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The Use of Computer-Ass is ted  Diagnos is  in Cardiac Perfusion 

Nuclear  Medicine  Studies: A Review (Part 3) 

Frederick L. Datz, Charles Rosenberg, Frank V. Gabor, Paul E. Christian, 
'Grant T. Gullberg, Raj Ahluwalia, and Kathryn A. Morton 

Computer-assisted diagnosis (CAID) is commonly used 
to evaluate cardiac nuclear medicine studies such as 
thalliurn perfusion scans. Part 1 of this series (Journal 
of Digitallmaging, 5:209-222, 1992} reviewed the basic 
theory underlying CAID in nuclear medicine and its use 
in planar thallium imaging. Part 2 discussed the appli- 
cation of CAID to SPECT perfusion studies (Journal of 
Digitallmaging, 6:1-15, 1993). This article reviews new 
variations of  CAID programs for SPECT imaging and 
the application of expert systems and neural networks 
to CAID of nuclear medicine perfusion studies. 
Copyright �9 1993 by W.B. Saunders Company 

C OMPUTER-ASSISTED diagnosis (CAID) 
of cardiac nuclear medicine studies has 

become widespread. 1,2 Part 1 of this series 
reviewed the basic theory of CAID in nuclear 
medicine and its application to planar perfusion 
imaging) Part 2 discussed the modification of 
planar CAID techniques for single-photon emis- 
sion computed tomography (SPECT). 4 This arti- 
cle will review additions to the basic SPECT 
CAID perfusion programs and the application 
of expert systems and neural networks to the 
evaluation of cardiac nuclear medicine perfu- 
sion studies. 

DIFFERENTIATION OF INFARCT 
FROM ISCHEMIA 

Until recently, CAID programs for evaluating 
SPECT perfusion studies were only able to 
diagnose the presence or absence of coronary 
arte.ry disease; they were notab le  to differenti- 
ate infarction from ischemia. Klein et al and 
Garcia et al have created a CAID program that 
can make this important distinction. 5,6 

These investigators developed a program that 

uses the same logic to differentiate ischemia 
from infarction that is used in the visual analysis 
of thallium-201 (2~ scans. Ischemia is diag- 
nosed visually by the appearance of relatively 
decreased uptake on stress images that normal- 
izes, "reverses," or "fiIls in" on redistribution 
images. Infarction, on the other hand, shows no 
change between stress and redistribution im- 
ages. To assist in visually determining ir an area 
reverses, the relative activity in the area of 
concern is mentally compared with a normal 
area. If the qualitative visual "ratio" of activity 
is fixed, the defect is diagnosed as a scar. 
However, if the activity in the defect increases 
relative to the normal area, the defect is diag- 
nosed as ischemia. Defects that partially redis- 
tribute are believed to contain viable but isch- 
emic tissue that is mixed with scar. 

Technique 
The reversibility algorithm is a modification 

of Garcia's bull's-eye program (see Part 2). 7,8 
Briefly, Garcia's standard program quantifies 
uptake by extracting maximal count circumfer- 
ential profiles on each short axis tomographic 
slice in 9 ~ arcs. This yields 40 data points per 
slice. The data are then interpolated to the 
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equivalent of 15 slices and stored in two 15 x 40 
arrays, one for stress and the other for redistri- 
bution data. The reversibility bull's-eye pro- 
gram searches the 15 x 40 stress data array and 
identifies the 5 x 5 area in it that has the highest 
number of counts. 5 This area is assumed to 
represent normal myocardium. The array is 
normalized so that the 5 x 5 area is assigned an 
arbitrary maximal count of 1,000. The same 
reference area is identified in the delayed array 
and the entire delayed array is normalized so 
that the reference area is equaI to 1,000. 

The count data for each point in the normal- 
ized stress array are then subtracted from the 
corresponding point in the normalized redistri- 
bution array; the resulting data are stored in a 
third data structure, the reversibility array. The 
data in the reversibility array represent the 
relative change in counts between stress and 
redistribution in each of the 600 points that 
make up the bull's-eye. 

To determine the normal variation in counts 
between stress and redistribution, the program 
was applied to a preexisting bull's-eye normal 
file. These were 20 males and 16 females who 
were considered to have a less than 5% likeli- 
hood of coronary artery disease based on the 
bayesian analysis of age, sex, symptoms, and risk 
factors. Al1 had normal resting electrocardio- 
grams (ECGs) and did not develop chest pain or 
ECG changes when stressed to greater than 
85% of age-predicted maximal heart rate. The 
mean reversibility of this group was then calcu- 
lated using the reversibility bull's-eye program. 

In the 20 male normals, only one showed 
areas of reversibility greater than 1.5 standard 
deviations (SDs) beyond the mean in the same 
area that the standard bull's-eye identified as 
having counts 2.5 or more SDs less than normal. 
Four patients had areas of reversibility greater 
than 1.5 SD in areas that were less than 2.5 SDs 
less than mean counts (ie, not necessarily abnor- 
mal) on the stress images. Three  of these 
patients'  reversibility abnormalities were in the 
extreme apex or base. Based on these results, it 
was empirically decided to use an increase in 
relative counts (reversibility) of greater than 1.5 
SD more than the mean as abnormal.  

