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An initial evaluation of Haar wavelets is presented in
this study for the compression of mammographic
images. Fifteen mammograms with 105 u.m/ pixel reso­
lution and varying dynamic range (10 and 12 bits per
pixel) containing clustered microcalcifications were
compressed with two different rates. The quality and
content of the compressed reconstructed images was
evaluated by an expert mammographer. The visualiza­
tion of the cluster was on the average good but
degraded with increasing compression because of the
discontinuities introduced by these types of wavelets
as the compression rate increases. However, the arti­
facts in the decoded images were seen as totally
artificial and were not misinterpreted by the radiolo­
gist as calcifications. The classification of the parenchy­
mal densities did not change significantly but the
morphology of the calcifications was increasingly dis­
torted as the compression rate increased leading to
lower estimates of the suspiciousness of the cluster
and higher uncertainties in the diagnosis. The uncom­
pressed and two sets of compressed images were also
processed by a wavelet method to extract the calcifica­
tions. Despite the fact that the segmentation algo­
rithm generated several false-positive signals in highly
compressed images, all true clusters were successfully
segmented indicating that the compression process
preserved the features of interest. Our preliminary
results indicated that wavelets could be used to achieve
high compression rates of mammographic images
without losing small details such as microcalcification
clusters as well as detect the calcifications from either
the uncompressed or compressed reconstructed data.
Further research and application of multiresolution
analysis to digital mammography is continuing.
Copyright 0 1994 by W.B. Saunders Company
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D IGITAL MAMMOGRAPHY involves ei­
ther the digitization of screen-film mam­

mograms or the direct digital acquisition of
x-rays. In both cases, the requirements for high
resolution images with high dynamic range lead
to large data sets, on the average about 50
Mpixels with dynamic ranges of 12 bits per
pixel. 1.2 In addition, screening digital mammog­
raphy implies real time availability to the radi­
ologist of a series of such images per patient for
comparative study and accurate diagnosis.' Such
large image database challenges the existing
technology for data storage, transmission, and
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display. Data compression methods could facili­
tate these processes but they should also satisfy
the requirements for highly accurate reconstruc­
tion of mammograms.

Several lossless and lossy compression meth­
ods have been investigated for medical imaging
applications.t> Lossless compression methods
applied to mammography include tree-based
codes which represent a large class of variable­
length encoding schemes and arithmetic codes."
Lossless methods have the advantage that they
can be applied anywhere because such com­
pressed images are reconstructed without error.
Their disadvantage is the small compression
rates, on the order of 3:1. In contrast, lossy
techniques can achieve very high compression
ratios at the expense of errors in the recon­
structed images. A new class of lossy compres­
sion algorithms is currently under development
that could offer data with no visible artifacts.I-"
Receiver operating characteristic (ROC) analy­
sis on lossy compression showed that it is
possible to use lossy techniques in medical
imaging, provided that the diagnostic power is
not lost or diminished.v'? Such methods are
referred to as "visually lossless" and hold prom­
ise for effective mammogram compression. The
properties of the human visual system are such
that some losses can be tolerated without affect­
ing the visual evaluation of an image which,
despite the losses, appears identical to the
original. Furthermore, even visually lossy im-
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ages may be acceptable, when artifacts due to
lossy compression can be recognized as entirely
artificial and do not disturb the discriminating
analysis followed by the radiologist to reach a
diagnosis. Finally, it should be pointed out that
the use of lossy compression methods depends
on the application, the image, and the aims of a
particular project.5

One of the most promising lossy compression
approaches uses wavelets.'! Wavelets have been
already used for mammogram segmentation.r-P
enhancement.P and compression." The present
study focuses on the use of Haar wavelets for
the compression of mammographic images con­
taining clustered calcifications. Uncompressed
and compressed reconstructed data were also
processed with a segmentation algorithm that
used a wavelet transform. A radiologist expert
in mammography evaluated the quality of the
compressed images and the usefulness of the
segmented data based on a questionnaire de­
signed to provide a qualitative description of the
original and compressed images. An extensive
ROC clinical evaluation is beyond the scope of
this research that aims primarily at preclinical
evaluation and algorithm optimization. The pur­
pose of the study is three-fold: (1) to apply
different levels of compression to digital mam­
mograms and determine the limits of acceptable
losses, which will serve as a first criterion to the
selection of an optimum wavelet compression
approach, (2) to evaluate the quality of the lossy
compressed images and the effect of the losses
in the radiologist's diagnosis, and (3) to show
the feasibility of extracting the calcifications
from the uncompressed and compressed data
with a wavelet-based segmentation algorithm, a
process that could provide an additional crite­
rion to the design of an optimum compression
method for digital mammography.

