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Artificial neural networks are being investigated in the 
field of medical imaging as a means to facilitate 
pattern recognition and patient classification. In the 
work reported here, the effects of internal structure 
and the nature of input data on the performance of 
neural networks were investigated systematically us- 
ing computer-simulated data. Network performance 
was evaluated quantitatively by means of receiver 
operating characteristic analysis and compared with 
the performance of an ideal statistical decision maker. 
We found that the relatively simple neural networks 
investigated in this study can perform at the level of an 
ideal decision maker. These simple networks were 
also found to learn accurately even when the training 
data are extremely unbalanced with respect to the 
prevalence of actually positive cases and to differenti- 
ate input data patterns by recognizing their unique 
characteristics. 
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A RTIFICIAL NEURAL networks provide a 
nonalgorithmic approach to information 

processing. This approach can solve problems 
not by use of a prespecified algorithm, but 
rather by "learning" from examples presented 
repeatedly. An artificial neural network consists 
of a number of processing units that are layered 
and interconnected much like neurons in the 
human brain. Neural networks have been shown 
to be a useful tool for pattern recognition and 
classification in fields in which conventional 
algorithmic approaches and rule-based expert 
systems may not be successful. 1,2 

In recent years, neural networks have been 
applied in the field of medical imaging 3-12 to 
facilitate pattern recognition and patient classi- 
fication in a variety of different situations. In 
chest radiography, for example, the differential 
diagnosis of interstitial lung diseases is an impor- 
tant but difficult task for radiologists. Accurate 
interpretation of chest ¡ in this task involves 
the merging of diverse radiographic findings 
and clinical data to classify patients. Because 
the mapping between patterns of image fea- 
tures and states of health and disease may be 

ill-defined or unknown, it is difficult to design 
and implement conventional algorithms to as- 
sist radiologists in performing this task. Hence, 
neural networks have been used in an attempt 
to differentiate among patterns of input data 
that correspond to different interstitial dis- 
eases. 6,70ther applications of neural networks 
in medical imaging involve x-ray spectral recon- 
struction from measured spectra, s interpreta- 
tion of neonatal chest radiographs, 9 magnetic 
resonance imaging tissue classification, lo detec- 
tion of microcalcifications from digital mammo- 
grams, u and classification of mammographi- 
cally evident lesions as benign or malignant. 12 

We conducted a computer-simulation study 
to systematically investigate the performance of 
neural networks with different kinds of input 
data and to determine the effect of the net- 
works' structure on their performance. Values 
of random variables sampled from multivariate 
Gaussian distributions were used to represent 
clinical input data. The performance of the 
neural networks was evaluated quantitatively by 
means of receiver operating characteristic 
(ROC) analysis. ~3 We attempted to optimize 
the performance of the networks by choosing 
internal parameters to obtain the highest ROC 
curves for given input data patterns. 

METHOD 

Three-layer, feed-forward neural networks 
were used in this study. The general structure of 
such neural networks is shown in Fig 1. These 
networks have an input layer, a hidden layer, 
and an output layer. Input data and desired 
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Fig 1. Structure of a typicar three-layer, feed-forward artifi- 
cial neuraf network. 

output values are provided to the input layer 
and to the output layer, respectively. AIl of the 
input values are normalized to the range from 0 
to 1, and the output values also range from 0 to 
1. The hidden layer is the key component in 
which learning is considered to take place. Each 
unit in the hidden and output layers receives, as 
its input, weighted outputs from all of the units 
in the previous Iayer. Each such input is added 
to an offset value and subsequently converted to 
the unit's output by a sigmoidal function. The 
weights and offset values ate determined by a 
training process. The numbers of units used in 
the input and output layers are determined by 
the number of input data components used and 
by the the nature of the desired output, respec- 
tively. The number of hidden units is generally 
selected empirically for each particular applica- 
tion. 

In the process of training a neural network, 
the output values obtained from the provided 
input data are compared with the desired out- 
puts. Error is defined as the squared magnitude 
of the difference between the desired and calcu- 
lated output vectors, summed over all training 
examples. Internal parameters of the neural 
network are adjusted repeatedly until a prede- 
termined number of iterations has been com- 
pleted or the error becomes less than a predeter- 
mined value. We used an error back-propagation 
algorithm in the training process and the gener- 
alized delta rule in back-propagating error. 
Details of back-propagation and the general- 
ized delta rule can be found elsewhere. 14 In the 
process of testing a neural network, outputs are 
calculated from a given set of input data by 

using the infernal parameters that were deter- 
mined during the training process. ROC analy- 
sis was used to evaluate the performance of the 
neural networks. 