Next, five experienced observers read the 
routine bull's-eye plots of 42 male patients'  -'~~fT1 

scans. Each study was scored: 0, for fixed; 1, for 
minimal reversal; 2, for near complete reversal; 
and 3, for complete reversal. Differences in 
observer readings were handled by consensus. 
Areas graded as 0 or 1 were considered fixed; 
defects graded 2 or 3 were considered revers- 
ible. The observers identified 17 reversible and 
31 fixed defects. Based on these findings, the 
investigators refined their criteria based on 
empiric observation. The final criteria ate out- 
lined in Table 1. 

The 15% size criterion was chosen because, 
in general, most defects had to show reversibil- 
ity in at least 15% of a segment for an observer 
to visually diagnose reversibility. However, some 
defects that showed reversibility in only 5% of 
the pixels were perceived as having partial 
reversibility by experts. 

To display the reversibility array data, a 
standard polar plot is used. In addition, a 
whiteout map and an SD map are produced. 
The whiteout bull's-eye duplicates the stress 
blackout display by setting points that rail more 
than 2.5 SDs less than the mean to black. 
Regions that have significantly reversed be- 
tween stress and redistribution are whited-out, 
based on the criteria in Table 1. The SD 
reversibility bull's-eye indicates the number of 
SDs from the mean that pixel counts change 
between stress and redistribution; the results 
are displayed using a color code. A severity 
score is also assigned using an extraction algo- 
rithm that identifies contiguous blacked-out 
and whited-out pixels that Ÿ an individual 
defect. Using these data, the sum of the number 
of SDs from the mean of pixels that have been 

Table 1. Criteria for a Stress Defect  to be Diagnosed 

as Reversible 

The stress study must show a defect more than 2,5 SD less 

than the mean. 

The reversibil i ty counts should be 1,5 SD or greater than 

the mean reversibil i ty of normals in the region of a stress 

defect. 

The size of the area showing reversibil ity must be greater 

than 15% of the area of the defect identif ied in the origi- 

nal stress bull's-eye. 

The reversible area must not be in the extreme apex or 

base, 
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Fig 1. (A) Stress bull's-eye showing an anterolateral defer 
(B) Blackout stress bull's-eye showing pixels less than 2.5 SD 
of mean as blacked-out area. (C) Scaled display showing the 
number of SD pixels ara from the mean. (D) Delayed bull's-eye 
(similar to A)0 showing reversibility in the anterolateral defect. 
(E) Reversibility bull's-eye, (F) Whiteout bull's-eye display. (G) 
SD reversibility buWs-eye+ (Reprinted with permission, s) 

blacked-out on the stress map and whitcd-out 
on the reversibility map is calculated. Examples 
of the various display types are shown in Fig 1. 

Results 

The technique has been applied to the same 
pilot group of patients that were used to help 
determine the criteria for reversibility. -~ In this 
group of 42 patients, 48 defccts were present. 
The program correctly classified 81% (25/31) of 
the fixed defects and 82% (14/17) of the revers- 
ible defects. Howcver+ the agreement between 
the program and visual analysis would be ex- 
pected to be good using this group. 

To better judge the efficacy of their program, 
Garcia et al performed a multicenter trial of the 
revcrsibility program." One hundred forty pa- 
tients from four centers were studied. Gender- 
matched normal files were used for comparison, 
as above. Both 5% and 15% limits for the size of 
the defect that showed reversibility were tested. 
Results are summarized in Table 2: the overall 
correlation between the reversibiliw bull's-eye 
and human experts for the diagnosis of ischemia 
versus infarction was lcss than for the initial 

pilot study. Of the 91 dcfccts correctly identified 
as reversible in the multicenter study, 15 would 
have been missed if the lesser limit for revers- 
ible defect extent were 15% rather than 5%. 
Almost all of these 15 defects were classified by 
experts as being only partially reversible. The 
accuracy of the tcchnique also varied with the 
vascular territory involved. The left circumflex 
artery (LCX) territory had significantly better 
overall agreement for both fixcd and reversible 
defects than the right coronary artery (RCA) or 
left anterior descending (LAD) ar te~  territo- 
ries. The portion of the anterior wall perfused 
by the LAD also showed better agreement with 
the experts than the septal wall+ which is also 
supplied by the LAD, or the RCA. The finding 
of better agreement in the LCX territory is 
consistent with previous bull's-eye testing; in 
these studies, the program+s highest sensitivity 
for detecting the presence of coronary artery 
disease was in the RCA-LCX distribution. 

The reversibility algorithm has aiso been 
applied to patients undergoing 2mTl imaging 
before revascularization to determine if the 
program can predict which lesions wouid or 
would not improve with surgery. + In a group of 
25 patients, the sensitivity was 64% for detect- 
ing ischemia (tissue that showed improvement 
or normalization following revascularization). 
The specificity for dctecting scar was 91%. 

