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Spin echo multiecho sequences are not frequently 
used in clinical practice, because they al low the obser- 
vat ion of one single slice, imaged at different echo 
times, for each acquisition. To limit examination t ime, 
multislice sequences that include only images derived 
from one or two  echoes are usually acquired. Neverthe- 
less, the strong T2 dependence of multiecho se- 
quences can be used effectively to enhance the con- 
trast between tissues with different T2 and to gather 
useful diagnostic information. Artificial neural net- 
works can offer new interesting facilities to the radiol- 
ogist. In fact, the learning capabilities of neural net- 
works al low them to extract the prototypical behavior 
of a system from a set of examples. After learning, 
artificial neural networks can emulate the system 
behavior even in the presence of new inputs, as lar as 
these ate not too different from those included in the 
training set. A conveniently trained neural network can 
synthesize a mult iecho sequence for each slice of a 
multislice sequence, requiring only two images for 
each slice to achieve reliable results. When compared 
wi th a true multiecho sequence, the images generated 
by the network preserve the contrast characteristics of 
the original ones and have a better signal.to-noise 
(SNR) ratio. In this paper we report the results achieved 
by using a neural network to reconstruct synthetic 
spin echo multiecho images of the brain. 
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M AGNETIC RESONANCE IMAGING 
(MRI) allows radiologists to obtain dif- 

ferent outputs according to preselected acquisi- 
tion parameters. Before the acquisition of a 
sequence of images, the operator has to define 
the orientation of the slicing plane, the number 
and thickness of slices, the pulse sequence, and 
related parameters (including repetition time 
[TR] and echo-delay time [TE] for spin echo 
sequences) that influence the contrast of the 
resulting images.1 

The examination is often performed by a 
technician who usually follows standard proto- 
cols and might not realize when it is necessary to 
adopt specific acquisition procedures to en- 
hance diagnostically relevant features. When 
radiologists review the images, there is no longer 
any possibility of changing the acquisition param- 
eters. 

As regards slice orientation, three-dimen- 
sional (3D) reformatting can simulate a change 

of the slicing plane after acquisition. A simple 
and reliable system for changing and contrast 
characteristics within the image at the time of 
review of the examination would be useful. 

Theoretically, it would be desirable to recon- 
struct any type of image (Tl-weighted, proton- 
density weighted, T2-weighted) ffom a data set 
obtained with any acquisition parameters. In 
practice, this "a posteriori" reconstruction is 
possible only in a limited number of cases. 
Nevertheless, even within these constraints, 
such a contrast reformatting could have a signif- 
icant clinical impact. 

For example, when spin echo multislice se- 
quences are acquired, images obtained from the 
first two echoes could be used to build T2 maps 
and/or to synthesize a set of images correspond- 
ing to different TEs. In the absence of noise, the 
straightforward fit of a single exponential is 
sufficient to achieve reliable results. When noise 
is present, as in an actual acquisition, the 
reliability of such estimates diminishes. To limit 
the effects of noise, either more redundant 
information (a greater number of input images) 
or a long delay between the acquisition of the 
two input images can be used. 2,3 The first 
remedy has its drawback in requiring that a 
greater number of images be acquired. With the 
second one, the values of TE suggested for 
optimal performances are different from those 
that are normally adopted, so that either a 
further sequence must be acquired, o ra  nonop- 
timal sequence must be used to perform stan- 
dard clinical tasks. 

In order to solve the aforementioned prob- 
lems, we have developed and tested a neural 
network-based system that can reconstruct a 
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synthetic multiecho sequence from images ac- 
quired during a spin echo multislice long-TR/ 
long-TE pulse sequence. The system allows the 
examination to be performed with standard 
methodologies and parameters, thus enabling 
the radiologist to obtain heavily T2-weighted 
images of any of the slices in addition to the 
ones that are usually available. 

A further benefit of the system is an observed 
enhancement of image quality, with respect to 
images obtained with true multiecho sequences, 
resulting from a better signal-to-noise ratio 
(SNR). 