In our neural network applications, each 
input unit is provided with a numerical value 
that represents one radiographic finding or 
clinical feature. Typical input data in mammog- 
raphy, for example, may include the shape and 
size of a mass lesion, degree of spiculations of 
mass, uniformity of density of mass, and distribu- 
tion of microcalcifications. The values of these 
input features can be modeled by joint out- 
comes from a multivariate gaussian curve distri- 
bution, with each feature having different means 
and, in general, different standard deviations 
(SDs) for each state of "truth." A simple 
network with two input units and one output 
unit is shown in Fig 2. With single output units, 
the training process seeks to produce output 
values of 0 and 1 from input data associated 
with actually negative and actually positive cases, 
respectively. 

In situations that involved two states of truth, 
we evaluated the performance of each neural 
network by comparing it with that of an ideal 
decision maker (see Appendix). For each fea- 
ture, the relationship between the pair of Gaus- 
sian input value distributions that corresponds 
to the two states of truth can be characterized 
by a signal-to-noise ratio (SNR) defined such 
that "signal" (A~x) is the difference between the 
means of the distributions for the two states of 
truth, whereas "noise" (~r) is the root-mean- 
square SD of those two distributions. In this 

Fig 2. A neural network with two input units, and distribu- 
tions of the input data used for training and testing. 
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report, the SDs of the Gaussian distributions 
for actually negative and actually positive cases 
were equal. If the data for N input units are 
statistically independent and are sampled from 
Gaussian distributions with the same SNR, the 
area (Az) under the ROC curve that would be 
achieved by an ideal statistical decision maker 
in distinguishing between the two states of truth 
is related to the SNR of a single input unit by 
the following equation: 

Az = ~- = * SNR , (1) 

where �9 represents the cumulative standard 
normal distribution function (see Appendix). 
ROC curves achieved by the neural networks 
were estimated by calculating true-positive frac- 
tion (TPF) and false-positive fraetion (FPF) as 
a function of the threshold setting that distin- 
guished nominally positive from nominally neg- 
ative values at the output unit. 13,15J~ 

In each simulation study a training data 
sample contained a preselected number of inde- 
pendent training data sets. Each data set repre- 
sented the input data that might be obtained 
from a particular patient and consisted of input 
values that were sampled independently from 
Gaussian distributions with mean values that 
were determined by the "truth" of the simu- 
lated case. The training data sets in a given 
sample were entered into the neural network 
repeatedly in randomly varied sequences. The 
number of sequences used during training is 
called the number of iterations. Testing data 
sets were sampled independently in the same 
way from the same distributions. Unless other- 
wise specified, an equal number of actually 
negative (benign) and actually positive (malig- 
nant) cases was included in each training or 
testing data sample. 

RESULTS 

Neural Network With Two Input Units 

The simplest neural network consists of two 
inpu t units, one hidden unit, and one output 
unit. Using a neural network with this simple 
structure, we investigated the relationship be- 
tween statistical properties of the input data 
and the output obtained from the neural net- 
work. Effects of the number of iterations on the 

performance of the neural network were also 
studied. The understanding of neural networks 
gained from characteristics of this simple model 
may serve a sa  guide in practical applications of 
neural networks with more complicated struc- 
ture. 

Effect oftrainingparameters. The simple neu- 
ral network with two input units was ¡ trained 
by different numbers of data sets, with 200 
iterations used for each, and then tested with 
1,000 data sets obtained independently from the 
same distributions. Better performance was ex- 
pected with larger training data sets, which 
reveal the statistical relationship between input 
patterns and "truth" more reliably. Figure 3A 
shows the relationship between the perfor- 
mance of the neural network and the number of 
input data sets that were used for its training. 
The network's ROC curve improved steadily as 
the number of input data sets increased from 
two to 100, with no appreciable improvement 
thereafter. Hence, in this simple situation, 100 
data sets seem to provide sufficient training. 