MATERIALS AND METHODS

Mammograms

Fifteen screen-film mammograms were con­
sidered as a first test of the compression algo­
rithm. They all contained one biopsy-proven
malignant cluster of calcifications superim­
posed on parenchymal tissues of varying den­
sity. All mammograms were digitized at a reso­
lution of 105 urn/pixel with a DuPont NDT
Scan II digitizer (Delaware, VA). Seven images
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had a dynamic range of 10 bits per pixel (1,024
gray levels) and eight had a dynamic range of 12
bits per pixel (4,096 gray levels). The optical
density range selected for the digitization was
different for each mammogram and it was
determined from the optical density of the
brightest spot on the films. This allowed the
maximization of the intensity differences be­
tween the various breast features and thus
maximum separation in pixel values between
the microcalcifications and the surrounding tis­
sues. Sections of the images (512 x 512 pixels)
containing the calcification cluster were used
for compression and segmentation. The sizes of
the original images were 327,680 and 393,216
bytes for the lO-bit and 12-bit files, respectively.

Image Compression

A mathematical theory that analyzes the
efficiency of wavelet-based image compression
schemes is described in detail elsewhere.'! The
method used in this study for the compression
of mammographic images is identical to that
used to report the results of Fig 14 in DeVore!'
and only a brief description of the method will
be presented here.

A wavelet-based compression algorithm is
constituted of three steps: 11 (1) A wavelet family
is selected that will be used to decompose the
image. Each wavelet family has different smooth­
ness characteristics and approximation proper­
ties; in this article, the Haar wavelets are chosen
based on our previous experience. I! (2) A quan­
tization strategy must be selected. Each strategy
is equivalent to a metric with which the differ­
ence between the original and reconstructed
images will be measured. Two popular choices
of metric are the U (mean-square error) and U
(mean-absolute error) metrics. If the pixels of
the original image/are denoted byPi,j = Uhh)
and 1 s ii.). s 512, and the pixels of the
reconstructed image Jare denoted by Pi' then
the mean-square error is defined by

II/- J112: = (~:t !Pi - Pi 1
2)~

and the mean-absolute error is defined by

_ 1 ~
II/- / III: = N £.J IPi - PiI,

J

where N is the number of pixels in the image; in
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Table 1. Parameters Used for Two Compression Runs of 15

Mammograms

with a mean-square error of 64 in a 12-bit image
(or of 4 in an 8-bit image). Based on this reason­
ing, 15 mammograms were compressed twice
with the parameters summarized in Table 1.

The compression algorithm was implemented
in FORTRAN and C-language and run on a
Sun Microsystems (Mountain View, CA)
SPARCstation 2. The time of compression was
10 seconds per image.

Image Segmentation

A wavelet-based segmentation method has
been previously applied to uncompressed digi­
tal mammograms for the extraction of calcifica­
tion clusters.l- Those results were very promis­
ing with 100% sensitivity and only .1 false­
positive clusters per image. The performance of
this algorithm on the current uncompressed and
compressed data could, therefore, be a first
indication of the effect of wavelet compression
on the design of computer assisted diagnosis
methods or compensate for the losses allowing
higher compression rates. Based on this hypoth­
esis, the images of this study were processed as
follows: (1) They were enhanced with a tree­
structured nonlinear filter. As mentioned in
detail elsewhere, this filter consists of a series of
central weighted median filters which are ap­
plied to the image in three steps. This process
allows effective suppression of the image noise
without removing image detail.t-!" (2) The en­
hanced image was decomposed using a two­
channel wavelet transform into four indepen­
dent subimages which contain different types of
frequencies.w'v" The first subimage contains
the low frequencies of the image, the second
contains the vertical high and horizontal low
frequencies, the third contains the vertical low
and horizontal high frequencies, and the fourth
contains the high frequencies in both directions.
(3) A wavelet reconstruction process was per­
formed using the last three subimages resulting
in one image that contains features correspond-

q, maximum quantization interval.