ARTIFICIAL NEURAL NETWORKS 

In 1943 McCulloch and Pitts 4 devised a math- 
ematical model of the biological neuron that 
consisted of a summation block into which 
conveniently weighted input signals were fed. A 
threshold function was then applied to the sum 
to determine the neuron output. 

Such a model, with minor modifications (the 
threshold function is usually substituted with a 
sigmoid function), is still the elementary unit on 
which artificial neural network architectures ate 
based (Fig 1). 

An artificial neural network (ANN) consists 
of a set of such "neurons," connected together 
to forma network, according to different para- 
digms. Usually different layers of processing 
elements can be distinguished, including neu- 
rons characterized by the same distance from 
the input layer (Fig 2). 

The ANNs ate characterized by three main 
properties, which were investigated, and ex- 
ploited, only long after the work by McCulloch 
and Pitts: learning, generalization, and abstrac- 
tion. 5 

The learning process, that can be based on a 
variety of learning rules, implies the modifica- 
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Fig 1. Functional diagram of an artificial neuron: the result 
of a weighted sum of neuron inputs is fed into a nonlinear 
block with a sigmoid transfer function, which determines the 
neuron output. 
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Fig 2. Structure of an artificial feed-forward 4-1ayer neural 
network: the outputs of the processing elements of each layer 
are the inputs for the neurons of a subsequent layer: in this 
particular case (the network structure used in our work) the 
network is also full-connected, as all neurons of one layer are 
connected with all neurons of the following one. 

tion of the weights so that the network produces 
consistent responses to a training set of inputs. 
The most common learning algorithms do this 
by minimizing the total squared error (TSE), 
defined as the sum of the squared differences 
between the desired outputs and the actual 
outputs of the network, calculated on the whole 
training set. 

Generalization implies that similar inputs 
also produce similar outputs. This means that 
neural networks ate insensitive to noise, le, they 
can preserve their behavior even in the pres- 
ence of corrupted or incomplete inputs. 

Abstraction refers to the capability of ANNs 
to extract an underlying prototype from the 
examples, producing, to some extent, even out- 
puts not previously shown. 

These properties have suggested the use of 
neural networks to solve pattern recognition 
and classification problems, such as those en- 
countered in character recognition and com- 
puter vision. 6,7 As regards the biomedical field, 
up to now ANNs have been applied to perform 
classification of diagnostic tasks through the 
analysis of monodimensional signals (electrocar- 
diogram [ECG], electroencephalogram [EEG] 
blood-pressure data, etc). s,9 

In the field of medical imaging, the solution 
of problems arising from the analysis of greatly 
variable 'scenes' suggests that an underlying 
model be found to describe the physical system 
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that has to be analyzed. Nevertheless, such 'a 
priori' knowledge is often hardly exploitable 
and, even when the system behavior is described 
by simple closed-form formulas, traditional ap- 
proaches often fail when a strong stochastic 
component (noise) is present. 

On the contrary, the development of ANN 
models of complex systems usually requires not 
more than the creation of a suitable training set 
a n d a  few learning sessions (some learning 
algorithms do not ensure convergence to the 
global minimum for TSE, so that it is advisable 
to perform multiple learning sessions). 

MATERIALS AND METHODS 
The ANNs used in our study are based on a feed-forward 

network architecture (signals always propagate towards the 
output layer), trained with the backpropagation algo- 
rithm, l~ The network is made up of one input, two hidden 
and one output layers, including 18, 6, 6 and 3 processing 
elements, respectively (Fig 2). 

The 18 inputs are the gray levels of nine pixels from two 
corresponding 3 x 3 windows in the first and in the second 
input image. The output values represent the gray level of 
the central pixel of the window in the resulting long-TE 
images. The training set used in the learning phase included 
4,500 examples, randomly selected from three different 
coronal spin echo multiecho sequences. 