There are several problems with the above 
studies. One problem is the standard that was 
used to develop the program. The readings of 
expcrts are purely subjective; no objective con- 
firmation of the correctness of the classification 
was possible. Because the program's criteria for 
reversibility is partially derived by comparison 
with human interpretations, the criteria may be 

Table 2. Differentiation of Infarction from Ischemia Using the 
Reversibility Bull's-eye 

tschemia Scar 
(%) (%) 

LAD 78 67 

RCA 60 84 

LCX 88 89 

Overall 73 80 

Abbreviations: LAD, left anterior descending artery; RCA, 
right coronary artery; LCX, left circurnflex artery. 
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erroneous; certainly they are not objective. 
Another problem is interobserver variability in 
the classification of ischemia versus infarction. 
One of the five experts disagreed with the 
remaining observers in classifying infarct or 
ischemia in 25% of defects. 5 In 10%, two of the 
five experts disagreed with the majority. Further 
evidence of interobserver variability was found 
in the multicenter trial. One of the four centers' 
experts h a d a  statistically significant higher 
correlation with the reversibility bull's-eye pro- 
gram than the others. 6 The imaging protocol 
used with the program also presents a problem. 
Studies indicate that up to half of patients with 
reversible defects scanned with 2~ and im- 
aged at 4 hours postinjection may not show 
evidence of ischemia. Delaying imaging for 24 
hours, or reinjecting the patient with additional 
2mTl just before 4-hour images are obtained 
significantly improves the differentiation of isch- 
emia versus infarction. 

TECHNETIUM-99M SESTAMIBI 

Garcia et al have also developed CAID tech- 
niques for the new perfusion imaging agent, 
sestamibi, m This agent has several advantages 
over ZmT1 because it is labeled with technetium- 
99m (99mTc). I'11'12 Technetium has a photon 
energy of 140 keV which is ideal for imaging 
with today's gamma cameras. In addition, the 
higher energy photon is less attenuated in the 
body than ZmT1. Finally, the shorter half-life and 
different biodistribution of 99mTC means  up to 
ten times higher doses can be used compared to 
2~ significantly improving image quality. 

Asa  first step for adapting their 2~ program 
to sestamibi, Garcia et al determined the opti- 
mal acquisition and reconstruction parameters 
for sestamibi, lo This allows the highest quality 
data possible to be inputted into the program. 
As noted in Part 2 of this series, the same 
acquisition and reconstruction protocoI used to 
produce the normal file must be followed for 
patient studies so that the count comparisons 
are accurate. 

A new technique for generating count pro- 
files has also been developed that reduces the 
effects of partial-volume sampling (see Part 2 
f o r a  discussion of this problem). It has the 
additional advantage of reducing the amount of 

observer interaction necessary for the program, 
eliminating another potential source of error. 

In this technique, a two-part, three-dimen- 
sional sampling scheme of stacked short-axis 
slices is used. The apical cap is selected by 
identifying stacked short-axis slices that f o r m a  
hemisphere; ie, the radius of the top slice of the 
stack is equal to the depth of the stack. The 
apical cap is then sampled using a spherical 
coordinate system in which the search for maxi- 
mum counts is along a radius perpendicular to 
the myocardial wall. Each point in the profile 
represents the maximum counts per pixel for 
each phi and theta angular sample. The second 
part of the program assumes a cylindrical shape 
for the remainder of the myocardium and sam- 
ples each short-axis slice using a cylindrical 
coordinate system. 

The radii that run from the center of refer- 
ence to the extracted maximum counts are then 
¡ in both depth and angle using a 3 x 3 
lowpass filter. The ¡ radii are assembled 
as circles and are transformed into Cartesian 
coordinates. It is these Cartesian coordinates 
and their associated maximum counts that are 
used to generate the polar plots. 

Two new two-dimensional displays, distance- 
weighted and volume-weighted polar maps, have 
been developed to more accurately represent 
the location and extent of lesions (Fig 2). The 
distance-weighted polar map is similar to the 
maps currently used in the Cedars-Sinai 2~ 
program (see Part 2). The width of each dis- 
played pro¡ in the map is the same width. The 
pro¡ width in an individual study is equal to 
the radius of the map divided by the total 
number of both spherical segments and cylindri- 
cal slices generated by the sampling program. 

The second new display is a volume-weighted 
polar plot. This map was developed to correct 
for spatial distortions caused by displaying three- 
dimensional data in a two-dimensional format. 
Using this technique, the area a defect occupies 
on the map more accurately reftects the true 
three-dimensional volume of the lesion in the 
myocardium. To generate the display, the vol- 
ume of the apical cap is first calculated. The 
proportion of the total myocardium that the 
apex represents is then determined. The apex is 
mapped onto the polar display such that the 
atea ir occupies on the plot is proportional to its 
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Fig 2. Examples of different displays: A is standard polar 
displays. B shows tomographir slices. C ara volume- and 
distance weighted displays. O and F ara three-dimensional 
surfar renderings, F ara 9ated images. (Reprinted with permis- 
sion. ~o) 

true volume. In the apical cap region, each 
display ring is the same width. However, in the 
remainder of the myocardium, the area of each 
ring is proportional to the volume of that slice. 