The effects of sampling variation in the train- 
ing data, random sequencing of the training 
data sets, and the number of iterations were 
also studied. When tested with a single sample 
of 1,000 data sets, the performance of the 
neural network remained unchanged when it 
was trained with four different independent 
samples of 100 data sets. Therefore,  in this 
simple situation the network does not appear to 
be sensitive to sampling variation in the training 
data, again indicating that 100 training cases are 
adequate. The effect of the sequence in which 
input data sets were presented during training 
was studied by training the neural network with 
various sequences of the 100 data sets in a single 
input sample. We found that the performance 
of the network was not affected. Finally, the 
neural network was trained by a single sample 
of 100 data sets and increasing numbers of 
iterations. We found that this simple network 
was trained sufficiently with only 10 iterations. 

Effect of testing parameters. After being 
trained with 100 data sets and 200 iterations, 
the neural network was tested by assessing its 
performance repeatedly with different numbers 
of testing data sets. When the number of testing 
data sets in each simulated experiment was 
increased to 1,000 or more, statistical variation 
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Fig 3. Effect of number of input data sets on the performance of neural networks of two input units. (A) Effect of number of 
training data s e t s :  S N R  [6ed] = 1,200 iterations, and 1,000 testing data sets. (B) Effect of number of testing data s e t s :  S N R  = 1,200 
iterations, and 1,000 training data sets. 

among the ROC curves and Az values obtained 
from individual simulated experiments was small. 
With 100 or 200 testing data sets in each 
simulated experiment, the estimated ROC 
curves and corresponding Az values varied as 
expected] 5,16 but the average values did not 
change substantially. Typical ROC curves ob- 
tained from individual simulated experiments 
with different numbers of testing data sets are 
shown in Fig 3A. 

Effect of unbalanced prevalence. In practical 
situations, different numbers of actually nega- 
tive and actually positive clinical cases with 
established clinical truth may be available for 
training a neural network. Therefore, we exam- 
ined the effect of unbalanced training data on 
the performance of the neural network by 
including only one to 10 actually positive (malig- 
nant) cases in a total of 1,000 input data sets 
used for training. However, testing data sets 
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Fig 4. Effect of unbalanced prevalence in the input data sets on the performance of a neura| network with two input units. SNR = 
2, 200 iterations, 1,000 training data sets, and 1,000 testing data sets. (A) ROC curves achieved by the neural network with 1 to 10 
malignant training cases, averaged over 14 replications of the experiment. (B) Average A z values achieved by the neural network with 
one to 10 malignant training cases (points) and the performance of an ideal decision maker (dashed line). Error bars indicate • 
standard deviation of the mean. 
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remained evenly divided between benign and 
malignant cases. The averaged ROC curves 
shown in Fig 4A indicate that the performance 
of the neural network improved gradually as the 
number of malignant training cases increased 
from one to 10. The corresponding average Az 
values shown in Fig 4B indicate that the neural 
network performed at the theoretical upper 
limit of an ideal decision maker even when as 
few as five malignant cases were included among 
the 1,000 training data sets. This suggests that, 
in such simple situations, the neural network is 
very efficient in iearning from even a small 
number of positive cases. However, variation 
among smali samples of training cases can cause 
network performance to depend strongly on the 
particular training data sample that is used, and 
that a substantially larger number of training 
data sets may be required in situations that 
involve more than two input units, more compli- 
cated input data distributions, and/or lower 
SNR. 

Relationship between A; and SNR. Figure 5 
shows two different pairs of bivariate input data 
distributions. In Fig 5A, the mean input values 
are larger for malignant cases than for benign 
cases at both input units. In Fig 5B, however, 
the mean input value for malignant cases is 

A BENIGN C A S E ~  

INPUT VALUES 
FOR UNIT INPUT VALUES 

. FOR UNIT 1 

1 

B 0 
MAIlGNANT ~ 8ENIGN 

INPUT VALUES 
FO n . ~ l T  o ~ INPUTVALUES 

Fig 5. 8ivariate binormal distributions of input data for a 
neural network with two input units. (A) Mean input values for 
malignant cases are larger than those for benign cases at both 
input units. (B) Mean input value for malignant tases is larger 
than that for benign cases at input unit 2 but smaller at input 
unit 1. 
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Fig 6. Dependence of A= on the SNR at each of two input 
units for the distributions shown in Fig 5. ResuIts obtained by 
the neural network (200 iterations, 100 training data sets, 
1,000 testing data sets) ate shown as points; curve indicates 
the theoretical performance of an ideal decision maker in both 
situations. 