In building the training set a choice had to be made 
between two approaches: the first suggests that background 
pixels be included in the training set, and a null desired 
output be assigned to them; according to the second 
approach, examples should be taken only from regions of 
the image, where significant signal is supposed to be found. 
After trying both approaches, we chose the latter because 
the former, while correctly setting to zero the background 
pixels, also produced a suppression of the signal from 
significant low-intensity areas within the image. 

The network was trained by using a network-simulation 
program we have developed in C language and run on a HP 
9000/300 workstation (Hewlett Packard Corp, Palo Alto, 
CA). Three hundred iterations (about 90 minutes of central 
processing unit time) were needed for the backpropagation 
algorithm to converge; nevertheless, the TSE had already 
reached acceptable values after the first 50 iterations. 

Tests were performed by comparing synthetic long-TE 
images reconstructed from the early echoes of actual 
multiecho sequences with the corresponding original im- 
ages. 

RESULTS 

Our observations relate to the application of 
the network to reconstruct synthetic images 
corresponding to TE = 120, 150, 180 millisec- 
onds, using two images with TE = 30 millisec- 
onds and TE = 120 milliseconds (TR = 2 sec- 
onds) as inputs. 

A comparison between synthetic and original 
images was performed on a set of coronal 
multiecho images that had not been included in 
the training set. A first visual comparison was 
made by a radiologist, who confirmed that 
synthetic images are not affected by diagnosti- 
cally relevant artifacts. In fact, these were found 
to reproduce the typical behavior of a multiecho 
sequence, characterized by an increasingly T2- 
dependent contrast. 

Moreover, the reconstruction of synthetic 
images yields a better signal-to-noise ratio with 
respect to the original ones. This suggests that 
the weights of the neural network representan 
optimal model of MR signal. Furthermore, the 
gray level of each pixel in the output image 
depends on the gray levels of the corresponding 
pixel and of the eight surrounding ones in the 
two input images. This net configuration is 
likely to produce a smoothing effect. 11 

To quantify the results obtained by the net- 
works, a computer simulated sequence of a 
phantom was generated (Fig 3). Values for 
proton density and T2 that are similar to those 
of actual brain tissues were given to each region 
so as to generate a sequence made up of a 
proton density image and eight echoes, with TE 
ranging from 30 to 240 milliseconds. Uniform 

Fig 3. The computer-generated multiecho sequence of a 
phantom that was used to assess the performances of the 
network. 
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Table 1. Results (TE = 150 milliseconds) 

Net Fit 

Level ~ r ~/~ ~ ~ ~/g 

A 98 105.16 5.53 19.02 95.74 9.81 9.76 
B 129 131.44 5.71 23.02 121.62 10.42 11.67 
C 247 229.61 6.85 33.52 222.51 11.59 19.20 
D 255 249.64 5.52 45.22 230.01 12.00 19.17 

NOTE. Results obtained on the sequence shown in Fig. 3. The 
neural network and an exponential fit were applied to two 
images of the phantom corresponding to TE = 30 milliseconds 
and TE = 120 milliseconds, to generate synthetic images 
corresponding to TE = 150 milliseconds (a) and TE = 180 
milliseconds. The "true" gray levels of the four largest regions 
of the phantom are reported in the first col umn. The right part of 
the table reports the mean values i~, the standard deviations cr, 
and the signal-to-noise ratios p,/~, characterizing the correspond- 
ing regions of the images obtained by the network (left) and by 
the fit (right). 

noise with amplitude of 5 was then added to 
each image, and gray levels scaIed from 0 to 255. 
The noise level was chosen in order to obtain 
images that are close to those obtained by actual 
spin echo sequences, as regards both mean level 
and variance of noise. 

Two quality factors were chosen to evaluate 
the performance of the neural network: the first 
was the difference between the actual gray 
levels of constant-level regions in the noiseless 
images and the mean value ix of pixels in the 
corresponding regions of the synthetic images; 
the second was SNR calculated as ix/tr ratio, cr 
being the standard deviation of the signal in the 
same regions. 

A comparison was performed between the 
synthetic images and those obtained by fitting 
an exponential curve to the same inputs. The 
gray levels of the synthetic images are always 
closer to those of the noisy phantom and SNR is 
always better (Tables 1 and 2). The resulting 
images are shown in Fig 4. 