Both types of displays can be generated as 
raw displays oras  binary or blackout displays. In 
the latter, any pixels whose values are less than 
a set Iower limit are assigned values of 0; all 
other pixels are assigned values of 1. When 
displayed, pixels with a value of 0 are blacked- 
OUt. 

Phantom and patient studies comparing the 
new wpes of displays to the conventional polar 
plot have shown the distance-weighted display 
to best indicate the location of iesions and the 
volume-weighted polar plot to best represent 
lesion size. ~o Both maps were judged equally 
adept at assessing the apex. The standard polar 
display ranked below both new displays in all 
three areas. However, even though these dis- 
plays are significant improvements over the 
standard polar plot, there is no technique for 
mapping three-dimensional data onto two- 
dimensional displays that can completely pre- 
vent distortions in the size, shape, and location 
of perfusion defects. 

EXPERT SYSTEMS 

Expert systems have become fairly common 
for nonimaging applications. ~3-15 These systems 
are designed to emulate the knowledge and 
decision-making process of a human expert in a 
very narrowly defined domain. The heart of 
expert systems is a set of heuristically derived 
rules that a human expert uses to make deci- 
sions in a specific area. 

Expert systems are made up of three parts: a 
knowledge base, a set of decision rules, and an 
inference engine. 13-15 The knowledge base is a 
special database that contains the accumulated 
body of knowledge, the ideas and concepts, that 
human experts in a particular field would pos- 
sess. The decision rules are the methods or rules 
used to make the decisions. The inference 
engine is the processing module of the program. 
It weighs input against facts in the knowledge 
base and rules in the decision module to derive 
inferences (conclusions) on which the expert 
system then acts. Early expert systems used 
hard decision rules with tima antecedents and 
certain consequences. However, much human 
decision making in areas such as medicine are 
based on incomplete information. For this rea- 
son, "fuzzy" logic has been applied to newer 
expert systems to allow the use of probabilistic 
rules and observations. 

Technique 
There have not been many fully implemented 

expert systems developed for nuclear medŸ 
cine. ~6.17 However, Ezquerra et al have con- 
structed an expert system for the diagnosis of 
2~ scans, j8-21 The program is written in LISP 
and consists of three modules: (1) a knowledge 
base contains both information about evalu- 
ating -'~ studies and the decision rules for 
diagnosis; (2) an inference engine makes deci- 
sions using backward chaining (see below); and 
(3) features extraction aigorithm that examines 
the bull's-eye data arrays and copies the appro- 
priate data. The architecture of program is 
shown in Fig 3. 

The knowledge base was constructed similar 
to the EMYCIN expert system originally devel- 
oped by Shortliffe and Buchanan at Stanford 
University. -'2,23 It differs in two ways: (1) meta- 
level rules are used to help structure and 
control the use of knowledge; and (2) symbolic 
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images. (Reprinted with permis- 
sion. 2) 

representations and descriptions of image infor- 
mation are created and use& 

The core components of the knowledge base 
are frames, parameters, rules, certainty factors, 
and goals. ]9-21 Frames a r e a  technique to orga- 
nize knowledge into manageable units by divid- 
ing problems into smaller subproblems. Each 
frame has its own set of rules and handles one of 
the subproblems. Ten frames were defined: (1) 
PATIENT, in which patient specific data is 
extracted. This includes information that can be 
used to increase or decrease the probability of 
coronary artery disease being present, such as 
the patient's age and sex; (2) DEFECTS, which 
obtains descriptions and representations of de- 
fects on the bull's-eye plot; (3) DEFECT 
SHAPE and (4) DEFECT LOCATION, which 
determine the shape and location of each perfu- 
sion defect; (5) ARTIFACT, which uses the 

patient gender and the defect's location and 
shape to determine if it is an artifact. An 
example is decreased anterior wall activity in a 
female that could represent breast attenuation. 
Another artifact identified is a defect that forms 
a complete ring at the base of the bull's-eye 
plot. These defects are not classified as lesions 
because they are most tikely due to improper 
slice selection during bull's-eye reconstruction; 
(6) LAD, (7) LCX, and (8) RCA, which tabu- 
late incremental evidence for coronary artery 
disease in each of their vascular distributions; 
(9) UPDATE CORONARIES,  which tabulates 
incremental evidence of the overall presence or 
absence of coronary artery disease; (10) PA- 
T]ENT CONDITION, which determines the 
overall condition of the patient and generates 
the final printed report. The organization of 
these frames is shown in Fig 4. 

Fig 4. Frames used in expert 
system. (Reprinted with permis- 
sion. 2) 
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Parameters are the names of facts or data- 
base items (eg, inferoapical, which describes 
that region of the myocardium). 