Set No 2

256-1 O-bit images

1024-12-bit images

p=2

Set No 1

128-10-bit images

512-12-bit images

p=2

q

Parameter

Space Lp

this study N = 512 x 512 = 262,144. The
quantization strategy determines the relative
importance of contrast and spatial frequency in
choosing which features of the image can be
removed while causing minimal visual degrada­
tion. It was previously reported'! that for 512 x
512 natural images viewed at a standard viewing
distance of four times the width of the image,
the contrast-frequency tradeoff implied by the
LJ error metric more closely matched the char­
acteristics of the human visual system than the
contrast-frequency tradeoff implied by the choice
of the U error metric. Mammograms are not
viewed by radiologists solely at arm's length,
however, and it was observed with earlier 8-bit
digitized mammograms that the U metric bal­
anced the degradation of the edges and shapes
of microcalcification clusters with the degrada­
tion of the structure of architectural distortions
in the underlying tissues. The LJ quantization
strategy at a given level of compression tended
to preserve the structure of architectural distor­
tions better than the U strategy, at the expense
of smoothing away evidence of microcalcifica­
tions. Therefore, for our first controlled study,
we chose to use only the U quantization strat­
egy. The results of this work will serve as
guidelines for our future investigations of other
quantization strategies.

(3) After choosing the wavelets and quantiza­
tion strategy, one must select a parameter called
the maximum quantization interval, q, which
roughly determines the local error. The greater
the q is, the greater the compression, but also
the greater the error. When dealing with images
with different dynamic ranges (in this study, for
example, seven of the images have 1,024 grey
levels and eight have 4,096 grey levels), it is
useful to consider the normalization of the
intensity range to a minimum of 0 and a maxi­
mum of 1. This can be done by dividing all pixel
values by the maximum grey scale value 2K ,

where K = 10 or 12 in this study. Then, the
parameter that best estimates the local visual
quality of the image is q12K . Thus, q = 512 for
our 12-bit images leads to comparable compres­
sion ratios and local image quality as q = 128 for
our lO-bit images. When comparing mean­
square errors, it is again useful to divide by the
maximum grey scale. Thus, a mean-square error
of 16 in a lO-bit image is roughly comparable
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ing to calcifications. Details of this algorithm
are described elsewhere 12,15,16 but it should be
mentioned that the proposed wavelet segmenta­
tion could be further improved and optimized
for compressed images.

Once the parameters of the segmentation
algorithm are optimized for the uncompressed
mammograms, they are kept constant for both
uncompressed and compressed images. The
software was written in C-language and run on a
Sun Microsystems (Mountain View, CA)
SPARCstat ion 2. The time of segmentation was
about 5 minutes per image.

Evaluation Protocol

A questionnaire was formed for the qualita­
tive visual analysis of the original, compressed,
reconstructed, and segmented versions of the 15
cases. It included nine questions shown in Table
2. Each question was rated on a scale of 1 to 5.
There were 7 images to be evaluated per case,
namely the film, the digitized image, the recon­
structed image from the first compression, the
reconstructed image from the second compres­
sion, and three segmentation results. A radiolo­
gist expert in mammography was asked to read
all 105 images and complete one questionnaire
for each one although some of the questions
were not applicable to all of them. The objective
of this evaluation was to obtain a standard
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description of the visual characteristics of the
quality of the digitized and compressed recon­
structed images, to determine the degree of
assistance of the segmentation algorithm to the
recognition of the calcification clusters, and to
have a first estimate of the acceptable limits for
the lossy compression of mammograms.

Digital images were displayed on a 19/1 color
Sun monitor with 1,152 x 900 pixels using
SunVision 1.2 software; no processing of the
displayed images was permitted. It should be
noted that current technology limits the display
to 8 bits per pixel or 256 grey levels. With
SunVision 1.2, the lowest values in the lO-bit or
12-bit images are scaled to 0, the highest values
to 255, and the intervening values are scaled
proportionately between 0 and 255; lower and
higher values are clamped to 0 and 255, respec­
tively.