The best results were obtained by windowing 
the actual network output according to two 
thresholds: the upper threshold is a function of 

Table 2. Results (TE = 180 ras) 

Net Fit 

Level ~ r ~/~ ~ ~ ~/~ 

A 77 82.88 4.71 17.60 74.33 9.57 7.77 
B 112 110.48 5.36 20.61 102.49 11.08 9.25 
C 220 201.29 9.69 20.77 195.24 12.99 15.03 
D 255 248.14 6.95 35.70 222.22 14.50 15.32 

Fig 4. The phantom image, corresponding to TE = 150 
milliaeconds, as reconstructed by the network (left), and by 
performing ah exponential fit on the same two input images 
(ri9ht). 

the distribution of the highest gray levels in the 
image, and was chosen so as to bring 1% of the 
whole image to saturation (Gray level 255); the 
lower threshold was calculated by adding half 
standard deviation of the background noise to 
its mean value. 

The networks were also applied to actual spin 
echo images. Figure 5 shows the results of the 
comparison between the gray-level profiles of 
two corresponding lines of a synthetic image 
and of the original one. 

As shown in Fig 5, the two profiles have the 
same morphological characteristics; the only 
distortion introduced by the ANN is repre- 
sented by minor differences in the gray levels. 

Fig 5. Left: original coronal MR image (TE/TR = 150/2000 
milliseconds); right: the corresponding windowed synthetic 
image. The similarity of the profiles relative to a line passing 
through the lateral ventricles proves the accuracy of the 
reconstruction. 
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Fig 6. (A) Original coronal MR images (TE/TR = 150,180/2000 milliseconds); (B) corresponding reconstructed synthetic images, 
obtained by the network. 

The first remark that can be made in compar- 
ing the two profiles is that the dynamic range of 
the network output is compressed with respect 
to the one of the original image; secondly, the 
background, apart from being significantly less 
noisy, is set to a uniform level that is higher than 
the mean value of noise in the original image. 
While the latter result is due to the choice to 
eliminate background pixels from the training 
set, the compression is physiological for ANNs 
trained with examples whose desired outputs 
are not uniformly distributed. In such cases the 
abstraction property of ANNs causes the distri- 
burlon of the reconstructed outputs to approxi- 
mate the distribution of the examples, thus 
preventing a faithful reproduction of less fre- 
quent values. 

Such an inaccuracy does not substantially 
alter the image; in fact, the original aspect of 
the image can be satisfactorily restored by 
windowing the images according to the afore- 
mentioned procedure. 

Figure 6 shows two original images (TE = 150 
milliseconds, 180 milliseconds) and the corre- 
sponding windowed outputs of the networks. To 
evaluate the abstraction capabilities of the net- 
work system, we tested the same network, 
trained on coronal images, on standard spin 
echo axial multislice sequences as well. The 
results of this test are shown in Figure 7. The 
overall quality of the synthetic axial image is still 
comparable with that obtained with coronal 
images, as could be expected. 

CONCLUSIONS 

Although applied only on a small set of 
sequences of brain images, our results seem 
promising. 

A more complex model of the spin echo 
signal, including parameters to represent noise, 
etc, might achieve similar or even better results, 
but its derivation could never be so immediate 

Fig 7. Synthetic images, with TE/TR = 150,180/2000 milli- 
seconds (bottom row) obtained by applying a network, trained 
by coronal images, on a standard axial sequence with TE/TR = 
30,120/2000 milliseconds (top row). The good results confirm 
the abstraction capabilities of neural networks. 
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and generally applicable as with the learning 
procedures typical of ANNs. 

Indeed, the use of a neural network approach 
to MR image synthesis showed the double 
advantage of retrospectively obtaining long-TE 

spin echo images from a standard two-echo 
multislice sequence and of improving image 
quality, thanks to the better SNR of synthetic 
images in comparison with those obtained by 
actually performing a multiecho acquisition. 
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