Rules are the tools for making decisions. 
They are frequently heuristically derived, "rules 
of thumb" that human experts have stated are 
useful in their decision making. Rules usually 
consist of a premise, the "if" clause, and a 
predicate, the "then" clause, which determines 
the conclusion or action to be drawn. ~3-15 An 
example of a rule used in the program's ARTI- 
FACTS frame is: If a defect is ring-shaped and 
if it is confined to the base of the bull's-eye, then 
it is not a true defect. The rules used in the 
program were determined by reviewing studies 
from 291 patients who had coronary artery 
disease documented by angiography. ~9,2~ Using 
this data, heuristic rules were determined that 
best correlated the presence and location of 
perfusion defects on the bull's-eye plot with 
documented anatomic lesions. Thirty to 100 
rules were generated. 21 

Certainty factors are numeric measures of 
confidence that facilitate the use of fuzzy log- 
ic. 1~,2~ They allow better manipulation of incom- 
plete or conflicting data. Ala example is a score 
for the presence of coronary artery disease that 
ranges from - 100 for absolute confidence of no 
disease, through + 100, absolute confidence that 
disease is present. In the final report this is 
expressed in the context of sentences: "there is 
strong evidence (80) of right coronary artery 
disease." 

Goals are the objectives the program actively 
works towards. In Ezquerra's et al program, 
subgoals are associated with each frame; the 
completion of these goals moves the program 
towards its overall objective, the diagnosis of 
coronary artery disease. For example, the goal 
of the ARTIFACTS frame is to determine 
whether defects are artifacts or true abnormali- 
ties.19,20 

The inference engine applies the facts and 
rules in the knowledge base to make inferences 
or conclusions using backward chaining. This is 
a form of goal-oriented problem solving in 
which the program starts with a statement anda  
set of rules leading to the statement, and then 
works backward, matching the rules with infor- 
mation from the knowledge database until the 
statement can either be verified or proven 

wrong. For example, a rule states, "Ir A then 
B." If a part of the program triggered interest in 
B, the program would turn its attention back- 
ward to A and determine ir A were true. 1345 

Results 

A model of the above program that used 30 
rules was tested on a group of 50 patients. The 
results of the expert system were compared with 
the results of angiography and to human inter- 
pretations. 19-21 The program h a d a  sensitivity of 
98% (41/42) for detecting coronary artery dis- 
ease. Specificity was 88% (7/8). The vascular 
territory involved was correctly identified in 
80% of defects (120/150). When compared with 
human experts, results were similar except the 
agreement for vascular territories was closer, 
92% (138/150). 

A sample output from the program is as 
follows: " D E F E C T  SHAPE is wraparound left 
anterior descending (0.4); POSSIBLE ARTI- 
FACT is none; WALL LOCATIONS are an- 
teroseptal (0.83), septoanterior (0.77), septoin- 
ferior (0.55), and anterolateral (0.27); PATIENT 
CONDITION is abnormal (0.95); and DIS- 
EASED C O R O N A R I E S  are left anterior de- 
scending (0.94), right coronary artery (0.27), 
and left circumflex (0.11).-21 

NEURAL NETWORKS 

Introduction 

Neural networks are powerful multivariate 
statistical methods that have been applied to a 
wide range of problems in pattern recognition 
and classification. 24 Neural networks consist of 
computational neurons, or "units," intercon- 
nected by weighted links. Learning takes place 
in neural networks through adjustments of the 
values of the links, mimicking synaptic changes 
in real biological systems. 

Some of the advantages of neural networks 
are their straightforward learning algorithms, 
their ability to continue to learn from "experi- 
ence" after initial training, and their computa- 
tion speed once trained which makes them 
useful for real time applications. Additionally, 
neural networks do not suffer the same memory 
and attention deficits people do. 

Specific advantages of neural networks for 
medical imaging applications include their abil- 
ity to deal with the lack of hard-and-fast rules, 
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to integrate medical data of many different 
types, and to handle the physiological variations 
that occur among patients. 

H o w  Neura l  N e t w o r k s  Func t ion  

The activation of a unit in a neural network is 
generally taken to correspond roughly to the 
firing rate of a biological neuron, and can vary 
from zero (resting potential) to one (maximal 
firing rate). 24 The connection strengths or 
"weights" correspond to the synaptic efficacy, 
and can have any value, positive or negative. 
Each unit's activation value is computed based 
on a weighted sum of unit activations times the 
weights from units feeding into it. Typically, the 
actual activation is a nonlinear function of this 
sum that approaches zero for large negative 
inputs and monotonically approaches one for 
large positive inputs. The most commonly used 
activation function is: 

1 
Oj = f (net j)  - 1 + e ~etl (1) 

where 01 is the activation value of the jth unit 
and the total input netj  at the unit is 

netj = ~ wijOi (2) 
i 

where wij is the weight from the ith to the jth 
unir. 

The best known neural network learning 
procedure is back propagation. 25-2v Back propa- 
gation is a method for changing the weights or 
link values in a network model to iteratively 
allow a feed-forward network to implement a 
desired input-to-output mapping. Because the 
network developer must provide a target output 
pattern that represents the correct answer for 
each input pattern, back propagation is a super- 
vised learning procedure. Back propagation is 
used primarily in networks in which the units 
are organized in layers, and are connected only 
to other units in adjacent layers. The technique 
is a generalization of earlier, less-powerful learn- 
ing algorithms capable of learning only a single 
layer of weights. 2s,29 

An alternative to the sigmoidal units gener- 
ally used in backpropagation are radial basis 
function (RBF) units. RBF units are a special 
class of neural network unit which have local 
"receptive fields," as opposed to the more 

common units that partition the input space in a 
linear fashion described above? ~ RBF units 
are most often trained in ah unsupervised way, 
without regard to any (supervised) visual scores 
assigned to them. They can also be combined 
with a second supervised layer to map these 
learned encodings to desired training targets. 32 
The decision as to which unit-type to use in a 
given situation is currently largely an experimen- 
tal question. 