RESULTS AND DISCUSSION

Figures 1 and 2 present sections of digitized
mammograms (105 ILm, 12 bits per pixel) before
and after compression. The mammograms con­
tain one cluster of biopsy-proven, malignant
calcifications, the location of which is deter­
mined by an expert mammographer and is
indicated by an arrow. There is a variation in
the subtlety of the calcifications caused mainly
by the density of the surrounding or superim-

Table 2, Questionnaire Used for Qualitative Evaluation of Compressed Images and Segmentation Data

Characteristic Rating Scale

1. Visualization of calcification cluster 2 3 4 5

Poor Excellent

2. Number of calcifications 1-5 6-10 11-20 21-30 >30
3. Parenchymal density classification 1 2 3 4 5

Low High

4. Degree of suspicion 2 3 4 5

Definitely Undefined Definitely

Normal Cancer

5. Distortion of calcifications' morphology 2 3 4 5

Extreme None

6. Distortion of parenchyma 2 3 4 5

Extreme None
7. Degree of losses (overall) 2 3 4 5

Extreme None
8. Degree of confusion secondary to false

positive artifacts 2 3 4 5
Extreme None

9. Degree of assistance of segmentation 2 3 4 5

process Extreme None

One answer sheet was used for each image, namely the original film, the digitized mammogram, the compression number 1, and the

compression number 2, although some of the questions were not applicable to all images.
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Fig 1. tA} Section of digitized mammogram (105μm，12bits

per pixe l) with a calcification cluster of average subtlety
indicated by arrow. (B) Wavelet compressed and recon­
structed image with maximum quantization interval q == 512;
mean-square error, 37.14; and compression ratio 53:1. IC)
Wavelet compressed and 凹constructedimage with q == 1,024;

mean-square error, 48.99; and compression ratio 123:1.
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Fig 2. (AISection of digitized mammogram (105μm，12bits

per pixel) with a more subtle calcification cluster indicated by
arrow. (B) Wavelet compressed and reconstructed image with
maximum quantization interval q == 512; mean-square err酬，

54.61; and compression ratio 22: 1. IC) Wavelet compressed
and reconstructed image with q == 1,024; mean-square err肘，

74.51; and compression ratio 55:1
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posed parenchymal tissues. The mammogram
of Fig 1A has a parenchymal density of about
50% and the mammogram of Fig 2A has a
density of about 75% of the total breast area.
The compressed reconstructed images with a
maximum quantization interval of 512 are shown
in Figs 1B and 2B. Figures 1C and 2C show the
corresponding compressed reconstructed im­
ages using a maximum quantization interval of
1,024. Because of the differences in the paren­
chymal density and the noise content, different
compression ratios and different mean-square
errors were obtained for the same q value.

The results of the compression can be seen
better in Figs 3 and 4 where horizontal cross­
sections through the calcification cluster of the
images in Figs 1 and 2, respectively, are plotted.
The continuity and smoothness of the pixels in
the original images is increasingly lost as the
maximum quantization interval and thus the
compression rate increases. The higher compres­
sion ratio observed for the first mammogram is
due to its lower parenchymal density which also
accounts for the fact that the calcifications are
better preserved in this case even at the higher

compression (q = 1,024). On the other hand,
the data are smoother in the second mammo­
gram where smaller compression rates are ob­
tained. In general, the compression effects are
different for mammograms of low and high
parenchymal densities. Furthermore, mammo­
grams digitized at higher dynamic range (more
gray scales) allow higher compressions with less
information loss.

Table 3 lists the mean-square errors and the
compression ratios achieved in the two compres­
sion sets. The compression ratios were deter­
mined by the number of bytes of the original
files divided by the corresponding compressed
sizes. It is best to interpret the mean-square
errors by dividing by the number of gray scales
in each image. Therefore, for the first compres­
sion results of Fig 1B, the mean-square error is
37.14/4,096 or 9% whereas for the second
compression of Fig 1C, it is 48.99/4,096 or 1.2%.
Similarly, the mean-square errors of the images
in Figs 2B and 2C are 54.6/4,096 or 1.3% and
74.51/4,096 or 1.8%, respectively.