larger than that of benign cases at one input 
unit and smaller at the other. Our simple neural 
network was trained by 100 data sets and tested 
by another 1,000 data sets in this situation. The 
corresponding value of Az for an ideal decision 
maker was calculated theoretically (see Appen- 
dix) as a function of SNR in the input data 
distributions. In Fig 6, it is apparent that the Az 
values that were achieved by the neural net- 
works correspond with those obtained from 
theoretical predictions for both pairs of distribu- 
tions. 

Neural Networks With Multiple Input Units 

Equation 1 indicates that, for a given SNR at 
each input unit, the ideal decision maker ob- 
tains larger values of Az if the number of 
independent input units is increased. This pre- 
diction is confirmed by Fig 7 which shows the 
performance of neural networks with different 
numbers of independent input units. As noted 
in the figure legend, the numbers of hidden 
units used varied correspondingly with the num- 
ber of input units chosen to achieve optimal 
performance. The networks seem to perform at 
levels very close to those of an ideal decision 
maker in each situation. However, as noted in 
the figure legend, the neural networks needed 
more training data sets to achieve optimal 
performance when the number of input units 
was increased. 
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Fig 7. Performance achieved by neural networks with three 
to 10 input units (points) and the performance of an ideal 
decision maker (curves) as a function of the SNR at each input 
unit. As the number of input units increased, more training 
se ts  (T), more iterations (I) and more hidden units (H) were 
needed to approach maximum performance, as f o l l o w s :  f o r  3 

input units, T = 200 ,  I - 200 ,  H = 1; for five input units, T = 

5 ,000 ,  I = 1 ,000,  H = 3; f o r  10 input units, T = 10 ,000 ,  I = 1 ,000,  

H = 5 .  

Neural Networks  With Multiple Output  Units 

In many clinical applications of neural net- 
works, the desired output may not be simply 
binary (eg, either benign or malignant), but 
instead may be required to differentiate among 
multiple states of truth. For example, a neural 
network for the differential diagnosis of intersti- 
tial diseases was trained to distinguish nine 
different interstitial diseases, ~~,7 and therefore 
required nine output units corresponding to the 
nine diseases. 

When multiple outlet units are required, we 
considera neural network with four input units, 
two hidden units and four output units. This 
structure attempts to distinguish among four 
different diseases by using four quantitative 
"symptoms" or "test results" as input data. We 
used two different sets of four input data 
distributions,  corresponding  to the four dis- 
eases, to study the relationship between the 
nature of the input data and the output of the 
neural network. Each set of the four input data 
distributions can be represented in four-dimen- 
sional input data space in a way similar to the 
pair of two-dimensional distributions shown in 
Figs 5A and 5B. The neural network was first 
trained by four-dimensional input data sets that 
corresponded to diseases A, B, C, and D with 
corresponding ideal output values of 1.0 at 
output units 1, 2, 3, and 4, respectively, and 0.0 

at the remaining output units. Thus, output 
units 1, 2, 3 and 4 represent diseases A, B, C, 
and D, respectively. Independently sampled 
input data sets for diseases A, B, C, and D were 
used for testing. 

A generalized form of ROC analysis was used 
to evaluate the network's performance in differ- 
entiating the four diseases. This analysis can be 
illustrated by the following example. Each input 
data set arising from disease A, B, C, or D 
produced values at each of the four output 
units. To evaluate the performance of the neu- 
ral network in differentiating disease A from 
the other three diseases, only the values pro- 
duced at output unit 1 were considered. At 
output unit 1, an output value exceeding a fixed 
threshold level was scored a s a  true-positive 
diagnosis if it arose from an input data set 
produced by disease A, or as a false-positive 
diagnosis if arose from an input data set pro- 
duced by any other three diseases. An ROC 
curve for the detection of disease A was then 
obtained in the conventional way by calculating 
TPF and FPF a s a  function of the threshold 
level setting. Similarly, ROC curves for the 
detection of diseases B, C, and D were obtained 
by considering the values obtained at output 
units 2, 3, and 4, respectively. Input values for 
each of the input units were sampled indepen- 
dently from Gaussian distributions with the 
means for each disease shown in Table 1 and 
with an SD of 0.2. The experiments were then 
repeated with Gaussian distributions having an 
SD of 0.1. Each training and testing sample 
consisted of 200 and 2,000 data sets, respec- 
tively. The average values of Az obtained in 
each situation and the estimated SDs of these 
mean values (cr) also are shown in Table 1. 