Neura l  N e t w o r k s  in Nuc l ear  Medic ine  

Although neural networks are used in a 
significant number of clinical and decision- 
making applications in ECG processing, 33,34 they 
have thus lar found only limited application in 
the field of nuclear medicine. Noncardiac imag- 
ing applications include the evaluation of venti- 
lation-perfusion scans 35 and the discrimination 
of normal versus Alzheimer's disease on posi- 
tron emission tomography scans. 36 

Rosenberg et al have applied neural networks 
to the evaluation of planar 2~ images. One 
network consisting of a layer of gaussian RBF 
units was trained on cases in an unsupervised 
fashion to discover features in circumferential 
profiles of planar thallium images. 37 Then a 
second network was trained in a supervised way 
to map these features to the physician's visual 
interpretations of the same images using the 
delta rule. 28 This architecture was previously 
found to compare favorably with other network 
learning algorithms (two-layer back propaga- 
tion and single-layer networks) on this task. 27,2�91 

In these experiments, all the input vectors 
representing single views were first normalized 
to unir length. 

~"-  ]]I[I (3) 

The activation value of a gaussian unit, Oj, is 
then given by: 

netj = ~ (wij - vi) 2 (4) 
i 

o~ ~x~(~~,~-) = ( 5 )  

wherej  is an index to a gaussian unit and i is an 
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input unit index. The width of the gaussian, 
given by w was fixed at 0.25 for all units. 

Awi ,wi  . . . .  : ~q(V i - -  Wi,winner ) (6)  

The gaussian units were trained using a 
competitive learning rule that moves the center 
of the unit closest to the current input pattern 
(0max, le, the "winner") closer to the input 
pattern (see Figs 5, 6). 

Technique 
Scintigraphic images were acquired for each 

of three views: anterior, left lateral oblique, and 
left lateral for each patient case. Acquisition 
was performed twice, ohce immediately follow- 
ing a standard exercise test and once following a 
delay of 4 hours. Each image was preprocessed 
to produce a circumferential profile 3s,39 in which 
maximum pixel counts within each of 60 contig- 
uous segmental regions are plotted as a function 
of angle. 4o Preprocessing invotved positioning of 
the region-of-interest (ROl), interpolative back- 
ground subtraction, smoothing, and rotational 
alignment to the heart's apex 4o (See Part 1 of 
this series). 

Cases were preselected based on the follow- 
ing criteria4k (1) Insufficient exercise--Cases in 
which the heart rate was less than 130 beats/ 
min were eliminated, as this level of stress is 

A RBF units 

w7 "-�91 ,, \ 
" ",),\,,, 

I 31 Input units 1 2 3 .... n 
B C new center ~ r "  ~ c e n t e r  

Fig 5. (A) One set of RBF units and their connections. (B and 
C) Geometrical interpretation of the weight update procedure 
for the RBF units. The shading indicates RBF activation in three 
units produced in response to the input pattern. Activation 
falls off as an exponential (gaussian) function of the euclidean 
distance from the unit centers. The ciosest W to V is the 
winner. (C) The winners weight vector is brought closer to V 
resulting in a larger activation value on the next presentation 
of the same input pattern. The other W's are also modified 
slightly. 
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Fig 6. The network architecture. The first layer encoded the 
three circumferential profiles representing the three views. 
The second layer consisted of RBF units. The third layer are 
semilinear units trained in a supervised fashion. The outputs of 
the network corresponded to the visual scores as given by the 
expert observer. An additional unit per view encoded the 
scaling factor of the input patterns Iost as a result of input 
normalization. O, severe; 0 ,  moderate; �9 mild; O, normal. 

generally deemed insufficient to accurately dis- 
tinguish normal from abnormal conditions; (2) 
Positional abnormalities--In a few cases, the 
ROI was not positioned nor aligned correctly by 
the technician; (3) Breast artifacts--Women 
with prominent breast attenuation were not 
used; and (4) Increased lung uptake--In cases 
of multivessel disease, a significant proportion 
of the thallium activity often appears in the 
lungs; this makes evaluating the heart more 
difficult because of the partially overlapping 
activity from the lungs. 

Cases were selected at random during a 
21-month period. Approximately one third of 
the cases were eliminated because of insuffi- 
cient heart rate, 5% because of breast artifacts, 
4% because of lung uptake, and 2% because of 
positional abnormalities. A set of 100 usable 
cases remained. 