Figures 5 and 6 show the segmentation results
for the images in Figs 1 and 2. The algorithm
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Fig 4. Horizontal cross-sec­
tions through the calcification
cluster shown in Fig 3, A through
C. (A) Original uncompressed
data, (B) compressed data with
q = 512, and (e) compressed
data with q = 1,024.

was successful in segmenting the calcifications
from the uncompressed images. The loss of
continuity and smoothness of the pixel in the
compressed data affects the results of the seg­
mentation algorithm in that it generates false­
positive spots which, although not of the same
intensity as those corresponding to the calcifica-

tions, are considered as distracting by the radi­
ologist, particularly for the higher compression
(set number 2). This indicates that either a
different segmentation algorithm should be de­
veloped for compressed data or a different
compression method should be used to avoid
abrupt discontinuities in the compressed im-

Table 3. Dynamic Ranges, Mean-Square Errors Measured in Gray Scales and Compression Ratios for the Two Compression Sets

That Have Different Maximum Ouantization Intervals

Image Mean-Square Compression Mean-Square Compression
No Gray Levels Error (set no 1) Ratio (set no 1) Error (set no 2) Ratio (set no 2)

1 4,096 36.02 69 45.46 158
2 4,096 37.14 53 48.99 123

3 4,096 48.06 30 64.42 74
4 4,096 52.51 25 70.61 68
5 4,096 55.00 24 73.32 66
6 4,096 29.47 77 39.09 154
7 4,096 45.28 25 64.94 56
8 4,096 54.61 22 74.51 55
9 1,024 13.54 29 16.03 113

10 1,024 13.94 29 16.34 126
11 1,024 10.73 66 12.40 182

12 1,024 13.24 34 15.31 152
13 1,024 13.32 37 15.28 156
14 1,024 13.68 32 15.88 138
15 1,024 12.43 54 13.87 207



Fig 5. Segmentation results of the images in Fig 1 using
two-channel wavelet decomposition and reconstruction. Seg­
mented calcifications from (A) original digitized image, (6)
compressed reconstructed data with q = 512 , and (e) com­
pressed reconstructed data with q = 1,024.

Fig 6. Segmentation results of the images in Fig 2 using
two-channel wavelet decomposition and reconstruction. Seg­
mented calcifications from (A) original digitized image , (6)
compressed reconstructed data with q = 512, and (C) com­
pressed reconstructed data with q = 1,024.
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ages. A solution to the latter can also be a
different family of wavelets, currently under
investigation, which would result in smoother
images with smaller gradient.

It should be pointed out that the Haar wave­
lets used in this study are inherently nonsmooth
compression techniques and are expected to be
discontinuous across lines that run vertically
and horizontally. Thus, at very high compres­
sion ratios, the artifacts introduced into the
compressed images consist of straight lines and
corners where these lines intersect. Using
smoother wavelets would introduce different
artifacts. The Haar wavelets, however, have the
advantages that (1) they do not remove any
significant information pertaining to the calcifi­
cation clusters as indicated by the unstructured
difference images between the original and
compressed reconstructed data and (2) they
introduce artifacts that can be seen by the
radiologist as totally artificial; indeed, there
were no false-positive readings of microcalcifica­
tions by the radiologist on the compressed
images. In contrast, the wavelet segmentation

algorithm misread many of the edge artifacts as
false-positive signals, which made some of the
compressed segmented images less useful to the
radiologist as a tool for diagnosis. It remains to
be seen whether the advantages of smoother
wavelets (no edges in the reconstructed images,
fewer false-positive detections by the segmenta­
tion algorithm) will outweigh the disadvantages
(introducing artifacts that may be misread by
the radiologist as microcalcifications or other
structures).

The results of the evaluation of the visualiza­
tion of the clustered calcifications are shown in
Fig 7 for the film, the uncompressed and the two
sets of compressed data. In 60% of the films, the
visualization of the cluster is classified as excel­
lent; in 13% the visualization of the clusters is
very good, and in 27% is good (Fig 7A). The
same 60% and 13% of excellent and very good
cluster visualization respectively was obtained
from the digitized uncompressed images (Fig
7B). However, only 8% were classified as good
while another 7% was classified as mediocre.
The plots in Figs 7C and 70 show that the first
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Fig 8. Bar diagrams of the grading of the overall losses in
(A) the uncompressed digitized images, (B) the first set of
compressed images. and let the second set of compressed
images. The scale is 1. extreme; 2. high; 3. average; 4. low; 5,
none.

compression run with q = 128 or 512 demon­
stra tes 47% excellent visualiza tion for compres­
sions up to 53:1, 20% vel}' good, 13% good, and
20% mediocre. The visualization degraded dur­
ing the second compression run where the
following percentages were calculated from the
compl eted answer sheets: 13% excellent for
compressions up to 56:1, 20% very good, 7%
good, 33% m ediocre, and 27% poor. It should be
noted that the quality of the compressed data
dep ends on the image contents, namely the
par enchymal density and the image noise.