In the situation shown in the upper portion of 
Table 1, diseases A and D are unique in the 
sense that their mean values are the smallest 
and largest, respectively, at each input unit. 
Diseases B and C, on the other hand, are 
somewhat ambiguous in that their mean input 
values lie between those of diseases A and D at 
all four input units. As shown in the upper 
right-hand part of Table 1, the neural network 
was able to identify diseases A and D well, but it 
was not able to identify diseases B and C as 
reliably. To examine the effect of the unique- 
ness of a disease's input data pattern on its 
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Table 1. Mean Values of Input Data With Corresponding Truth and Test Results of Az Values 
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Mean Input Values for Training and Testing Desired Output Values 

Disease Input unit 1 Input unit 2 Input unit 3 Input unit 4 Output unit 1 Output unit 2 Output unit 3 Output unit 4 

Test Results Test Results 
(SD = 0.2) (SD = 0.1) 

Az ~r Az 

A 0.4 0.4 0.4 0.4 1.0 0.0 0.0 0.0 

B 0.5 0.5 0.5 0.5 0.0 1.0 0.0 0.0 

C 0.6 0.6 0.6 0.6 0.0 0.0 1.0 0.0 

D 0.7 0.7 0.7 0.7 0.0 0.0 0.0 1.0 

A 0.4 0.4 0.4 0.4 1.0 0.0 0.0 0.0 

B' 0.3 0.5 0.5 0.5 0.0 1,0 0.0 0.0 

C' 0.8 0,6 0.6 0.6 0.0 0.0 1.0 0.0 

D 0.7 0.7 0,7 0.7 0.0 0.0 0.0 1.0 

0.866 0.010 0.971 0.002 

0.594 0,043 0.856 0.009 

0.652 0.033 0.803 0.095 

0.888 0.006 0.972 0.002 

0.864 0.014 0.963 0.001 

0.827 0.027 0.933 0.030 

0.834 0.014 0.953 0.010 

0.858 0.014 0.963 0.006 

Note: Data collected f rom 200 iterations, 200 training data sets, and 2,000 testing data sets. 

detectability, we replaced diseases B a n d  C with 
diseases B' and C', respectively, as shown in the 
lower portion of Table 1. In this situation, 
disease B' and C' provided the smallest and 
largest mean input vahe ,  respectively, at one 
output unit. A s a  result, the neural network's 
performance was greatly improved. From the 
average Az values shown in the lower right-hand 
part of Table 1, it is evident that the network 
can now differentiate all four diseases. This 
result suggests that the neural network is able to 
identify unique characteristics of an input data 
pattern and can use them ef¡ in classify- 
ing different patterns. The effect of SNR is also 
evident in Table 1, where the network's perfor- 
mance is seen to improve for both patterns of 
input means when the SDs of the input distribu- 
tions were reduced from 0.2 to 0.1. One might 
expect that the performance of a neural net- 
work depends on both the SNR of each input 
unit and the extent to which each truth state is 
associated with a unique pattern of input value 
means. A comparison of the two situations 
presented in Table 1 indicates that network 
performance can be increased either by adding 
unique characteristics to the input patterns (as 
in the lower portion of Table 1) or by increasing 
the SNRs of the existing inputs. 

SUMMARY AND CONCLUSIONS 

We have studied the effect of both input data 
and internal structure on the performance of 
neural networks. Performance of the neural 
networks was assessed quantitatively in terms of 
ROC analysis and compared with theoretical 
calculations. We confirmed that the simple 
neural networks used in this study can perform 

at the level of an ideal statistical decision 
maker. Furthermore,  our simulation study sug- 
gests that neural networks possess two poten- 
tially useful characteristics: (1) the ability to 
learn accurately even when the training data are 
extremely unbalanced with respect to the preva- 
lence of actually positive cases, and (2) the 
ability to differentiate input data patterns on 
the basis of their unique characteristics. 