Visual lnterpretations Used for Training 
Each case was visually scored by a single 

expert observer for each of nine anatomical 
regions: Septal (proximal and distal); Anterior 
(proximal and distal); Apex; Inferior (proximal 
and distal); and Posterior-lateral (proximal and 
distal). Scoring for each region was from normal 
(1) to severe (4), indicating the level of the 
observed perfusion deficit. 
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Intraobserver variability was examined by 
having the observer reinterpret 17 of the cases a 
second time. The observer was unable to remem- 
ber the cases from the first reading and could 
not refer to the previous scores. 

Exact matches were obtained on 91.5% of the 
regions in the visual readings; only eight of the 
153 total regions (5%) were labeled a s a  defect 
(mild, moderate,  or severe) on one occasion and 
not on the other. All differences, when they 
occurred, were of a single rating level. 

In contrast, measured interobserver variabil- 
ity was much higher. A set of 13 cases was 
interpreted individually by three expert observ- 
ers in a previous experiment. 4z Percent agree- 
ment (exact matches) between the observers 
was 82% (288/351). Of  the 63 mismatches, 5, or 

. I  
approxlmately 8% of the regions, were of two 
levels of severity. There were no differences of 
three levels of severity. Approximately two thirds 
of the disagreements were between normal and 
mild regions. These results indicate the single 
observer data used in the study were more 
reliable than the mixed consensus and individ- 
ual scores used previously. 

The Network Model 

The input units of the network were divided 
into three groups, each representing the circum- 
ferential profile for a single view. Encoding of 
the input data was done by setting the activa- 
tions of the 60 units in each input group to the 
normalized values in the corresponding circum- 
ferential profile representing that view. 

A set of three RBF units was assigned and 
trained for each view. Then a second layer of 
weights was trained using the delta rule 2s to 
reproduce the target visual scores assigned by 
the expert observer. The categorical visual scores 
were translated to numerical values to make the 
data suitable for network learning: normal, 0.0; 
mild defect, 0.3; moderate  defect, 0.7; and 
severe defect, 1.0. 

Training of a single network required only a 
few minutes of computer  time. Once trained, 
results would be generated nearly immediately 
from the circumferential profiles. 

To make efficient use of the available data, 
100 identical networks were trained; each net- 
work was trained on a subset of 99 of the 100 
cases and tested on the remaining one. This 
procedure,  sometimes referred to as the "leave- 

one-out" or the "jack-knife" method, allowed 
the generalization performance for each case to 
be determined. This procedure was followed for 
both the RBF and the delta rule training. 

Each of the 100 networks was initialized and 
trained in the same way. RBF-to-output unir 
weights were initialized to small random values 
between 0.5 and -0 .5 .  Input - to -RBF unit 
weights were first randomized and then normal- 
ized so the weight vectors to each RBF unit 
were of unit length. 43 

Unsupervised, competitive training of the 
RBF units continued for 100 epochs or com- 
plete sweeps through the set of 99 cases; 20 
epochs with a learning rate of 0.1 followed by 80 
epochs at 0.01 without momentum.  

Supervised training using a learning rate of 
0.05 and momentum 0.9 was terminated, based 
on cross-validation testing after 200 epochs. 
Further training led to overtraining and poorer 
generalization. 

Results 

Because of the larger numbers of confusions 
between normal and mild regions in both the 
interobserver and intraobserver scores, disease 
was defined as moderate  or severe defects. The 
threshold value dividing the output values of the 
network into these two sets was varied from 0 to 
1 in 0.01 step increments. The number of 
agreements between the expert observer and 
the network were computed for each threshold 
value. The resulting scores, accumulated over 
all threshold values, were plotted a s a  receiver 
operating characteristic (ROC) curve (Fig 7). 

Best per formance  (percent  correct)  was 
achieved with a threshold value of 0.28 which 
yielded an overall accuracy of 88.7% (798/900 
regions) on the stress data. However, this value 
of the threshold heavily favored specificity over 
sensitivity because of the preponderance of 
normal regions in the data. Using the decision 
threshold which maximized the sum of sensitiv- 
ity and specificity, 0.10, accuracy dropped to 
84.9% (764/900) but sensitivity improved to 
0.771 (121/157), and specificity was 0.865 (643/ 
743) (Fig 8). 

In addition to diagnosing the presence or 
absence of coronary artery disease, neural net- 
works were also applied to the problem of 
differentiating infarct from ischemia. To take 
into account the delayed distribution as well as 
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Fig 7. ROC curve fo r  the network .  The top  a r row indicates 
the optimal value for the sum of sensitivity and specificity; the 
bo t tom a r row the optimal value for accuracy. 

the stress set of images, the network was essen- 
tially duplicated: one network processed the 
stress data and the other processed the redistri- 
bution data. 43 

The combined n e ~ o r k  exhibited only a lim- 
ited ability to distinguish between scar and 
ischemia. Performance on scar detection was 
good (sensitivity 0.728 [75/103], speci¡ 0.878 
[700/797]), but the sensitivity of the network for 
ischemia detection was only 0.185 (10/54). This 
result may be explained, at least in part, by the 
much smaller number of ischemic regions in- 

Fig 8. Number of stress de- 
fects correctly identified by the 
network (black) in comparison to 
the total for each region (gray). 
Proximal and distal subregions 
have been merged. Single le- 
sions were defined as lesions in 
one of the five areas: Septal 
(SPT), A n t e r i o r  (ANT) ,  A p e x  
(APX), Infer ior (INF), or Poster ior-  
lateral (PLT). Mu l t ip le  lesions 
were cases in which moderate 
and severe defects occurred in 
more than one area. 
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cluded in the data set as compared with scars 
(54 versus 103). 

