (0,42) 
Nonradiologists 0.942 (0.34) 0.618 (0.27) 0.869 (0.40) 0.703 (0.38) 0.604 (0.26) 

Standard deviations are shown in parentheses. 
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Fig 7. Mean umstd scores for 
radiologists and nonradiologists 
for four CLAHE parameter combi- 
nations and unenhanced images. 
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variation in the performance of the two popula- 
tions as the enhancement condition is varied, 
and statistical calculations for the data indicate 
there is no significant interaction between the 
two populations (F = 0.77, G-G P = .5248). 
Power calculations, computed as described in 
the Analysis section, indicated a power of 83% 
to detect a subject population by enhancement  
interaction. 

Training Effects 
The data from the experiment in the previous 

section was analyzed in two sequential blocks to 
test if either subject population exhibited differ- 
ential improvement in the enhancement  condi- 
tions a s a  function of experiment block. For 
instance, one hypothetical scenario is that radi- 
ologists, less familiar with enhanced images 
than standard images, would show ah improve- 
ment in detection performance over the course 
of the experiment for enhanced images. The 
data, represented as mean difference in umstd 
scores from block one to block two, are shown in 
Table 5. These almost uniformly positive differ- 
ence scores indicate an improvement for both 

groups for almost all enhancement  conditions. 
Figure 8 shows the mean umstd scores for the 
two observer types for the first and second 
experiment blocks, and shows again the in- 
crease in scores. Our analysis indicates that 
improvements in scores were not statistically 
significant. There was no main effect of experi- 
ment block; that is, there was no overall differ- 
ence between the scores from block one and 
those from block two (F = 1.2, P = .286). Fur- 
thermore,  we found no three-way interaction 
among experiment block, enhancement  condi- 
tion, and observer  type (F = 1.36, G-G 
P = .2594), suggesting that the two observer 
populations were not exhibiting different kinds 
of training effects for different enhancement  
conditions. We should point out that whereas 
we have quite a few observers for these experi- 
ments, we actually had relatively few observa- 
tions per condition for each observer. The 
means clearly indicate improvement for both 
groups during the experiment. With more obser- 
vations, there might have been significant train- 
ing effects. 

Table 4. Pairwise Compa¡ of Mean Umstd Scores for Radiologists v Nonradiologists 

Unenhanced CLAHE A CLAHE B CLAHE C CLAHE D 

Radiologists - Nonradiologists F = 0.13, P = .72 F = 2.73, P = .11 F = 031, P = .58 F = 0.69, P = .41 F = 0.95, P = .34 

Scores are F and P values for four CLAHE enhancement conditions as well as unenhanced images. 
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Table 5. Mean Difference in Umstd Scores for Radiologists and Nonradiologists 

Unenhanced CLAHE A CLAHE B CLAHE C CLAHE D 

Radiologists 0.08 (0.34) 0.36 (0.55) 0.40 (0.94) -0 .03  (0.48) 0.19 (0.32) 
Nonradiologists 0.05 (0.78) 0.02 (0.60) 0.15 (0.70) 0.27 (0.56) 0.25 (0.67) 

Values are the difference (block 2 - block 1) in umstd scores for four CLAHE enhancement condit ions and unenhanced images. 
Standard deviations are shown in parentheses. 

CLAHE Investigation 

In an example application of this methodol- 
ogy, mean umstd scores were calculated for 
three nonradiologists across an entire grid of 
CLAHE parameter combinations. Whereas the 
data were collected for a viewing duration we 
have since eliminated, the results provide an 
indication of the methods of analysis and repre- 
sentation of data obtained with the methodol- 
ogy. An attractive mechanism for visualizing the 
detection performance data, at least for the 
instance of a two parameter algorithm like 
CLAHE, is a three-dimensional plot. Each of 
the points in the plot represents the detection 
performance corresponding to the parameter 
settings on the axes. Thus, the highest regions 
on the performance surface are, in theory, the 
parameter combinations producing superior de- 
tection performance (see Fig 9). 

DISCUSSlON 

The ultimate determination of the efficacy of 
a particular image-processing algorithm is best 
made after the implementation of a clinical 
study using radiologists conducting real detec- 
tion tasks. Because of practical constraints as 
well as observer biases, the parameter values for 
each of the enhancement algorithms investi- 
gated in such a study must be determined 
beforehand. We have proposed here a method 

for making that preliminary determination for 
mammographic images that uses a clinically 
relevant detection task, and eliminates the sub- 
jective judgments characteristic of other prefer- 
ence or ranking methods. 

We investigated an appropriate viewing dura- 
tion and observer population for the proposed 
methodology. We concluded that an unlimited 
viewing duration ought to be used. We also 
showed that nonradiologists were not signifi- 
cantly worse at the mass-detection task, and 
showed good power against any interaction 
among the two observer populations as the 
enhancement condition was varied. We believe 
that we have shown conclusively that nonradiolo- 
gists may be used in determining the optimal 
parameter settings for image enhancement 
methods aimed at optimizing detection of struc- 
tures in the image. For interpretation tasks that 
might benefit from the application of image 
processing, nonradiologists might not be useful 
for optimizing the parameters for using those 
methods. Furthermore, we do not suggest that 
nonradiologists could be used in the interpreta- 
tion of real mammograms. Rather, our results 
suggest that preliminary parameter optimiza- 
tion experiments can be performed using nonra- 
diologists. It is our intention to fully investigate 
with radiologist observers the efficacy of the 
algorithms computed with parameter settings 
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Mass detection performance (mean umstd scores) as 
function of combinations of the two CLAHE contrast enhance- 
ment parameters, contrast limitation and regions, 

determined by these initial experiments. Given 
the number of potential parameter combina- 
tions that may exist for a multiparameter 
method, and the cost, in time and money, of 
using radiotogists for this work, this initial 
exploration of parameter settings with nonradi- 
ologists may be particularly efficient. 

Our measurement of potential training ef- 
fects in the experiments highlights an important 
principle for any observer methodology. Conclu- 
sions drawn from the evaluation of proposed, 
novel image enhancements must be made with 
the confidence that the observers were su0fi- 
ciently practiced with the new techniques so 
that substantive improvements did not occur in 
their performance during the experiment. It is 

only with extensive prior training that this phe- 
nomenon may be prevented. 

We advocate the proposed methodology asa 
practical, thorough approach to image quatity 
evaluation, and continue to apply it in our 
investigation of a number of enhancement algo- 
rithms of potential el¡ in mammography. 
This method does not require the acquisition of 
ditficult cases, and subsequent verification of 
truth that image evatuation methods using real 
clinical cases entail. Realistic simulation of 
anomalous structures allows random, known 
placement of structures in an otherwise normal 
background. Similarly, to the extent that abnor- 
mal structures that must be detected in other 
regions of the body can be sufficiently simu- 
late& this methodology may be applicable to 
other proposed image-processing algorithms of 
potential benefit in other imaging tasks. 

The image enhancement methods developed 
recently, as well as those that will most certainly 
be developed in the future, offer great promise 
for enhancing digital image display and interpre- 
tation. The experimental paradigm described in 
this paper enables experimental determination 
of the parameter settings for these enhance- 
ment methods to ensure optimal performance 
in attempting to measure their clinical utility. 
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