Our simulation study was conducted under 
three idealized conditions: (1) training and 
testing data provided to each input unit are 
statistically independent of the data provided to 
every other input unit; (2) SNRs at all of the 
individual input units are identical; and (3) the 
SDs of the Gaussian input v a h e  distributions 
for actually negative and actually positive cases 
are equal. Those conditions make it possible to 
focus, as the first step in our investigation, on 
the fundamental aspects of neural network 
behavior. We believe that the understanding of 
the characteristics of neural networks obtained 
from this simulation study may serve asa  useful 
guide in applying neural networks to a variety of 
practical data-classification and pattern-recogni- 
tion problems in medical imaging. 

APPENDIX 

Figure 8 shows a pair of one-dimensional  data distribu- 
tions. Let (~h, %) and (IXm, ~m) represent  the mean and SD 
of the distributions associated with benign and malignant 
cases, respectively. The area under the ROC curve (Az) is 
then given byl6: 

Now consider ah N-dimensional  Gaussian distribution, 
G(f),  where f = (rl, r2 . . . .  rN) T is a c o h m n  vector that 
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Fig 8, One-dimensional Gaussian distributions with differ- 
ent means and SDs for benign (b) and malignant (m) cases. 

represent s  the joint  o u t c o m e s  of N r a n d o m  variables  with 
m e a n s  and  SDs r e p r e s e n t e d  by the pair  of  co lumn vectors  
(IZb, al'b) and (~m, 6%) for benign  and mal ignant  cases,  
respectively.  Any  l inear combinat ion  of  the N -d ime ns io na l  
input  data  that  could serve a s a  decis ion variable  in 
convent ional  R O C  analysis  can be r e p r e s e n t e d  general ly  by 
the following: 

z = v l r  I + v2r  2 + ' ' ' v N r  N = ' ) ' r .  

T h e  expected  values  of z for benign  and mal ignant  cases  
are then:  

E{z[b} = ?"  E{ f lb  } = ')" ~b = ~l'z;b 

E{z/m} = ~ .  E { f l m  } = cr P-m --~ b L z l m  ' 

Th e  difference of  expected values  be tween  benign and 
mal ignant  cases  becomes:  

E{z I m} - E{z I b} = ,~. ( ~ m  -- ~ b )  ~ ~ '  A}2 

=~~lm-~~lb (2a) 

T h e  variance  of z for benign  cases  is given by this 
equat ion:  

Var  {zlb } = Var  {'~. f lb} = E{[9 �9 (f - q 

---E{['~'(Af)]2lb}.  (3a) 

Note that, in matrix notation, the scalar product in the 
above equation can be written as: 

[0�91 (~~)]2 : 0�91 

W e  define ~ eov~riance matr ix  C as the expected outer  
product  

C = E {(Af)(Af)T}, 

whereby  the  covariance  matr ices  for benign  and mal ignant  
cases  can be writ ten as: 

C b =  E { ( A f ) ( A f ) T I b } a n d C  m = E{(Af)(Af)T]m},  (4a) 

respectively.  Notice that  C b and C m are symmetr ica l  matri -  
ces. Subst i tut ing  equat ion  4a into 3a, we obtain  

Var  {z]b} = E{[-~. (Af)]2I b} = (',?)Tch'~ -- r (5a) 

Similarly, the variance  of z for ma t ig nant  cases  can be 

obta ined  as: 

Var  {z lm } = E{[~. (Af)]2l m} = ( " � 9 1 1 6 2  ~ o'~1 m. (6a) 

Notice  that  P-zlb, P'~lm, r and r here  correspond to P-b, 
Dm, eb and ~rm, respectively,  in la. From equat ions  la, 2a, 5a, 
and 6a, we obtain 

(~zlm -- ~J'z]b) 2 ( '~ '  a ~ )  2 0 � 9 1  A ~ )  2 
Q -= (7a) 

O~~lm q- O'~1 b --  ( v ) T [ c m  4- c b ] 0 � 9 1  -- 0 � 9 1  ' 

where  C -= C b + C mis  a symmetr ica l  matrix.  
It is evident  from equat ion  la  that  one  needs  only to 

choose  an appropr ia te  weight vector c~ to maximize  Q in 

order  to maximize  A~, because  ] ~Lzl m -- ~Lz[ b I / ~ l m  + O'~b is 
non-negat ive  and  �9 is a monotonica l ly  increasing function.  
F r o m  equat ion  7a the following can be generated:  