Problems 

One major problem in the above study is due 
to limitations in defect sampling. For a statisti- 
cal system (networks or otherwise) to generalize 
well to new cases, the data used in training must 
be representative of the full population of data 
likely to be sampled. This is unlikely to happen 
when the number of positive cases is on the 
order of 50, as was the case with ischemia, 
because each possible defect location, plus all 
the possible combinations of locations, must be 
included. 

A variant of back propagation, called compet- 
itive back propagation, has recently been devel- 
oped which is claimed to generalize appropri- 
ately in the presence of multiple defects. 44 
Weights in this network are constrained to take 
on positive values so diagnoses made by the 
system add constructively. In a standard back- 
propagation network, multiple diseases can can- 
cel each other out, due to complex interactions 
of both positive and negative connection 
strengths. This learning algorithm may improve 
the detection of ischemia. 

Other possible improvements include 
1. Elicit confidence ratings--Expert visual 

interpretations could be augmented by 
degree of confidence ratings. Highly ambig- 
uous cases could be reduced in importance 
or eliminated. The ratings could also be 

1 
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used as additional targets for the network; 
cases indicated by the network with low 
levels of confidence would require closer 
inspection by a physician. Initial results 
are promising in this regar& 

2. Provide additional information--Clinical  
history, gender, and exercise ECG could 
be incorporated into the network. Clinical 
history has been found to have a profound 
impact on interpretation of radiographs. 45 
The inclusion of these variables should 
allow the network to approximate more 
closely a complete diagnosis, and boost the 
utility of the network in the clinical setting. 

3. Add constraints - -The angles that relate 
the three views were not used. It may be 
possible to build these angles in as con- 

t. 
stramts and thereby cut down on the 
number of free network parameters.  

Related Neural Network Studies 

Porenta et al trained a network using back 
propagation based on expert visual scores and 
angiography results. 46 Input to the network in 
both cases was a highly compressed version of 
the circumferential count pro¡ for the three 
planar views (see Part 1). Mean values were 
computed within five anatomically derived seg- 
ments from the original 60 in the circumferen- 
tial profile. The stress, delayed distribution, and 
washout profiles were all presented as 45 values 
(5 segments x 3 views x 3 conditions). 

Performance of the network was assessed by 
how well it matched either the physician's visual 
scores or the angiographic results. The best 
results were obtained when the network, with a 
single output unit, was trained simply to predict 
the presence or absence of coronary artery 
disease based on human visual scores. The 
correlation results on the test set ranged from 
87% to 91% on this task (93% sensitivity and 
83% specificity). The network trained on the 
angiography results were not as good (67% 
agreement with angiography). This result is 
perhaps not surprising, given the fact that the 
input data, the circumferential profile, reflects a 
physiological factor, rather than an anatomic 

variable. As noted in Part 2, a number of factors 
in addition to stenosis affect blood flow; there- 
fore, no simple relationship holds between myo- 
cardial perfusion on thallium studies and steno- 
sis on angiography. Similar results for stenosis 
prediction based on angiography data from 2~ 
scintigrams have been obtained by Cios et al. 47 
They compared back propagation and the Koho- 
nen algorithm, 4s which builds multidimensional 
topological maps, to a variety of "fuzzy set" 
rules-based construction techniques. The Koho- 
nen network appeared to perform about as well 
as the rule-based approaches based on bayesian 
probabilities and Dempster-Shafer theory of 
evidence. 49 The back propagat ion network 
yielded somewhat worse results but this differ- 
ence probably was not significant. The applica- 
tion of fuzzy set methods to the interpretation 
of myocardial scintigraphy also has been ad- 
dressed by Rosenberg et al. 5o 

Two studies have extended the application of 
neural networks to the interpretation of thal- 
lium SPECT data. Fujita et al compressed 
SPECT images to a 16 x 16 binary matrix of 
averaged pixel values; they then processed the 
data using a back propagation network. St The 
training data consisted of eight abnormal cases 
as judged by the consensus of three expert 
observers, for each coronary artery and all 
combinations ofvessels, plus another eight cases 
of no disease (normal). Following training, the 
network was tested on two new cases for each 
disease type. Overall performance of the net- 
work was 77%, which compared favorably with 
human experts when tested individually. Cian- 
flone et aP 2 used back propagation on SPECT 
data to determine the abnormal vessel. The 
accuracy was 100% (16/16)when a single vessel 
was involved, and 80% (20/24) when multiple 
vessels were affected. 

SUMMARY 

CAID of coronary artery disease on nuclear 
medicine images is a useful technique. Expert 
systems and neural networks hold the promise 
of extending the accuracy beyond that of human 
observers. 
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