The radiologist's estimates of the losses after
compression led to the bar diagrams of Fig 8.
Losses included artifacts not pre sent in the
films, changes in the morphology of the cluster
and the individual calcifications, and distortion
of the breast parenchyma. Assuming no losses
for the films, the losses in the digitized mammo­
grams and the compressed image s are graded
on a sca le of 1-5 from extreme to none. Scale
number 3 corresponded to average losses and
was set as the limit of the visually acceptable
level of losses for the purpose of thi s study.
Figure 8B shows that only 13% of the first set of
compressed images exceeded th e average losses
(grade number 3). Furthermore, the major con­
tribution to this percentage was from the lO-bit
images. In contrast, 73% of the higher compres­
sion result s exceeded the average losses.

The ana lysis of the rem ainder of the expert's
evaluation indicates the following : (1) In 90% of
the cases, the number of calcifications esti­
mated within a cluster is the same between the
film, the digitized mammogram, and the first
compression set and falls one rang e lower for
the second compression set. (2) In 67% of the
cases, the parenchyma density estima tion and
classification remains the same between the
film, th e digitized images, and the first compres­
sion set while a higher estimate is given for the
seco nd compression set. (3) In 33% of the cases,
the same degree of suspiciousness of the lesion
was given from the film, the digital mammogram
and th e compressed image s. However , in the
rem aining 67%, the compressed data gave the
impression of a less suspicious case than the
origina ls. (4) Th e morphology of th e calcifica­
tion s (sha pe , size, and geometry) degrades in
the entire second set of compression by one or
two levels. Fifty-three percent of the first com-
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pression data have similar morphology as the
digitized mammograms and the corresponding
films; the remaining 47%, the majority of which
is from the lO-bit images, shows a one-level
degradation in the morphology of the calcifica­
tions. This also explains the differences in the
suspiciousness of the cluster. (5) The digitized
mammograms reproduce exactly the paren­
chyma patterns observed on the film. In 33% of
the cases, the first compression set did not show
any visible distortion of the parenchymal tissues
(the majority of these cases were from the group
of the 12-bit images). In all other cases the
smoothness and continuity of the parenchymal
tissues is gradually lost and the compressed data
have a "boxy" appearance which increases with
increasing compression ratio.

CONCLUSIONS

We have applied Haar wavelets for the com­
pression of mammographic images with calcifi­
cation clusters aiming at the highest possible
compression with clinically acceptable lossy data.
Two high compression rates were tested to
determine the degree of losses and their effect
on the visualization of malignant calcifications.
The Haar wavelets introduced losses in the
smoothness and continuity of the pixels in the
original data but preserved the calcifications as
indicated by the differences between the origi­
nal and compressed images and the fact that the
visualization of the calcifications was rated as
excellent by the radiologist for compressions up
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to 56: 1. Furthermore, the expert mammogra­
pher could not discriminate the digitized from
the decoded mammogram in 80% of the cases.
However, the results seem to depend on the
contents of the original image and the dynamic
range of the digital mammogram. It also ap­
pears that decoded images with higher dynamic
ranges were evaluated more favorably despite
the fact that the display of the images is limited
by the current technology to 8 bits per pixel.
Further studies are needed if a digitization
strategy more beneficial to the compression
process is to be determined.

A wavelet segmentation algorithm was also
applied to both uncompressed and compressed
data to determine whether it could partially
compensate for the compression losses. The
results showed that this algorithm, at its present
design, successfully segments the images but
generates several false-positive signals in the
highly compressed data. Motivated by the re­
sults of the present study, we are now engaged
in the implementation of smoother wavelet
approaches for the compression of mammo­
grams and the improvement of the wavelet
segmentation algorithm to reduce the false­
positive detection rate which may, in turn,
modify the clinically acceptable limits of lossy
compression. A more extensive application of
wavelets to digital mammography including clini­
cal evaluation and confirmation of our prelimi­
nary results is ongoing.
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