~~ ,~)~ [ ~ v ~ ~ q  ~ 
Q - ~ , ) )  k~%�91191 -- N N ( S a )  

Y~ v&vj 
i l i  1 

To maximize  Q, we need  to find a set o f v a l u e s  [v,} such that  

aQ 
- - = 0  for i  = 1 , 2 , . . . , N .  
0v i 

Different iat ing  equat ion  8a with respect  to v.  (n = 1, 2 . . . .  
N), we obtain 

N 
2 (cr A ~ ) A ~ m { ( C / ) T c ( ~ )  } -- 2{~. A~) 2 ~2 Cmyj 

OQ j 1 
= 0  

aVn { (~�91191 }2 

(9a) 

for n = 1, 2 . . . . .  N, which simplifies to 

N 
'X,,n{('~)Tc(,9)} = ('~ ' A~)  ~ Cnyi (n = 1, 2 . . . .  N). 

j 1 

C o m b i n i n g  all of  these  equat ions  for n = 1, 2, . . . ,  N, we 
obtain,  in matrix  notat ion,  

{('~)Tc('~)}(AI~) = [(r162 A~) ]CQ (10a) 

which is solved by: 

"~ = kC I(AI~,) ( l l a )  

where  k is an arbitrary constant .  This  weight rec tor  
maximizes  Q, and therefore  A~. It is interest ing  to notice, in 
passing,  that  the set  of  weights  given by equat ion  1la is 
equivalent  to that  of  a "pre -whi ten ing  m a t c h e d  filter. 'qTAs 

Subst i tut ing  equat ion  l l a  into 8a, we find that  the 
m a x i m u m  value  of Q is given by 

[(~. a~)] 2 
Q .... - {(9)TC(.~) } (-Ÿ I(A•), 

so from equation la: 

(Az)ma• = ~(Qm~0 = q~(~/'(M2) TC l(At2)). (12a) 
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In the special situation in which the random variables 
(q, r2 . . . .  rN) are independent,  the correlation matrix C 
becomes diagonal, ie, 

C = D(o-~i + O-~i), so C t = D(1 / [o-~  i + O-gil) 

Substituting this into equation 12a, we find that the maxi- 
muro A~ for independent input values is given by 

( A z ) m a x  = do ( ~ m i  - -  2 
2 

O'mi q- O'•i ] 

If we define a signal-to-noise ratio for the N-dimensional 
data distribution as 

./N' (r #bi) 2 
= ~ . a ~ -  ~~'TT~, SNR(N) V i (o'¡ i + o-~i)/2 (13a) 

the maximum attainable valª of Az can be expreessed as 

(Az)max = dO SNR (NI . (14a) 

Finally, we cons idera  simplified situation in which the 
SDs on each of the N dimensions are identical, (ie, O-bi = O-b 

and O-mi = O'm for i = 1, 2 . . . .  N) and the absolute values of 
the separation between the means of the benign and 
malignant distributions is the same on all N dimensions as 

well (ie, I~Xmi- ~xbi] = &x for i =  1 . . . .  N). Then from 
equation 13a, the N-dimensional SNR becomes 

v ' � 9 1 7 7  , -  ~ ~  SNR (N~ - - ~ -  ~ N ~ - =  ~'�9 SNR 11~, 
~ - +  O-~, 

2 

where S N R  (I~ = A~/~r is the SNR for any one input and o- = 

,](o-~ + O-b)/2 is the root-mean-square SD. Substituting into 
equation 14a, we obtain 

( A z ) m a x = * ( ~ S N R ( N ) ) = d o ( V ~ ~ S N R ( I ) ) .  

(15a) 

According to the arguments presented here, equations 
14a and 15a give the maximum values of Az that can be 
oblained from a linear combination of input values. In 
general, larger values of Az may be achievable by nonlinear 
decision rules. However, one can show that the values of A, 
given by equations 14a and 15a are the largest that can be 
obtained by any decision rule (ie, represent the perfor- 
mance of the ideal decision maker, 3,18 who uses likelihood 
tatio a sa  decision variable) in the special case where O-mi = 
O-hi ( i  = 1,  2 ,  . . . N ) ,  which is the case in our simulations. 
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