MEASUREMENTS OF THE CONVERSION LINES OF THE 742 KeV TRANSITION IN THE DECAY OF 143Pm

Вy

D. BERÉNYI and L. VARGA*

INSTITUTE OF NUCLEAR RESEARCH OF THE HUNGARIAN ACADEMY OF SCIENCES (ATOMKI), DEBRECEN

(Received 24. VIII. 1967)

The decay scheme of ¹⁴³Pm is fairly simple [1]. Only one gamma ray with an energy of 741.8 \pm 1.5 keV [2] pertains to the decay. In spite of this only one datum on the α_K internal conversion coefficient in this transition has been published [3] and no measurement is available for the ratio of the coefficients $\alpha_K/\alpha_L + \alpha_M$.

In our measurements the conversion lines were taken with a toroid-sector type beta ray spectrometer [4] which has both a resolution and a transmission of about 3% under the actual experimental conditions. The source was obtained by radiochemical separations of the Pm fraction from Ta, Er and Gd targets irradiated in the Dubna synchrocyclotron. At the time of our measurements the source contained only ¹⁴⁴Pm in a considerable quantity, besides ¹⁴³Pm.

In the determination of the α_K coefficient the data of an earlier work of ours [5] were used in which the gamma spectrum was measured by Ge(Li) techniques with the same source material. From that work the relative intensities of the ¹⁴³Pm and ¹⁴⁴Pm lines are known.

To determine the α_K in question we now measured the relative intensity of the 742 keV-K conversion line of ¹⁴³Pm and the 695 keV-K line of ¹⁴⁴Pm the multipolarity of which is well known [1], [3] (for further details see [6]).

The values of $\alpha_K/\alpha_L + \alpha_M$ from our measurements and according to the Rose tabulation [6] are given in Tables I and II.

Table I Theoretical and experimental values of α_K conversion coefficient of 742 keV transition in the decay of $^{143}{\rm Pm}$

Multi- polarity	El	E2	E3	MI	М2	M3	Experimental value
α_K	1.45 · 10-3	3.74 · 10 -3	8.49 · 10 -3	6.07 · 10-3	1.63 · 10-3	3.72 · 10 -2	(3.7±1.3)10 ⁻³

^{*} Present address: Duna Steel Works, Isotope Laboratory, Dunaújváros, Hungary.

Table II Conversion coefficients' ratio $\alpha_K/\alpha_L + \alpha_M$ for the 742 keV transition in the decay of ¹⁴³Pm

Multipolarity	El	E2	E3	M 1	M2	М3	Experimental value
$\alpha_K/\alpha_L + \alpha_M$	5,9	5.1	3.9	5.9	5.0	4.4	4.5 ± 0.7

According to these results the most probable multipolarity of the 742 transition of 143Nd is E2 rather than Ml (cf. [3]). Thus, one can suppose a -3/2 spin and parity value for the 742 keV excited level of $^{143}\mathrm{Nd}$ which would be a $p_{3/2}$ shell model state.

The authors wish to express their thanks to Professor A. SZALAY for the excellent facilities provided at his Institute. Thanks are also due to Dr. F. MOLNÁR and Dr. Cs. ÚJHELYI for the radiochemical work and to Mr. D. VARGA for valuable discussions.

REFERENCES

- 1. Б. С. Джелепов, Л. К. Пекер, В. О. Сергеев, Схемы распада радиоактивных ядер. А 100. Изд. АН СССР, М. – Л. 1963.
- 2. E. G. Funk, Jr., J. W. Minelich and C. F. Schwerdtfeger, Phys. Rev., 120, 1781, 1960.
- 3. S. Ofer, Phys. Rev., 113, 895, 1959.
- 4. A. SZALAY and D. BERÉNYI, Acta Phys. Hung., 10, 57, 1959. 5. N. A. EISSA, D. BERÉNYI, GY. MÁTHÉ, D. VARGA, I. REZANKA and L. MALY, Nucl. Phys.,
- 6. L. VARGA, Diploma-work, Debrecen, 1967 (in Hungarian).
- 7. M. E. Rose, Internal Conversion Coefficients. North-Holland Publ. Co., Amsterdam, 1958.